特殊矩阵特征值求解方法

合集下载

矩阵特征值及其计算方法的应用

矩阵特征值及其计算方法的应用

矩阵特征值及其计算方法的应用矩阵特征值是线性代数中的重要概念,它在各个学科领域都有着广泛的应用,如物理学、工程学、计算机科学等。

本篇文章将针对矩阵特征值及其计算方法的应用进行探讨,以期帮助读者更好地理解和应用这一概念。

一、矩阵特征值的定义矩阵特征值是指一个矩阵在行列式中的解,也称为特征根。

对于给定的矩阵A,如果存在一个实数λ和非零向量v,使得:Av=λv,则称λ为矩阵A的特征值,v为相应的特征向量。

二、矩阵特征值的计算方法计算矩阵特征值的方法有很多种,其中比较常用的有特征值分解法、幂法、反迭代法等。

下面我们就来简单介绍一下这几种方法:1、特征值分解法:通过求解矩阵的特征值和特征向量,可以将任何一个n阶方阵A表示为:A=QΛQ^(-1),其中Λ是一个对角线矩阵,其对角线上的元素为矩阵A的特征值,Q是由矩阵A的n个特征向量组成的矩阵,并满足Q^(-1)Q=I。

2、幂法:幂法是求解矩阵最大特征值的一种方法。

具体步骤为:首先选择一个非零向量v0作为初始向量,然后进行迭代计算,直至收敛为止。

每次迭代时,都将向量v0乘以矩阵A,并将结果归一化得到下一个向量v1,即:v1=A·v0/||A·v0||。

重复这个步骤直到v1和v0之间的距离小于一定的阈值。

3、反迭代法:反迭代法是幂法的一种改进方法,用于求解矩阵的近似特征值及其对应的特征向量。

该方法的思想是对原问题进行转化,将求解矩阵最大特征值的问题转化为求解矩阵最小特征值的问题。

具体实现时,需要对矩阵A进行平移,使得新矩阵B=μI-A的特征值与B的特征值相互对应,在这个基础上再进行幂法的计算即可。

三、矩阵特征值的应用矩阵特征值由于具有很好的数学性质和广泛的应用场景,因此在各个领域都有着深入的研究和广泛的应用。

下面我们就针对几个具体场景来介绍一下矩阵特征值的应用。

1、图像处理:矩阵特征值在图像处理中有着重要的应用,通过分解一张图像对应的矩阵的特征值和特征向量,可以将原图像进行降维处理,从而达到图像压缩和图像增强的目的。

【精品】矩阵特征值计算

【精品】矩阵特征值计算

【精品】矩阵特征值计算矩阵特征值计算是线性代数中的重要内容之一,它是研究矩阵的性质和分析矩阵的重要工具。

下面我们将详细介绍矩阵特征值的概念、计算方法和应用。

一、矩阵特征值的概念矩阵特征值是指一个矩阵对应于某个非零向量,使得该向量的线性组合与该向量的数量乘积相等,即Ax=kx,其中x为非零向量,k为特征值。

可以发现,矩阵特征值是一种特殊的线性变换,它将一个向量变换为与其数量乘积相等的另一个向量。

二、矩阵特征值的计算方法矩阵特征值的计算方法有多种,其中比较常用的有幂法、逆矩阵法和行列式法。

1.幂法幂法是一种通过不断将矩阵自乘来计算特征值的方法。

它的基本思想是,如果矩阵A的特征值为k,那么A的n次幂的特征值就是k的n次方。

具体来说,我们可以从1开始逐渐乘以矩阵A,直到得到一个与原始矩阵相同的矩阵为止,这时得到的乘积就是矩阵A的特征值。

2.逆矩阵法逆矩阵法是一种通过计算逆矩阵来计算特征值的方法。

它的基本思想是,如果矩阵A的特征值为k,那么A的逆矩阵的特征值就是1/k。

具体来说,我们可以先计算出矩阵A的逆矩阵,然后再计算逆矩阵的特征值,得到的结果就是矩阵A的特征值。

3.行列式法行列式法是一种通过计算行列式来计算特征值的方法。

它的基本思想是,如果矩阵A的特征值为k,那么A的行列式的特征值就是k的阶乘。

具体来说,我们可以先计算出矩阵A的行列式,然后再计算行列式的特征值,得到的结果就是矩阵A 的特征值。

三、矩阵特征值的应用矩阵特征值在许多领域都有广泛的应用,下面我们将介绍几个常见的应用场景:1.判断矩阵是否可逆如果矩阵A的特征值均为非零,则A可逆;如果存在一个特征值为零,则A不可逆。

因此,通过计算矩阵的特征值,可以判断该矩阵是否可逆。

2.求解线性方程组对于线性方程组Ax=b,如果A存在特征值k,且k不为0,那么可以通过将方程组转化为(A/k)x=b的形式来求解x。

这是因为(A/k)x=b等价于Ax=(k/k)x=b,也就是说(A/k)x=b有解当且仅当Ax=b有解。

矩阵特征值快速求法

矩阵特征值快速求法

矩阵特征值快速求法矩阵特征值是矩阵分析中十分重要的概念。

它在物理、工程、数学等许多领域都有着广泛的应用。

矩阵特征值是指矩阵运动时特殊的运动状态,是一种宏观量度矩阵运动的指标。

求解矩阵特征值是一项复杂的任务,通常需要使用高级算法来完成。

本文将介绍几种常用的求解矩阵特征值的算法,其中包括幂法、反幂法、QR算法、分裂Broyden算法等。

一、幂法幂法是求解矩阵特征值的一种基础算法,其基本思想是通过迭代来逐步逼近矩阵的最大特征值。

幂法的核心公式如下:x_(k+1)=A*x_k/||A*x_k||其中,x_k表示第k次迭代中得到的特征向量,A表示原始矩阵。

幂法通过不断的迭代来逼近A的最大特征值,当迭代次数趋近于无限大时,得到的特征向量就是A的最大特征值所对应的特征向量。

幂法的运算量较小,适用于比较简单的矩阵。

反幂法与幂法类似,不同之处在于每次迭代时采用的是A的逆矩阵来进行计算。

其核心公式如下:x_(k+1)=(A-λI)^(-1)*x_k其中,λ表示要求解的特征值。

反幂法能够求解非常接近于特征值λ的特征向量,并且对于奇异矩阵同样适用。

需要注意的是,在实际计算中,如果A-λI的秩不满,那么反幂法就无法使用。

三、QR算法1. 将原矩阵A进行QR分解,得到A=Q*R。

2. 计算A的近似特征矩阵A1=R*Q。

5. 重复步骤3-4,直到A的对角线元素全部趋近于所求特征值为止。

QR算法的计算量较大,但其具有收敛速度快、精度高等优点,广泛应用于科学计算中。

四、分裂Broyden算法分裂Broyden算法是QR算法的一种改进算法,其基本思想是将矩阵分解成上下三角形式,然后再对其进行QR分解,以减少QR算法中的乘法运算量。

具体实现过程如下:2. 构造一个倒数矩阵B=U^(-1)*L^(-1)。

4. 计算A的近似特征矩阵A1=Q^(-1)*L^(-1)*A*R^(-1)*U^(-1)*Q。

分裂Broyden算法的计算量较小,能够有效地解决QR算法中的乘法运算量过大的问题。

求矩阵特征值的方法

求矩阵特征值的方法

求矩阵特征值的方法矩阵特征值是矩阵理论中的一个重要概念,它在许多领域中都有着广泛的应用,如物理学、工程学、计算机科学等。

求矩阵特征值的方法有多种,下面将介绍其中的三种常用方法。

一、特征多项式法特征多项式法是求矩阵特征值的一种常用方法。

它的基本思想是将矩阵A与一个未知数λ相乘,得到一个新的矩阵B=A-λI,其中I为单位矩阵。

然后求解矩阵B的行列式,得到一个关于λ的多项式,称为特征多项式。

矩阵A的特征值就是使特征多项式等于零的λ值。

具体步骤如下:1. 构造矩阵B=A-λI。

2. 求解矩阵B的行列式det(B)。

3. 解特征多项式det(B)=0,得到矩阵A的特征值λ。

二、幂法幂法是求矩阵特征值的一种迭代方法。

它的基本思想是从一个任意的非零向量开始,不断地将其乘以矩阵A,直到向量的方向趋于特征向量的方向,同时向量的模长趋于特征值的绝对值。

具体步骤如下:1. 选择一个任意的非零向量x0。

2. 迭代计算xn+1=Axn/||Axn||,其中||Axn||为Axn的模长。

3. 当xn+1与xn的差值小于某个预设的精度时,停止迭代,此时xn 的模长即为矩阵A的最大特征值,xn/||xn||即为对应的特征向量。

三、QR分解法QR分解法是求矩阵特征值的一种数值方法。

它的基本思想是将矩阵A 分解为QR,其中Q为正交矩阵,R为上三角矩阵。

然后对R进行迭代,得到一个对角矩阵,对角线上的元素即为矩阵A的特征值。

具体步骤如下:1. 对矩阵A进行QR分解,得到A=QR。

2. 对R进行迭代,得到一个对角矩阵D,对角线上的元素即为矩阵A的特征值。

以上三种方法都有其优缺点,具体选择哪种方法取决于实际应用场景和计算需求。

在实际应用中,还可以结合多种方法进行求解,以提高计算精度和效率。

矩阵特征值的数值解法

矩阵特征值的数值解法

矩阵特征值的数值解法矩阵的特征值是在矩阵与其特征向量之间的关系中的数值解。

特征值在各个领域中都有广泛应用,包括物理、工程、金融等。

在解决实际问题时,我们经常需要计算矩阵的特征值,因此研究如何求解矩阵特征值的数值方法是非常重要的。

1. 幂迭代法(Power Iteration)幂迭代法是求解矩阵特征值的一种简单而常用的数值方法。

它的基本思想是通过不断迭代矩阵与向量的乘积,使得向量趋近于该矩阵的一个特征向量。

具体步骤如下:(1)初始化一个非零的初始向量x。

(2)进行迭代计算,即$x^{(k+1)}=Ax^{(k)}/,Ax^{(k)},$。

(3)当向量x的相对误差小于一些预设的精度要求时,停止迭代,此时的x即为矩阵A的一个特征向量。

(4)将x带入特征值的定义式$\frac{Ax}{x}$,计算出特征值。

幂迭代法的优点是简单易实现,计算速度较快,缺点是只能求解特征值模最大的特征向量,而且对于存在特征值模相近的情况,容易收敛到错误的特征值上。

2. QR迭代法(QR Iteration)QR迭代法是一种较为稳定的求解矩阵特征值的数值方法。

它的基本思想是通过不断进行QR分解,使得矩阵的特征值逐渐收敛。

具体步骤如下:(1)将矩阵A进行QR分解,得到正交矩阵Q和上三角矩阵R,令$A_1=RQ$。

(2)将$A_1$再次进行QR分解,得到新的矩阵$A_2=R_1Q_1$。

(3)重复步骤(2),直到得到收敛的矩阵$A_k$,此时$A_k$的对角线上的元素即为矩阵A的特征值。

QR迭代法的优点是对于特征值模相近的情况仍然能够收敛到正确的特征值上。

缺点是每次QR分解都需要消耗大量的计算量,迭代次数较多时计算速度较慢。

3. Jacobi迭代法(Jacobi's Method)Jacobi迭代法是一种通过对称矩阵的对角线元素进行迭代操作,逐步将非对角元素变为零的求解特征值的方法。

具体步骤如下:(1)初始化一个对称矩阵A。

矩阵特征值求法的十种求法(非常经典)

矩阵特征值求法的十种求法(非常经典)

矩阵特征值求法的十种求法(非常经典)以下是矩阵特征值求法的十种经典求法:1. 幂法(Power Method)幂法(Power Method)幂法是求解特征值的常用方法之一。

它基于一个重要的数学原理:对于一个非零向量$x$,当它连续乘以矩阵$A$的$k$次幂后,$Ax$的方向将趋于特征向量相应的特征值。

这种方法通常需要进行归一化,以防止向量过度增长。

2. 反幂法(Inverse Power Method)反幂法(Inverse Power Method)反幂法是幂法的一种变体。

它通过计算矩阵$A$的逆来求解最小的特征值。

使用反幂法时,我们需要对矩阵$A$进行LU分解,以便更高效地求解线性方程组。

3. QR方法QR方法QR方法是一种迭代方法,可以通过将矩阵$A$分解为$QR$形式来逐步逼近特征值。

这种方法是通过多次应用正交变换来实现的,直到收敛为止。

QR方法不仅可以求解特征值,还可以求解特征向量。

4. Jacobi方法Jacobi方法Jacobi方法是一种迭代方法,通过施加正交相似变换将矩阵逐步变为对角矩阵。

在每个迭代步骤中,Jacobi方法通过旋转矩阵的特定元素来逼近特征值。

这种方法适用于对称矩阵。

5. Givens旋转法Givens旋转法Givens旋转法是一种用于特征值求解的直接方法。

它通过施加Givens旋转矩阵将矩阵逐步变为对角矩阵。

这种方法是通过旋转矩阵的特定元素来实现的。

6. Householder变换法Householder变换法Householder变换法是一种用于特征值求解的直接方法。

它通过施加Householder变换将矩阵逐步变为Hessenberg形式,然后再进一步将其变为上三角形式。

这种方法是通过对矩阵的列向量进行反射来实现的。

7. Lanczos方法Lanczos方法Lanczos方法是一种迭代方法,用于对称矩阵的特征值求解。

该方法创建一个Krylov子空间,并使用正交投影找到最接近特征值的Krylov子空间中的特征值。

矩阵特征值问题的数值计算

矩阵特征值问题的数值计算

矩阵特征值问题的计算方法特征值问题:A V=λV¾直接计算:A的阶数较小,且特征值分离得较好 特征值:det(λI-A)=0,特征向量:(λI-A)V=0¾迭代法:幂法与反幂法¾变换法:雅可比方法与QR方法内容:一、 特征值的估计及其误差问题二、 幂法与反幂法三、 雅可比方法四、 QR方法一、 特征值的估计及其误差问题 (一)特征值的估计结论 1.1:n 阶矩阵()ij n n A a ×=的任何一个特征值必属于复平面上的n 个圆盘:1,||||,1,2,ni ii ij j j i D z z a a i n =≠⎧⎫⎪⎪=−≤=⎨⎬⎪⎪⎩⎭∑"(10.1) 的并集。

结论1.2:若(10.1)中的m个圆盘形成一个连通区域D,且D与其余的n-m个圆盘不相连,则D中恰有A的m个特征值。

(二)特征值的误差问题结论1.3:对于n 阶矩阵()ij n n A a ×=,若存在n 阶非奇异矩阵H ,使得11(,,)n H AH diag λλ−=Λ=", (10.2)则11min ||||||||||||||i p p p i nH H A λλ−≤≤−≤∆ (10.3)其中λ是A A +∆的一个特征值,而(1,,)i i n λ="是A 的特征值,1,2,p =∞。

结论1.4:若n 阶矩阵A 是实对称的,则1min ||||||i p i nA λλ≤≤−≤∆。

(10.4)注:(10.4)表明,当A 是实对称时,由矩阵的微小误差所引起的特征值摄动也是微小的。

但是对于非对称矩阵而言,特别是对条件数很大的矩阵,情况未必如此。

二、 幂法与反幂法(一) 幂法:求实矩阵按模最大的特征值与特征向量假设n 阶实矩阵A 具有n 个线性无关的特征向量,1,iV i n =",则对于任意的0nX R ∈,有 01ni ii X a V ==∑,从而有01111112((/))n nk k k i i i i ii i nk k i i i i A X a A V a V a V a V λλλλ======+∑∑∑.若A 的特征值分布如下:123||||||||n λλλλ>≥≥≥",则有01111()k kk A X a V λλ→∞⎯⎯⎯→为对应的特征向量须注意的是,若1||1λ<,则10kλ→,出现“下溢”,若1||1λ>,则1kλ→∞,出现“上溢”,为避免这些现象的发生,须对0kA X 进行规范化。

矩阵特征值的求法

矩阵特征值的求法

矩阵特征值的求法矩阵的特征值是在线性代数中一个非常重要的概念,它在许多领域都有广泛的应用。

特征值的求法有多种方法,其中最常用的是特征多项式的求解方法、特征向量迭代方法和QR分解方法。

下面将详细介绍这三种方法的原理和步骤。

1.特征多项式的求解方法:特征多项式是指一个与矩阵A有关的多项式,它的根就是矩阵A的特征值。

求解特征多项式的步骤如下:(1)设A是n阶方阵,特征多项式为f(λ)=,A-λI,其中λ是待求的特征值,I是单位矩阵。

(2)计算行列式,A-λI,展开成代数余子式的和:A-λI, = (a11-λ)(a22-λ)...(ann-λ) - a12...an1(a21-λ)(a33-λ)...(ann-λ) + ..(3)将上式化简为f(λ)=0的形式,得到特征多项式。

(4)求解特征多项式f(λ)=0,得到矩阵A的所有特征值。

2.特征向量迭代方法:特征向量迭代方法的基本思想是利用矩阵A的特征向量的性质来逐步逼近特征值的求解。

具体步骤如下:(1)选取一个n维向量x0作为初始向量。

(2)通过迭代计算x1 = Ax0,x2 = Ax1,...,xn = Axn-1,直到向量序列xn趋于稳定。

(3)计算极限lim┬(n→∞)⁡((xn)^T Axn)/(,xn,^2),得到特征值的估计值。

(4)将估计值代入特征方程f(λ)=,A-λI,=0中,求解特征方程,得到矩阵A的特征值。

3.QR分解方法:QR分解方法是将矩阵A分解为QR的形式,其中Q为正交矩阵,R为上三角矩阵。

特征值的求解步骤如下:(1)通过QR分解,将矩阵A分解为A=QR,其中Q为正交矩阵,R为上三角矩阵。

(2)将A表示为相似对角矩阵的形式,即A=Q'ΛQ,其中Λ为对角矩阵,其对角线上的元素就是特征值。

(3)求解Λ的对角线元素,即求解特征值。

需要注意的是,这三种方法各自有适用的情况和算法复杂度。

特征多项式的求解方法适用于任意阶数的方阵,但对于高阶矩阵来说计算量比较大;特征向量迭代方法适用于大型矩阵的特征值求解,但需要选取合适的初始向量;QR分解方法适用于方阵的特征值求解,但要求矩阵能够进行QR分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A = (1 − b) I + bαβ T
α = β = (1,1,",1) T λ1 = λ2 = " = λn−1 = 1 − b , λn = (1 − b) + bn = 1 + (n − 1)b .
由推论 1, 易得 A 的特征值为
再求 A 的特征向量及满足条件的可逆矩阵 P(见[2]).
i
其中
∑a
i =1
n
≠ 0 ,试讨论 a1 , a 2 ,", a n 和 b 满足何种关系时,
(1)方程组仅有零解; (2)方程组有非零解?在有非零解时,求此方程组的一个基础解系.
2
1 1 分析:注意到方程组的系数矩阵为 A = bI + ( a1 , a 2 , " , a n ) # 1
4
令 则
α = (1,1,",1) T , β = (a1 , a 2 ," , a n ) T ≠ 0
A = bI + αβ T
A = b n −1 (b + ∑ ai面根据 A ≠ 0 或 A = 0 讨论方程组解的情况(见[2]).
例4 2
[ ]
ax1 + bx 2 + bx3 bx + ax 2 + bx3 设齐次线性方程组 1 " " bx bx + 2 + bx3 1
A = αβ T ,
A 2 = β T αA = ( β T α ) T A = (α T β ) A = 0
由定理 1 知 A = αβ T 的特征值为:
λ1 = λ2 =…= λn−1 =0, λn = β T α = ( β T α ) T = α T β = 0
易得 A 对应于特征值 0 的特征向量为
令 从而
α = β = (1,1,",1) T . 则 A = (a − b) I + bαβ T
A = (a − b) n −1 [a + (n − 1)b] .
下面根据 A ≠ 0 或 A = 0 讨论方程组解的情况(见[2]).
例5
[1]
1 + a1 n 设 ∏ ai ≠ 0 , a i 为实数,求证 D = a 2 a1 " i =1 a n a1
证 得 由 A 2 = (αβ T )(αβ T ) = α ( β T α ) β T = ( β T α ) A
A 2 − β T αA = 0
设 λ 为 A 的特征值, x 为 A 的对应于 λ 的特征向量 有 从而 得 又 故
[ ]
Ax = λx , A 2 x = λ2 x
( A 2 − β T αA) x = (λ2 − β T αλ ) x = 0
证 由命题 3 及推论 1 即得.
n −1
( k1 + k 2 β T α )
例3
[2 ]
(a1 + b) x1 + a 2 x 2 + " + a n x n = 0 a x + ( a 2 + b ) x 2 + " + a n x n = 0 已知齐次线性方程组 1 1 " " " " + a x a 2 x 2 + " + ( a n + b) x n = 0 1 1
2
a1 a 2 2 1 + a2 " an a2
" a1 a n " a2 an > 1 " " 2 " 1 + an

a1 a T 注意到 D = I + 2 (a1 , a 2 , " , a n ) = I + αβ # a n
其中
α = β = (a1 , a 2 ," , a n ) T
+ " + bx n = 0 + " + bx n = 0 " " + " + ax n = 0
方程组仅有零解; 无穷多组解?在有无穷多组解时, 其中 a ≠ 0, b ≠ 0, n ≥ 2 . 试讨论 a, b 为何值时, 求出全部解,并用基础解系表示全部解. 分析:注意到方程组的系数矩阵
b A = (a − b) I + b (1,1,",1) . # b
c1v1 + c 2 v 2 + " + c n −1v n −1 ( c1 , c 2 ,", c n −1 不全为零)
其中
v1 = (−
b b b2 ,1,0,",0) T , v 2 = (− 3 ,0,1,",0) T ,……, v n −1 = (− n ,0,0,",1) T . b1 b1 b1
D = ∑ ai + 1 > 1 .
2 i =1 n

3
λ − a1b1
例6
[2 ]
计算
D=
− a 2 b1 " − a n b1
− a1b2 λ − a 2 b2 " − a n b2
" − a1bn " − a 2 bn " " " λ − a n bn

注意到
− a1 − a D = λI + 2 (b1 , b2 , " , bn ) # − a n
2
B = k 1 + k 2αβ T 的特征值
定理 2 1
[]
设 λ1 , λ 2 ,…, λ n 为 n 阶复矩阵 A 的全部特征值, f ( x ) 为复数域上次数大于
零的多项式,则 f (λ1 ) , f (λ 2 ) ,…, f (λ n ) 为 f ( A) 的全部特征值.
1
推论 1
设 α , β 为 n 维列向量, k1 , k 2 为任意数,则 B = k1 I + k 2αβ T 的特征值为
λ1 = λ2 =…= λn−1 = k1 , λ n = k1 + k 2 β T α .
证 由定理 1 及定理 2 即得.
例2
[2 ]
1 b " b b 1 " b 设 n 阶矩阵 A = " " " " b b " 1
(1) 求 A 的特征值和特征向量; (2) 求可逆矩阵 p ,使 p −1 Ap 为对角矩阵. 分析:注意到 其中
3
行列式 D = k 1 I + k 2αβ T 的值
定理 3 [3 ] A 为 n 阶矩阵, λ1 , λ 2 , " , λ n 为 A 的 n 个特征值,
则 推论 2
A = λ1λ 2 " λ n .
设 α , β 为 n 维列向量, k1 , k 2 为任意数,则
k1 I + k 2αβ T = k1
λ2 − β T αλ = 0 即 λ = 0 或 λ = β T α λ1 + λ2 + " + λn = a1b1 + a 2 b2 + " + a n bn λ1 = λ2 =…= λn−1 =0, λn = a1b1 + a2b2 + " + anbn = β T α .
例 1 2 设向量 α = ( a1 , a2 , " , an ) ≠ 0, β = (b1 , b2 , " , bn ) ≠ 0 ,且 α T β = 0 ,令 (1)求 A 2 ; 解 (1) (2) (2)求 A 的特征值及特征向量.
专题讲座七
1 矩阵 A= αβ T 的特征值
一类特殊矩阵的特征值
定理 1 设 α = ( a1 , a 2 , " , a n ) , β = (b1 , b2 , " , bn ) 为 n 维向量,则 A= αβ 的特征值为
T T
T
λ1 = λ2 =…= λn−1 =0, λn = β T α .

α = (− a1 ,− a 2 ,",−a n ) T , β = (b1 , b2 ,", bn ) T
D = λI + αβ T = λn−1 (λ + β T α ) = λn − λn −1 ∑ a i bi .
i =1 n

参考文献 [1]王品超.高等代数新方法[M].山东:山东教育出版社,1989,77,81 [2]童武.全国硕士研究生入学考试历年试题精解(数学三)[M].北京:北京大学出版社,2004,7, 10,12,24 [3]张禾瑞,郝炳新.高等代数(第四版)[M].北京:高等教育出版社,1999,294,298
相关文档
最新文档