第六章-3(力法)详解

合集下载

结构力学第六章 力法

结构力学第六章 力法
34
四、n次超静定结构的力法典型方程
i1X1 i2 X 2 in X n iP 0(i 1、2、、n)
符号意义同前。 求解内力(作内力图)的公式:
M M1X1 M2X2 Mn Xn M P
FQ FQ1X1 FQ2 X2 FQn Xn FQP
FN FN1 X1 FN 2 X 2 FNn X n FNP 作内力图可以延用第三章的作法:由M→FQ→FN。
通常做法:拆除原结构的所有多余约束,代之 以多余力X,而得到静定结构。
规则: 1)去掉或切断一根链杆,相当于去掉一个约束; 2)去掉一个简单铰,相当于去掉两个约束; 3)去掉一个固定支座或切断一根梁式杆,相当于去 掉三个约束; 4)在梁式杆上加一个简单铰,相当于去掉一个约束。
10
例: a)
X1
X2
37
2、列 力法方程
1211XX11
12 X 2 22 X 2
1P 2P
0 0
(B 0) (C 0)
讨论方程和系数的物理意义。
q
A
D
Δ1P B
C
A
X1=1
δ11 δ21
D
B
C
A
δ12
X2=1 δ22
D
B C
38
位移方程(力法方程)
ΔφB=0 ——B左右截面相对转角等于零。 ΔφC=0 —— C左右截面相对转角等于零。
d)
原结构
X2
X1
X1
X2
n=2
13
e)
原结构
X1 X1 n=1
f)
原结构
n=3
X1
X3
X2
特别注意:不要把原结
构拆成几何可变体系。此

结构力学- 力法

结构力学- 力法

0
X1 4X2
0
解方程得:
X1
1 15
ql 2
(
)
X2
1 60
ql2 (
)
3. 作内力图 1) 根据下式求各截面M值,然后画M图。
M M1X1 M2X2 MP
23
ql2 15
A
C
B
ql2 60
11ql 2 120
D M图
2) 根据M图求各杆剪力并画FQ图。
AB杆: MB 0
FQAB
26
2. 方程求解
q
B
C
ql 2 8
A
MP图
1P
1 E1I1
2 3
l
1 ql 2 8
1 2
ql3 ql3 24E1I1 24E2I2k
2P 0
X1=1 1 E1I1 l
1B
C
E2I2 l
A
M1图
B
E1I1 l C
E2I2 l
X2=1
A
M 2图
1
27
X1=1 1 E1I1 l
1B
C
E2I2 l
A
M1图
B
E1I1 l C
E2I2 l
X2=1
A
1 M2图
11
1 E1I1
1 2
1 l
2 3
1
1 E2 I 2
1 2
1
l
2 3
1
l l l E1I1 E2I2 l k 1 3E1I1 3E2I2 3 E1I1E2I2 3E2I 2 k
( E1I1 k) E2 I2
12
21
1 E2 I2
△iP—荷载产生的沿Xi方向的位移

第六章节 力法

第六章节 力法

11
(4)解方程,求多余未知力
4 100 32 X X 3EI 1 EI 2 EI 0 4 8 40 X1 X2 0 3EI EI EI
X 1 8.57 X 2 2.14
(5)根据叠加原理,绘制内力图。
M M 1 X 1 M 2 X 2 MP
10KN/m B C 2m A 2m A B 10KN/m C
X2
X1
基本结构
解: (1)选择基本结构 (2)建立力法典型方程
11 X 1 12 X 2 1P 0 21 X 1 22 X 2 2 P 0
(3)求解系数项和自由项
20.0 B
10KN/m C B 2.0 2.0
系数项 ij 是由单位力 X j 1 产生的沿 X i 方向的位移。 自由项 iP 是由真实荷载产生的沿 X i 方向的位移。 注意: 根据位移互等定理有 ij ji 主系数 ii 0,副系数 ij (i j可正、可负、也可为零。 )
(3)求解系数项和自由项 MiM j ds ij EI
M 1图
B
(4)解方程,求多余未知力
l ql 3 11 X 1 1P X1 0 3EI 24 EI
(5)根据叠加原理,绘制内力图。
ql 2 X1 8
M M 1 X 1 MP
1 2 ql 8
A
1 2 ql 16
B
=
A
1 2 ql 8
B
+
A
B
1
M图
M P图
M 1图
【例7.2】作图示结构的弯矩图。EI为常数
M M 1 X 1 MP

结构力学第6章力法3ppt课件

结构力学第6章力法3ppt课件

X1
1P
11
2 2 FP
-FP
FN
X1 F N1 FNP
2 2
FP
FN1
FNP
FP FNP FP
习惯上列表计算
杆件 l
FN1 FNP
01 a -1/√2 0 13 a -1/√2 -FP 23 a -1/√2 -FP 20 a -1/√2 0 03 √2a +1 √2FP 12 √2a +1 0
• (3)超静定结构内力分布与横梁和桁架 的相对刚度有关。下部链杆截面小,弯 矩图就趋向于简支梁的弯矩图;下部链 杆截面大,弯矩图就趋向于连续梁的弯 矩图。
作业:
• P268 6-5 (a)、6-6
2、超静定组合结构
•计算特点:
•梁式杆:
2
2
ii
F Nil EA
M i dx EI
ik
F Ni F Nkl EA
M i M k dx EI
iP
F Nii FNPl EA
M i M P dx EI
•二力杆:只考虑轴向变形对位移的影响
例:
图示加劲式吊车梁, 1.5m FP=74.2kN
FN12l
1/2×a 1/2×a 1/2×a 1/2×a
√2a √2a
FN1FNPl
FN
0 FP·a /√2 FP·a /√2
0 2FP·a
0
+FP /2 - FP /2 - FP /2 +FP /2 √2FP/2 -√2FP/2

2(1+√2)a (√2+2)
讨论:
• 1、桁架中的杆件(EA=常数)不是去掉
例:用力法计算图示桁架,各杆EA=常数

结构力学——6力法ppt课件

结构力学——6力法ppt课件

的位移条件,首先求出多余未知力,然后再由平
衡条件计算其余反力、内力的方法,称为力法。 力法整个计算过程自始至终都是在基本结构 上进行的,这就把超静定结构的计算问题,转化
为已经熟悉的静定结构的内力和位移的计算问题。 11
§6—4 力法的典型方程 用力法计算超静定结构的关键,是根据位移条件建立力法方 程以求解多余未知力,下面首先以三次超静定结构为例进行推导。 P P 1. 三次超静定问题的力法方程 ↓ ↓ 首先选取基本结构(见图b) 基本结构的位移条件为: 原结构 基本结构 △1=0 △2=0 A B X1 A X2 △3=0 → (b) B ↑ (a) X 3 设当X 1 、 X 1 、 X 1 和荷载 P 1 2 3 分别作用在结构上时, 沿X 方向: 、 、 和△ ; 1 11 12 1P 13 A点的位移 沿X2方向:21、22、23和△2P ; 沿X3方向:31、32、33和△3P 。 据叠加原理,上述位移条件可写成 △1=11X1 +12X2+13X3 +△1P=0 △2=21X1+22X2+23X3+△2P=0 (8—2) 12 △3=31X1+32X2+33X3+△3P=0
多余未知力: 多余联系中产生的力称为多余未 知力(也称赘余力)。 多余联系与多余未知力的选择。
3. 超静定结构的类型 (1)超静定梁; (2)超静定桁架; ⑶ (3)超静定拱; (4)超静定刚架; (5)超静定组合结构。 4. 超静定结构的解法 ⑷
求解超静定结构,必须 综合考虑三个方面的条件: (1)平衡条件; ⑸ (2)几何条件; (3)物理条件。 5 具体求解时,有两种基本(经典)方法—力法和位移法。

X1

力法知识讲解PPT89页

力法知识讲解PPT89页

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓B
Δ1P
Δ1=δ11X1 + Δ1P=0
= X1=-Δ1P / δ11 3ql/8
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ M图
3ql/8
17
d X D 0
11 1
1P
D1P
512 EI1
d11
288 k 144 k EI1
X1
-
D1P
d11
-
320k
92k 1
X1
k1 2
- 80 kN 9
由上述,力法计算步骤可归纳如下: 影响。
1)确定超静定次数,选取力法基本体系;
2)按照位移条件,列出力法典型方程;
3)画单位弯矩图、荷载弯矩图,用(A)式求系数和自由项;
4)解方程,求多余未知力;
5)叠加最后弯矩图。M M i X i M P
25
§6.4 超静定梁、刚架和排架
FP
例 . 求解图示两端固支梁。
d12 X 2 d 22 X 2
D1P D2P
0 0
图乘求得位移系数为
d 11
d 22
2d 12
l 3EI
D1P
-
FPab(l b) 6EIl
D2 P
-
FPab(l a) 6EIl
X 1
FPab2 l2
X
2
FP a 2b l2
可代 得入
并 求 解
FPab2 l2
FPab l
FPa2b l2
11
EI
X1=1
求l X1方 E向1I 的 l位22 移23l 虚 拟3的lE3I力状P=态1
ql2/2 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
MP

结构力学课件--6力法3

结构力学课件--6力法3

2
内容回顾
对称荷载:
反对称荷载:
EI
P EI
EI P P
EI
P EI
EI P P
B.有中柱对称结构(偶数跨结构) 对称荷载:
反对称荷载:
EI EI
P EI
EI P P
EI EI
P EI EI EI P P
EI/2
2019/7/14
课件
3
用力法计算下图所示结构,并作结构M图。
1 kN/m EI
EI
EI 2m
可能使: 21 = 12 = 0
即得:
课件
11X1 1P = 0 22 X 2 2P = 0 33 X 3 3P = 0
y y´
12
X2
X2 y
X1 X1 a
y
O
x
x'
1
y
x
X1 = 1
y

X2 =1
M1 =1 N1 = 0 Q1 = 0
12 =
15
4m
a
y
2EI
EI
EI
x
8m
X1 X1
X2 X2 X3
a
=

y
1 EI
ds

1 EI
ds
=
1 2EI
8 4
2( 1 EI
4 2)
=
8
=
2.667m
1 8 2( 1 4)
3
2019/7/14
2EI
EI 课件
§6-7 支座移动和温度改变时的内力计算
16
一、支座移动时的计算
(a 11
1 2

结构力学(龙驭球)第6章_力法

结构力学(龙驭球)第6章_力法
5
二、超静定次数
从几何构造看
超静定次数 = 多余约束的个数
从静力分析看
超静定次数 = 多余约束力的个数
= 未知力个数 – 平衡方程的个数
2次超静定
6
4次超静定
3次超静定
6次超静定
7
判断超静定次数时,应注意: (1)撤去一根支杆或切断一根链杆,等于拆掉一个约束。 (2)撤去一铰支座或撤去一个单铰,等于拆掉两个约束。 (3)撤去一固定端或切断一个梁式杆,等于拆掉三个约束。 (4)在连续杆中加入一个单铰,等于拆掉一个约束。 不要把原结构拆成一个几何可变体系。即不能去掉必要约束 要把全部多余约束都拆除
FN P 图(kN)
33
(4)解方程
X 1 12.1kN
(5)作FN图
FN FN1 X1 FNP
34
例6-4 求图示超静定组合结构的内力图。 AD杆:EI=1.40×104kN.m2; 解 (1)选取基本体系 EA=1.99×106kN; AC、CD杆:EA=2.56×105kN; BC杆:EA=2.02×105kN
11 X1 12 X 2 1P 0 21 X1 22 X 2 2P 0
19
力法的基本体系不是唯一的


×
!! 瞬变体系不能 作为力法的基本 体系
20
力法基本方程?
21
n 次超静定结构的力法典型方程:
11 X 1 12 X 2 21 X 1 22 X 2 n1 X 1 n 2 X 2
2
§6-1 超静定结构和超静定次数
一、超静定结构的组成
超静定结构与静定结构的区别:
几何特征: 超静定结构是有多余约束的几何不变体系 静定结构是无多余约束的几何不变体系 静力特征: 仅由静力平衡条件无法全部求解超静定结构 的内力和反力 静定结构的内力和反力可以全部求解 超静定结构的内力计算—— 不能单从静力平衡条件求出,而必须同时考虑 变形协调条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MP
1
FP
R(
sin
2
)
例 1. 试用对称性对结构进行简化。EI为常数。
FP 方法 1
FP /2 FP/2
FP
FP /2
FP /2
I/2 I/2
FP /2 FP /2 FP /2
FP /2
FP /2
I/2
FP /2
无弯矩, 不需求解
FP /4 FP /4
I/2
FP /4
FP /4
FP /2
I/2
11 X1+1P=0
=144
11
EI
1
=1800
P
EI
X 1=-12.5 M=M1 X1+M
P
例: FP
FP
由于 0 ,问题无法化简 12
(2)未知力分组和荷载分组
FP
X1 Y1 Y2 , X2 Y1 Y2 , 12 0
力法典型方程成为:
Y 11 1 Y 22 2
1P 2P
0 0
对称结构承受一般非对称荷载时,可将荷载分组,如:
FP
FP 2
FP 2
FP
2
(3)取半结构计算:
FP
FP
FP 2
FP
对称轴
(c)
FP FP
(d)
FP
问题:偶数跨对称刚架如何处理?
FP
FP
FP
FP
FP
FP FP
FP
FP FP
FP FQC FQC
FP





例:求作图示圆环的弯矩图。 (a) FP
支承不对称
对称结构
几何对称 支承对称 刚度对称
非对称结构 刚度不对称
注意:结构的几何形状、支承情况以及杆件的刚 度三者之一有任何一个不满足对称条件时,就不 能称超静定结构是对称结构。
对称结构的求解: (1)选取对称的基本结构
力法典型方程为:
11 X1 12 X 2 13 X 3 1P 0 21 X1 22 X 2 23 X 3 2P 0 31 X1 32 X 2 33 X 3 3P 0
3p 0
X
3
0
M M1 X1 M2 X2 MP
如果作用于结构的荷载是反对称的,如:
1p 2p 0
X
1
X2
0
M
M3X3
MP
结论:对称结构在正对称荷载作用下,其内力 和位移都是正对称的;在反对称荷载作用下, 其内力和位移都是反对称的。
例,求图示结构的弯矩图。EI=常数。
解:根据以上分析,力法方程为:
C
C
FP 2EI
FP FP
2EI
FP
EI EI
FP EI
等代结构
FQC FQC
FP
FP
EI EI
由于荷载是反对称的,故C截面只有剪力FQC 当不考虑轴向变形时,FQC对原结构的内力和变 形都无影响。可将其略去,取半边计算,然后
再利用对称关系作出另半边结构的内力图。 返 回
FP /4 FP /2 FP /4
FP /4 FP /2 FP /4 FP /4 FP /2 FP /4
FP /4 FP /4
FP /4
I/2
FP /4
FP /4
又看到您了! FP /4 FP /4
FP /4
I/2
I/2Leabharlann 对称结构按跨数可分为(d)偶数跨对称结构在反对称荷载作用下,其等代结构的选法
FP /2 FP /4
FP /4
FP /4
I/2
FP /4
FP /4
FP /4
I/2
FP /4
FP /4
FP /4
FP/4
I/2
FP /4
FP /4
I/2
方法 2
无弯矩, 不需求解
FP /4 FP /2 FP /4
FP
FP /4 FP /2 FP /4
FP /2
FP /2 FP /4
FP /2 FP /4
11 13
, 22 , 33 31 0 ,
0
,
12 0 23 32
0
典型方程简化为:
11 X1 12 X 2 1P 0 21 X1 22 X 2 2P 0 33 X 3 3P 0
FP
FP
正对称与反 对称荷载:
正对称部分
反对称部分
FP
FP
如果作用于结构的荷载是对称的,如:
3. 力法计算的简化
无弯矩状态的判别 前提条件:结点荷载; 不计轴向变形。 刚结点变成铰结点后,体系仍然几何不变的情况
刚结点变成铰结点后,体系几何可变,但是,添 链杆的不变体系在给定荷载下无内力的情况
利用上述结论,结合对称结构的对称性,可使手 算分析得到简化。
一、 对称性 (Symmetry) 的利用
EI=常数。
解:取结构的1/4分析
(b)
FP
2
FP
2
FP
单位弯矩(图)和荷载弯矩(图)为:
FP R
FP 2
FP R
FP
FP R
FP
M1 1
MP
FP R 2
sin
若只考虑弯矩对位移的影响,有:
11
M12ds EI
R
2EI
,
1 P
M1M Pds EI
FP R2 2EI
,
X1
FP R
弯矩为:
M
M1 X1
相关文档
最新文档