初一图形的初步认识

合集下载

七年级数学上册 第6章 图形的初步认识 6.1 几何图形教学课件

七年级数学上册 第6章 图形的初步认识 6.1 几何图形教学课件
第二十页,共二十二页。
(zuòpǐn)
作 品 欣 赏
第二十一页,共二十二页。
内容(nèiróng)总结
教学课件。数学 七年级上册 浙教版。第6章 图形的初步认识。立体图形与平面图形。有些几何图 形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。有些几何 图形(如直线、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形。几何图形:点,线,面, 体。找一找,图中有哪些熟悉的立体图形和平面图形。连连看:如图将第一行中的平面图形绕虚线旋转一 周,能分别得到第二行中的哪一个(yī ɡè)几何体。作品欣赏
动成
动成
动成

线


几何图形 平面图形 立体图形
第十九页,共二十二页。
七巧板(Tangram)起源于宋代,是我国
人民创造的益智游戏,流传到世界上不少
国家.由一个正方形分割的七块几何形 状可以拼出千变万化的几何图形,形似
各种自然事物.近代围绕(wéirào)七巧板展 开的科学研究证明七巧板的设计和人 工智能、拓扑学之间有密切的联系。
找一找,图中有哪些熟悉的立体(lìtǐ) 图形和平面图形?
长方形,正方形,梯形(tīxíng), 圆,点,线段,角。
第十七页,共二十二页。
连连看:如图将第一行中的平面图形绕虚线旋转一周,能 分别(fēnbié)得到第二行中的哪一个几何体?并用线接起来。
a
b
c
d
f
g
h
j
第十八页,共二十二页。
平曲 面面
第五页,共二十二页。
泰姬陵—印度(yìn dù)
天坛(十二页。
金字塔—埃及(āi jí)
国家(guójiā)体育馆—中国

七年级图形的初步认识

七年级图形的初步认识

第四章:几何图形初步一几何图形几何学:数学中以空间形式为研究对象的分支叫做几何学。

从实物中抽象出的各种图形统称为几何图形。

几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。

1、几何图形的投影问题每一种几何体从不同的方向去看它,可以得到不同的简单平面几何图形。

实际上投影所得到的简单平面几何图形是被投影几何体可遮挡视线的最大部分在平面内所留下的影子。

2、立体图形的展开问题将立体图形的表面适当剪开,一、点、线、面、体1、点、线、面、体的概念点动成线,线动成面,面动成体由平面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;(2)体是由面组成、面与面相交成线、线与线相交成点;例1、如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,•用线连一连.二、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。

线段可以量出长度。

(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。

射线无法量出长度。

(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。

直线无法量出长度。

概念剖析:①线段有两个端点,射线有一个端点,直线没有端点;②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;③线段只有长短之分,而没有大小之别,射线和直线既没有长短之分,也没有大小之别;例1、下列说法正确的是()A、5㎝长的直线比3㎝长的直线要长2㎝;B、线段向两个方向无限延伸就形成了直线;C、直线和射线都是不可度量的,所以它们都无法表示;D、直线AB、射线AB和线段AB表示的都是同一几何图形;2、线段、射线、直线的表示方法(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

1)立体图形长方体、正方体、球、圆柱、圆锥等。

2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。

现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。

(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。

七年级上册第二章几何图形的初步认识2-1从生活中认识几何图形新版冀教版

七年级上册第二章几何图形的初步认识2-1从生活中认识几何图形新版冀教版

感悟新知
2. 点、线、面、体的关系
知2-讲
感悟新知
特别解读
知2-讲
1. 几何中的点只有位置,没有大小;线只有长
短,没有粗细;面只有大小,没有薄厚.
2. 平面图形绕着不同的边旋转会形成不同的几
何体.旋转后能得到哪种立体图形,既与平面
图形的形状有关,也与旋转轴有关.
感悟新知
知2-练
例3 [母题 教材 P65 习题 T3 ]观察如图 2.1-3 所示的立体图 形,说出它们各有几个面,是什么样的面,面和面相 交的地方形成了几条线,线和线相交的地方有几个点 .
感悟新知
知识拓展
平面图形与立体图形的区别与联系:
平面图形
立体图形
区别
各部分都在一个 平面内
各部分不都在同 一个平面内
立 体 图 形 中 某些 部 分 是 平 面 联系 图形,研究立体图 形 时, 常 把它
转 化 为 平 面图
知1-讲
感悟新知
3. 认识立体图形
名称
图例
圆柱
长方体 圆锥
球体
特征
知1-讲
解题秘方:根据点、线、面的定义识别 .
感悟新知
解:
立体图形 (1) (2) (3)
(4) (5)
面的个数 6 4 3
2 1
知2-练
面的特征
面与面交线 线与线交点
的条数
的个数
平面
12
8
平面
6
4
两个平面,
一个曲面
2
0
一个平面, 一个曲面
1
0
曲面
0
0
感悟新知
知2-练
3-1. [期末·保定竞秀区]下列几何体由 5 个平面围成的 是( C )

七年级数学上册《图形的初步认识》知识点思维导图与考点梳理

七年级数学上册《图形的初步认识》知识点思维导图与考点梳理

七年级数学上册《图形的初步认识》知识点思维导图与考点梳理1. 我们把实物中抽象的各种图形统称为几何图形。

2.有些几何图形(如长方体.正方体.圆柱.圆锥.球等)的各部分不都在同一平面内,它们是立体图形。

3.有些几何图形(如线段.角.三角形.长方形.圆等)的各部分都在同一平面内,它们是平面图形。

4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5.几何体简称为体。

6.包围着体的是面,面有平的面和曲的面两种。

7.面与面相交的地方形成线,线和线相交的地方是点。

8.点动成面,面动成线,线动成体。

9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

简述为:两点确定一条直线(公理)。

10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。

12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。

简单说成:两点之间,线段最短。

(公理)13.连接两点间的线段的长度,叫做这两点的距离。

14.角∠也是一种基本的几何图形。

15.把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

16.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

17.如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。

18.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。

19.等角的补角相等,等角的余角相等。

华师大版数学七年级上册《 第4章 图形的初步认识 》教学设计

华师大版数学七年级上册《 第4章 图形的初步认识 》教学设计

华师大版数学七年级上册《第4章图形的初步认识》教学设计一. 教材分析华东师范大学版数学七年级上册《第4章图形的初步认识》是学生在小学阶段对图形学习的基础上,进一步深化对图形性质和图形变换的理解。

本章主要内容有:图形的平移、旋转,视图,以及相交线和平行线。

这些内容在日常生活和进一步学习数学中都有广泛的应用。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们可以通过观察、操作、思考来进一步理解图形的性质和图形变换。

但同时,学生的空间想象力还需要进一步培养,他们对于一些抽象的图形变换的理解可能还存在一定的困难。

三. 教学目标1.了解平移、旋转的概念,能进行简单的图形变换。

2.能通过观察、操作、思考,进一步理解图形的性质。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.教学重点:图形平移、旋转的性质,视图的概念。

2.教学难点:图形变换的理解和应用,空间想象能力的培养。

五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考来理解图形的性质和图形变换。

2.利用多媒体辅助教学,提供丰富的图形资源,帮助学生直观地理解图形变换。

3.采用小组合作学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.多媒体教学设备。

2.图形素材。

3.练习题。

七. 教学过程1.导入(5分钟)通过展示一些生活中的图形变换,如旋转门、滑滑梯等,引导学生思考:这些现象的本质是什么?它们有什么共同的特点?2.呈现(10分钟)介绍平移、旋转的概念,并通过多媒体展示一些图形的平移、旋转实例,让学生直观地理解这两个概念。

3.操练(10分钟)让学生通过实际操作,尝试进行图形的平移、旋转,并观察、分析平移、旋转前后的图形有什么变化,进一步理解平移、旋转的性质。

4.巩固(10分钟)通过一些练习题,让学生运用所学的平移、旋转知识,解决实际问题,巩固所学内容。

5.拓展(5分钟)引导学生思考:除了平移、旋转,还有哪些图形变换?它们之间有什么联系和区别?6.小结(5分钟)对本节课的主要内容进行小结,强调平移、旋转的性质和应用。

华东师大版七年级数学上册第四章《图形的初步认识》知识点汇总

华东师大版七年级数学上册第四章《图形的初步认识》知识点汇总

华东师大版七年级数学上册
第四章《图形的初步认识》知识点汇总
复习内容:立体图形的三视图、展开图,最基本的图形——点和线,角,相交线,平行线.
(一)立体图形的三视图:正视图、左视图、俯视图
(二)立体图形的展开图
(三)最基本的图形——点和线
1、两点之间,线段最短.
2、连结两点的线段的长度,叫做这两点的距离.
3、经过两点有一条直线,并且只有一条直线.(两点确定一条直线)
4、把一条线段分成两条相等线段的点叫做线段的中点.(四)角
1、一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.
2、⑴如果两个角的和是90º,这两个角叫做互为余角.
⑵如果两个角的和是180º,这两个角叫做互为补角.
说明:①若∠1与∠2互余,则∠1+∠2=90º.
②若∠1与∠2互补,则∠1+∠2=180º.
3、⑴同角(或等角)的余角相等.
⑵同角(或等角)的补角相等.
4、用角度表示方向: 一般以正北、正南为基准,向东旋转的角度表示方向.如图,OA 示为北偏西60º.
5、对顶角相等.。

七年级数学上册第四章图形的初步认识41生活中的立体图形课件新版华东师大版

七年级数学上册第四章图形的初步认识41生活中的立体图形课件新版华东师大版
例1 如图所示,在每个立体图形下面写出其名 称.
三棱柱 圆柱 长方体 圆锥
四棱柱 正方体

导引:根据各类立体图形的外形特征去识别.
总结
知1-讲
采用定义法识别图形:(1)柱体的基本特征:两 个底面互相平行且完全相同 ,当侧面是曲面时是圆 柱 ,当侧面是平面时是棱柱 ;(2)锥体的基本特征: 一个底面一个“尖”,当侧面是曲面时是圆锥,当 侧面是三角形时是棱锥.
1 下列物体中,形状类似于圆柱的是(
知1-练
)
2 下列图形不是立体图形的是( )
A.球
B.棱柱
C.棱锥
D.半圆
3 下列立体图形中,有五个面的是( ) A.四棱锥 B.五棱锥 C.四棱柱 D.五棱柱
知1-练
知识点 2 常见的立体图形
知2-讲
例2 (1)把图中的立体图形分类,并说明分类标准; (2)图中③与⑥各有什么特征?有哪些相同点 和不同点?
知3-讲
例3 如图,其中是圆柱的有__③__④____,是棱柱 的有__②__⑤__⑥__.(只填图的标号)
知3-讲
导引:①⑦有两个底面平行,但大小不相同,所以 它们都不是柱体.②③④⑤⑥都有两个平行 且完全相同的底面,因此它们都是柱体.③ ④的底面是圆,侧面是曲面图形,因此是圆 柱;②⑤⑥的底面是多边形,侧面都是平面 图形,因此是棱柱.
③棱柱的底面是四边形;
④长方体一定是柱体;
⑤棱柱的侧面可能是三角形.
A.2个
B.3个
C.4个
D.5个
知2-练
知识点 3 棱柱的特征
知3-讲
棱柱: ①概念——上、下底面是两个平行且完全相同的多
边形,侧面都是平面图形. ②分类——棱柱可按底面多边形的边数分为三棱柱、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的初步认识考点一、直线、射线和线段1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、直线的概念一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。

4、射线的概念直线上一点和它一旁的部分叫做射线。

这个点叫做射线的端点。

5、线段的概念直线上两个点和它们之间的部分叫做线段。

这两个点叫做线段的端点。

6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示。

一条直线可以用一个小写字母表示。

一条射线可以用端点和射线上另一点来表示。

一条线段可用它的端点的两个大写字母来表示。

注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

(2)直线和射线无长度,线段有长度。

(3)直线无端点,射线有一个端点,线段有两个端点。

(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

7、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。

它可以简单地说成:过两点有且只有一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

8、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

9、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

考点二、角1、角的相关概念有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。

当角的两边在一条直线上时,组成的角叫做平角。

平角的一半叫做直角;小于直角的角叫做锐角;大于直角且小于平角的角叫做钝角。

如果两个角的和是一个直角,那么这两个角叫做互为余角,其中一个角叫做另一个角的余角。

如果两个角的和是一个平角,那么这两个角叫做互为补角,其中一个角叫做另一个角的补角。

2、角的表示角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有一下四种表示方法:①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

3、角的度量角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’=60”4、角的性质(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较(3)角可以参与运算。

5、角的平分线及其性质一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

角的平分线有下面的性质定理:(1)角平分线上的点到这个角的两边的距离相等。

(2)到一个角的两边距离相等的点在这个角的平分线上。

考点三、相交线1、相交线中的角两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。

我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。

临补角互补,对顶角相等。

直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。

其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

2、垂线两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。

简称:垂线段最短。

考点四、平行线1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。

平行用符号“∥”表示,如“AB∥CD”,读作“AB 平行于CD”。

同一平面内,两条直线的位置关系只有两种:相交或平行。

注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。

(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

简称:同位角相等,两直线平行。

平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

简称:同旁内角互补,两直线平行。

补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。

4、平行线的性质(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

考点五、命题、定理、证明1、命题的概念判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

2、命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

4、定理用推理的方法判断为正确的命题叫做定理。

5、证明判断一个命题的正确性的推理过程叫做证明。

6、证明的一般步骤(1)根据题意,画出图形。

(2)根据题设、结论、结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。

考点六、投影与视图1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。

平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。

中心投影:由同一点发出的光线所形成的投影称为中心投影。

2、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。

物体的三视图特指主视图、俯视图、左视图。

主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。

俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。

左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。

图形初步认识总结与测试【学习提示】一. 知识结构:二. 知识技能:能通过具体图形进行识别或判断,会画简单立体图形的三视图,能想象从不同角度看到的物体的形状;会根据三视图,描述出原来的立体图形的形状,提高感觉能力;进一步认识立体图形和平面图形之间的关系,了解多面体可由平面图形围成;会根据展开图识别简单的立体图形,根据简单的立体图形判别展开图,重点掌握正方体展开图。

认识理解点、线段、射线、直线,理解线段中点、两点间的距离及直线和线段的基本性质;理解角的两种定义、角的和、差及角平分线、互余、互补的概念三. 规律方法:1. 多姿多彩的图形:通过多姿多彩的图形引入几何图形,使我们认识立体图形、平面图形,通过三视图我们可以把立体图形转化为平面图形来研究和处理,也可以把立体图形展开为平面图形;几何体也简称为体,包围体的是面,面面相交为线,线线相交为点;点动成线,线动成面,面动成体,几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

2. 直线、射线、线段的区别与联系:从图形上看,直线、射线可以看做是线段向两边或一边无限延伸得到的,或者也可以看做射线、线段是直线的一部分;线段有两个端点,射线有一个端点,直线没有端点;线段可以度量,直线、射线不能度量。

3. 直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;4. 两点的所有连线中,线段最短;简单说:两点之间,线段最短。

5. 分析点与直线的位置关系或当题中的条件不明确时,用分类讨论的思想6. 线段中点:把一条线段分成两条相等的线段的点叫线段中点,如图:若点C是线段AB的中点,则有(1)或(2)AB=2AC=2BC,反之,若有点在线段上且(1)式或(2)式成立,亦能说明点C是线段AB的中点。

7. 关于线段的计算:两条线段长度相等,这两条线段称为相等的线段,记作AB=CD,平面几何中线段的计算结果仍为一条线段。

即使不知线段具体的长度也可以作计算。

例:如图:AB+BC=AC,或说:8. 角的意义:有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图形。

9. 角的度量:1°=60′,1′=60″,1周角=360°,1平角=180°,1直角=90°10. 角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。

11. 角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

如图:OC平分∠AOB,则(1)∠AOC=∠BOC=∠AOB或(2)2∠AOC =2∠BOC =∠AOB。

相关文档
最新文档