21、1二次函数

合集下载

沪科版九年级上第21章21.1二次函数的概念典型例题及练习(无答案)

沪科版九年级上第21章21.1二次函数的概念典型例题及练习(无答案)

二次函数一、知识点复习1.二次函数的定义:形如c+y+=2(c b a,,为常数,且0≠a)的函数叫做x的二次函数。

axbx注意事项:二次函数必须满足三个条件①函数表达式为整式;②函数表达式有唯一的自变量;③表达式自变量的最高次数是2且二次项系数不等于0.2.二次函数的一般形式:任何一个二次函数的关系式都可以化成c+=2(c b a,,为常数,且0≠a)y+bxax的形式,我们把c=2(c b a,,为常数,且0≠a)叫做二次函数的一般形式,+bxaxy+其中c,2分别是二次项、一次项、常数项,b a,分别是二次项系数和一次项系数。

ax,bx3.二次函数两个变量的值:(1)函数值:求函数的值就是求代数式的值。

当给定自变量x的一个值后,就有唯一的y的值与之对应,这时y的值就是函数值。

(2)自变量的值:已知函数值求自变量的值实质就是解关于自变量的一元二次方程。

当给定一个y的值,对应x的值有1个或2个或没有值与之对应。

3.列二次函数的表达式(1)列函数表达式:在实际问题中,表示两个变量的关系,需要找到问题中的等量关系,列出含有这两个变量的二元方程,在按要求化成用含一个变量的代数式表示另一个变量的形式。

(2)实际问题列表达式的步骤:①确定自变量与因变量的实际意义①找到自变量与因变量之间的等量关系,根据等量关系列出方程或等式;①将方程或等式整理成二次函数的一般形式。

(3)自变量的取值范围:①一般情况下,二次函数中自变量的取值范围是全体实数;②但实际问题中的自变量的取值范围必须使实际问题有意义。

二.考点讲解知识点1.二次函数的定义:形如c+=2(c b a,,为常数,且0≠a)的函数叫做x的二次函数。

y+bxax注意事项:二次函数必须满足三个条件①函数表达式为整式;②函数表达式有唯一的自变量;③表达式自变量的最高次数是2且二次项系数不等于0.考点1:利用二次函数的定义识别二次函数例题1:下列函数哪些是二次函数?①25x y -=;①112-=x y ;①)31(2x x y -=;④22)1(x x y +-=;⑤p nx mx y ++=2(p n m ,,均为常数)变式练习(2019奉贤区一模)下列函数中是二次函数的是( )A.)1(2-=x yB.22)1(x x y --=C.2)1(-=x a yD.122-=x y考点2:二次函数的一般形式中的系数问题例题2:二次函数)3(2-=x x y 的二次项系数与一次项系数的和为( )A.2B.-2C.-1D.-4变式练习 二次函数3)2(212--=x y 中,二次项系数为 ,一次项系数为 ,常数项为 。

沪科版九年级上册数学精品教学课件 第21章 第2课时 二次函数y=a(x+h)2的图象和性质

沪科版九年级上册数学精品教学课件 第21章 第2课时 二次函数y=a(x+h)2的图象和性质

解: 由题意得 m2 9 0,所以 m ≠ ±3.
3. 若函数 y (m 1)xm2 2m1 (m 3)x 4 是二次函数,
那么 m 的取值范围是什么?
解:由题意得
m2
2m
1
2,
m 1 0.
m的取值范围是 m 3.
【解题小结】本题考查二次函数的概念,这类题需紧 扣概念的特征进行解题.
(2) 当 x=3 时,y=-32+8×3=15, 即矩形的面积为 15 cm2.
课堂小结
二次 函数
定义 一般形式
特殊形式
右边是整式; 自变量的最高指数是 2; 二次项系数 a ≠ 0.
y = ax2 + bx + c (a ≠ 0, a, b, c 是常数)
y = ax2; y = ax2 + bx; y = ax2 + c. (a ≠ 0,a,b,c 是常数)
2. 函数 y = (m - n)x2 + mx + n 是二次函数的条件是( C ) A. m,n 是常数,且 m ≠ 0 B. m,n 是常数,且 n ≠ 0 C. m,n 是常数,且 m ≠ n D. m,n 为任何实数
3.下列函数是二次函数的是 ( C )
A.y = 2x+1 C.y = 3x2+1 4. 已知函数 y = 3x2m-1-5.
例3 某工厂生产的某种产品按质量分为 10 个档次,第 1 档次 (最低档次) 产品一天能生产 95 件,每件利润 6 元.每 提高一个档次,每件利润增加 2 元,但一天产量减少 5 件. (1) 若生产第 x 档次的产品一天的总利润为 y 元 (其中 x 为 正整数,且 1≤x≤10),求出 y 关于 x 的函数关系式; 解:依题意知生产第 x 档次的产品,提高了(x-1)档,利 润增加了 2(x-1) 元. 则有 y=[6+2(x-1)][95-5(x-1)]. 即 y=-10x2+180x+400 (其中 x 是正整数,且1≤x≤10).

沪科版九年级数学上第21章二次函数与反比例函数21

沪科版九年级数学上第21章二次函数与反比例函数21
解:(1)若这个函数是一次函数, 则 m2-m=0 且 m-1≠0,解得 m=0.
(2)若这个函数是二次函数, 则 m2-m≠0,即 m≠1 且 m≠0.
自主学习
基Hale Waihona Puke 夯实整合运用思维拓展
九年级 数学 上册 沪科版
14.如图,一块草地是长 80 m,宽 60 m 的矩形,欲在中间修筑两条互相 垂直的宽为 x m 的小路,这时草坪的面积为 y m2.求 y 与 x 的函数表达式, 并写出自变量 x 的取值范围.
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 沪科版
解:(1)S=12πr2+8r(r>0).
(2)当 r=2,π=3.14 时, S=12×3.14×22+8×2 =22.28 ≈22.3(m2).
自主学习
基础夯实
整合运用
思维拓展
(A )
C.y=(1-x)2+a D.y=x2+a
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 沪科版
6.已知正方形的周长是 x cm,面积为 y cm2,则 y 与 x 之间的函数表达
式为_y_=y=116x2(x>x02)(x>0)__.
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 沪科版
(C )
自主学习
基础夯实
整合运用
思维拓展
九年级 数学 上册 沪科版
9.下列关系中,是二次函数关系的是
(C )
A.当距离 s 一定时,汽车行驶的时间 t 与速度 v 之间的关系
B.在弹性限度内,弹簧的长度 y 与所挂物体的质量 x 之间的关系
C.圆的面积 S 与圆的半径 r 之间的关系

九年级上册数学21章22章知识点

九年级上册数学21章22章知识点

九年级上册数学21章22章知识点第 21 章一元二次方程。

1. 一元二次方程的概念。

形如ax^2 + bx + c = 0(a≠0)的方程叫做一元二次方程,其中ax^2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项。

2. 一元二次方程的一般形式。

一般形式为ax^2 + bx + c = 0(a、b、c是常数,a≠0)3. 一元二次方程的解法。

- 直接开平方法:适用于形如(x + m)^2 = n(n≥0)的方程。

- 配方法:通过配方将方程化为完全平方式,再求解。

- 公式法:对于一元二次方程ax^2 + bx + c = 0(a≠0),其解为x = (-b ±√(b^2 - 4ac))/(2a),前提是b^2 - 4ac≥0。

- 因式分解法:将方程化为两个因式乘积等于 0 的形式,从而求解。

4. 一元二次方程根的判别式。

对于一元二次方程ax^2 + bx + c = 0(a≠0),Δ = b^2 - 4ac- 当Δ > 0时,方程有两个不相等的实数根;- 当Δ = 0时,方程有两个相等的实数根;- 当Δ < 0时,方程没有实数根。

5. 一元二次方程的根与系数的关系(韦达定理)若方程ax^2 + bx + c = 0(a≠0)的两根为x_1、x_2,则有x_1 + x_2 = -(b)/(a),x_1x_2 = (c)/(a)第 22 章二次函数。

1. 二次函数的概念。

形如y = ax^2 + bx + c(a、b、c是常数,a≠0)的函数叫做二次函数。

2. 二次函数的图象和性质。

- 图象是一条抛物线。

- 当a > 0时,抛物线开口向上,对称轴为x = -(b)/(2a),在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大。

- 当a < 0时,抛物线开口向下,对称轴为x = -(b)/(2a),在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减小。

沪科9年级数学上册第21章 二次函数与反比例函数1 二次函数

沪科9年级数学上册第21章 二次函数与反比例函数1 二次函数

知1-练
感悟新知
知1-练
解:① y=1- 2 x2 = - 2 x2 + 1,是二次函数; ②分母中含有自变量,不是二次函数; ③ y=3x(1-3x) = - 9x2+3x,是二次函数; ④ y=(1-2x)(1+2x) = - 4x2+1,是二次函数.
答案:C
感悟新知
知1-练
1-1. [ 月考·合肥 ] 下列各式中, y 是 x 的二次函数的 是( C ) A.y=3x - 1 B.y=x2 - ( x+1)( x - 5) C.y=x2 - 5x+13
感悟新知
特别提醒
知1-讲
(1)二次项系数、一次项系数和常数项包括它们前
面的符号,不要漏掉 .
(2) 二次函数y=ax2+bx+c( a ≠ 0)的特殊形式:
特殊形式 二次项 一次项 常数项
y=ax2(a≠0)
ax2

0
y=ax2+bx(a≠0) ax2
bx
0
y=ax2+c(a≠0) ax2

c
感悟新知
感悟新知
知2-练
2-1.某商品的进价为每件 40 元,如果售价为每件 50 元, 每个月可卖出210 件;如果售价超过 50元但不超过 80 元,每件商品的售价每上涨 1 元,则每个月少卖 1 件;如果售价超过 80 元后,若再涨价,则每涨 1 元每个月少卖 3 件 . 设每件商品的售价为x元( x为 整数),每个月的销售量为y 件.
感悟新知
知2-练
(1) 求 y 与 x 的函数关系式并直接写出自变量x 的取值 范围; 解:当 50<x≤80 时,y=210-(x-50),即 y=260-x; 当 80<x<140 时,y=210-(80-50)-3(x-80), 即 y=420-3x. 综上所述,y=246200- -x3( x(508<0<x≤x<801)40,).

二次函数的图象(21)

二次函数的图象(21)


3、把抛物线y=-3x2+2向下平移k个单位,得到的抛物线的 解析式为y=ax2-3,则a= ,k= 。
4、对于抛物线y=1+2x2,下列说法是否正确? (1)顶点为(1,0) (2)对称轴是y轴 (3)当x=0时,y取得最小值是1 (4)当x<0时,y随x的增大而减小
这节课你有什么收获和体会?
能力拓展
是(-1,5)则 h
1 y ( x h) 2 k 的顶点坐标 1、 如果抛物线 2
1 k 5
1
它的对称轴是 直线x
2、 如果一条抛物线的形状与
1 2 y x 2 3
的形状相同,且顶点坐标是(4,-2) 1 2 y ( x 4) 2 则函数关系式是__________ 3
2.2 二次函数的图像(2)
知识回顾: 当a>0时,抛物线开口向上,在对称轴的左侧, 二次函数y=ax²的图象及其特点? y随着x的增大而减小;在对称轴右侧,y随着x 的增大而增大。当x=0时函数y的值最小。 1、顶点坐标? (0,0) 当a<0时,抛物线开口向下,在对称轴的左侧, 2、对称轴? y轴 (直线x=0) y随着x的增大而增大;在对称轴的右侧,y随着 3、 对称轴与抛物线的交点 叫做抛物线的顶点 x增大而减小,当x=0时,函数y的值最大。
1 12 6 3
0
1 1 6 2 3 2 2
1 x 2 2 2
4.5
2
0.5
注意观察取值
用描点法,在同一直角坐标系中作出下列二次函数的图象
请比较所画三个函数的图象,它们有什么共 x … -5 -4 -3 -2 -1 0 1 2 3 4 5 1 同的特征?顶点坐标和对称轴有什么关系?图象 … 4.5 2 0.5 0 0.5 2 4.5 y x 2 之间的位置能否通过适当的变换得到?由此, 1 … 4.5 2 0.5 0 0.5 2 4.5 y x 2 2 1 你发现了什么? y x 2 4.5 2 0.5 0 0.5 2 4.5 2

中考复习函数专题21 二次函数中对称轴与对称问题(学生版)

中考复习函数专题21 二次函数中对称轴与对称问题(学生版)

专题21 二次函数中对称轴与对称问题知识对接考点一、求二次函数图象的顶点坐标、对称轴的3种方法1. 公式法:二次函数c bx ax y ++=2(a≠0)的图象的顶点坐标是)44,2(2ab ac a b -- 2.配方法:将抛物线的解析式配方,化为y=a(x -h)2+k 的形式,得到顶点坐标为(h,k),对称轴为直线x=h. 3.运用抛物线的对称性:抛物线是轴对称图形,对称轴与抛物线的交点是顶点.若已知抛物线上两点(x 1,m),(x 2,m),则对称轴为直线x=221x x +,再将其代入抛物线的解析式,即可得顶点坐标. 专项训练一、单选题1.抛物线y =2(x +1)2﹣3的对称轴是( ) A .直线x =1B .直线x =﹣1C .直线x =3D .直线x =﹣32.已知抛物线2y ax bx =+经过点(3,3)A --,且该抛物线的对称轴经过点A ,则该抛物线的解析式为( )A .2123y x x =--B .2123y x x =-+C .2123yx xD .2123y x x =+3.抛物线()20y ax bx c a =++≠的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;①()()2242a c b +<;①若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;①抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .14.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( ).A .23x <<B .34x <<C .45x <<D .56x <<5.已知关于x 的二次函数2y x bx c =++的图象关于直线2x =对称,则下列关系正确的是( ) A .4b = B .240b c -≤C .0x =的函数值一定大于3x =的函数值D .若0c <,则当2x =时,0y >6.点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax +4的图象上.则m ﹣n 的最大值等于( ) A .154B .4C .﹣154D .﹣1747.二次函数y =ax 2﹣4ax +2(a ≠0)的图象与y 轴交于点A ,且过点B (3,6)若点B 关于二次函数对称轴的对称点为点C ,那么tan①CBA 的值是( ) A .23B .43C .2D .348.已知二次函数y =(2﹣a )23a x -,在其图象对称轴的左侧,y 随x 的增大而减小,则a 的值为( )A B .C D .09.抛物线y=x 2﹣2x ﹣15,y=4x ﹣23,交于A 、B 点(A 在B 的左侧),动点P 从A 点出发,先到达抛物线的对称轴上的某点E 再到达x 轴上的某点F ,最后运动到点B .若使点P 动的总路径最短,则点P 运动的总路径的长为( )A.B .C .D .10.已知抛物线c :y=x 2+2x ﹣3,将抛物线c 平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是( )A .将抛物线c 沿x 轴向右平移52个单位得到抛物线c′ B .将抛物线c 沿x 轴向右平移4个单位得到抛物线c′C .将抛物线c 沿x 轴向右平移72个单位得到抛物线c′ D .将抛物线c 沿x 轴向右平移6个单位得到抛物线c′二、填空题11.如图,在平面直角坐标系xOy 中,抛物线y =﹣x 2+6x +c 的对称轴与x 轴交于点A ,在直线AB :y =kx +3上取一点B ,使点B 在第四象限,且到两坐标轴的距离和为7,设P 是抛物线的对称轴上的一点,点Q 在抛物线上,若以点A ,B ,P ,Q 为顶点的四边形为正方形,则c 的值为________.12.已知在平面直角坐标系xOy 中,点A 的坐标为()3,4,M 是抛物线22(0)y ax bx a =++≠对称轴上的一个动点.小明经探究发现:当ba的值确定时,抛物线的对称轴上能使AOM 为直角三角形的点M 的个数也随之确定.若抛物线22(0)y ax bx a =++≠的对称轴上存在3个不同的点M ,使AOM 为直角三角形,则ba的值是____.13.如果一抛物线的对称轴为1x =,且经过点A (3,3),那么点A 关于对称轴的对称点B 的坐标为____________14.已知点A 、B 在二次函数y =ax 2+bx +c 的图像上(A 在B 右侧),且关于图像的对称轴直线x =2对称,若点A 的坐标为(m ,1),则点B 的坐标为_______.(用含有m 的代数式表示) 15.已知抛物线2441y ax ax a =-+-. (1)该抛物线的对称轴是x =________.(2)该抛物线与x 轴交于点A ,点B 与y 轴交于点C ,点A 的坐标为(1,0),若此抛物线的对称轴上的点P 满足APB ACB ∠<∠,则点P 的纵坐标n 的取值范围是________. 三、解答题16.已知抛物线()20y ax bx c a =++≠与x 轴只有一个公共点()30A -,且经过点12,4⎛⎫- ⎪⎝⎭. (1)求抛物线的函数解析式; (2)直线l :34y x m =+与抛物线2y ax bx c =++相交于B 、C 两点(B 点在C 点的左侧),与对称轴相交于点P ,且B ,C 分布在对称轴的两侧.若B 点到抛物线对称轴的距离为n ,且()23CP t BP t =⋅≤≤. ①试探求n 与t 的数量关系;①求线段BC 的最大值,以及当BC 取得最大值时对应m 的值. 17.如图,在平面直角坐标系中,已知抛物线213222y x x =+-交x 轴于点A 、B ,交y 轴于点C . (1)求线段BC 的长;(2)点P 为第三象限内抛物线上一点,连接BP ,过点C 作//CE BP 交x 轴于点E ,连接PE ,求BPE 面积的最大值及此时点P 的坐标;(3)在(2)的条件下,以y 轴为对称轴,将抛物线213222y x x =+-对称,对称后点P 的对应点为点P ',点M 为对称后的抛物线对称轴上一点,N 为平面内一点,是否存在以点A 、P '、M 、N 为顶点的四边形是菱形,若存在,直接写出点N 的坐标,若不存在,则请说明理由.18.已知一条抛物线顶点为(),2P m m -,且与x 轴交于点()2,0A m (0m >) (1)当2m =时; ①求二次函数解析式;①直线l :y kx b =+(0k >)过定点()3,4-与抛物线交于B 、C 两点(B 在C 右侧),连接BP 、CP ,若PBC S △,求直线l 的解析式;(2)若H 为对称轴右侧的二次函数图象上的一点,且OH 交对称轴于点M ,点N ,M 关于点P 对称,求证:N ,A ,H 三点共线.19.如图,在平面直角坐标系中,抛物线y =﹣x 2+bx +c 与x 轴分别交于点A (﹣1,0)和点B ,与y 轴交于点C (0,3).(1)求抛物线的解析式及对称轴;(2)如图1,点D 与点C 关于对称轴对称,点P 在对称轴上,若①BPD =90°,求点P 的坐标; (3)点M 是抛物线上位于对称轴右侧的点,点N 在抛物线的对称轴上,当BMN 为等边三角形时,请直接写出点M 的坐标.20.如图,已知抛物线y =ax 2+bx +c 经过A (4,0),B (﹣2,0),C (0,﹣4)三点. (1)求抛物线解析式,并求出该抛物线对称轴及顶点坐标;(2)如图1,点M 是抛物线对称轴上的一点,求①MBC 周长的最小值;(3)如图2,P 是线段AB 上一动点(端点除外),过P 作PD //AC ,交BC 于点D ,连接CP ,求①PCD 面积的最大值,并判断当①PCD 的面积取最大值的时,以P A 、PD 为邻边的平行四边形是否为菱形.21.如图,抛物线2y x bx c =++与x 轴交于()1,0,A B -两点,与y 轴交于点(0,3)C -.。

人教版数学九年级上册22.1.1 二次函数课件(共21张PPT)

人教版数学九年级上册22.1.1  二次函数课件(共21张PPT)

二次 函数
注意:a,b,c 分别是函数解析式的二次项系数、一次项系数和 常数项.(自变量的最高次数是2;二次项系数a≠0)
特殊形式
y=ax2 (a ≠0);y=ax2+bx(a ≠0); y=ax2+c(a ≠0,a,b,c是常数).
方法总结 判断二次函数的方法
1.自变量的最高次数是2次; 2.二次项系数a≠0;
即y = 12x2-2x+9.
例3 在情境2中,若某年级共有4个班参加篮球比赛,那么总共要比 多少场?
解:∵比赛的场次数为m = 1 n(n - 1), 2
即m = 1 n2 - 1 n. 22
∴代入n=4,得m =6 ∴总共要比6场
随堂练习
1.下列函数关系中,是二次函数的为( D ) A.在弹性限度内, 弹簧的长度y与所挂物体的质量x之间的关系.B.距离一定时,火车 行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之 间的关系D.圆的面积S与半径之间的关系
围成中间有一道篱笆的矩形花圃,设花圃的一边长 AB 是 x ( 单位:m ),
面积是 S ( 单位:m2 ). BC 是(45 - 3x)cm 0<45 - 3x≤20 (1) 求 S 与 x 的函数关系式及x的取值范围; -45<- 3x ≤ -25
S =AB ·BC
≤ x < 15
解:(1) S = x(45 - 3x) = -3x2 + 45x ( ≤ x < 15 ).
解:比赛的场次数为m = 1 n(n - 1), 2
即m = 1 n2 - 1 n. 22
情境3 悦悦通过调查发现,由于学生参加校运动会的积极性非常高,所以 今年学校增加了每个项目的参赛人数。已知今年有300名同学参赛,今年比 去年的参赛人数增加了t倍,若按照这样的增长速度,预计两年后的参赛人 数f与t之间有怎样的关系?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、合作交流获取新知:
请你观察问题1、问题2中的函数关系式,回答下列问题:
1、上述两个函数关系式有几个自变量?
2、上述两个函数关系式中关于自变量的多项式的次数分别是多少?
3、上述两个函数关系式有什么共同特点?
4、用自己的语言归纳二次函数的定义:
四、达标检测巩固新知:课本P4页练习1、2;习题1.
五、新知小结巩固新知:通过本节课,你有什么收获?
六、课后作业巩固新知:课本P5页2、4、5、6.
感谢您的阅读,祝您生活愉快。
(1)商品的利润与售价、进价以及销售量之间有什么关
系?
(2)如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
(3)若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
(4)x的值是否可以任意取?如果不能任意取,请求出它的范围。
(5)若设该商品每天的利润为y元,求y与x的函数关系式。
甲路初中九年级数学学科导学案活页
课题:21、1二次函数主备人:邵素琴时间:2015.9.2课时:1课时复备人:罗钢前
学习目标:
1、能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
2、注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
学习重点、难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。Leabharlann 12面积y(m2)48
(2)x的值是否可以任意取?有限定范围吗?
(3)我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式。
问题2:某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?
[教学方法]
以学生的自主、合作、探究学习为主。
学生疑难问题:
教师反思:
一、展示学习目标
二、自主学习获取新知:
问题1:设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.
(1)试将计算结果填写在下表的空格中,
AB长x(m)
1
2
3
4
5
6
7
8
9
BC长(m)
相关文档
最新文档