03-1若干数学典故中的数学文化77页PPT

合集下载

数学小故事ppt课件

数学小故事ppt课件

量子计算与数学
01
02
03
量子力学
量子计算基于量子力学原 理,而数学为量子力学提 供了描述和推理的工具, 如线性代数、微积分等。
量子算法
量子算法的发展需要数学 的支持,如Shor算法、 Grover算法等都涉及到数 学理论和应用。
量子纠错码
量子纠错码是保障量子计 算可靠性的关键技术之一 ,而数学为其提供了理论 基础和设计方法。
详细描述
金融分析师利用数学模型和统计方法进行市 场预测和投资决策。数学方法在金融领域中 的运用使得投资者能够更准确地评估风险和 收益,做出明智的决策。此外,精算师利用 数学方法进行风险评估和保险产品设计,为 保险公司提供重要的决策依据。
04
数学趣味小故事
数学谜语
01
谜语:一物真新鲜,头大尾巴 尖,平时不干活,吃饭抢在前
数学小故事PPT课件
目录
• 数学的起源和历史 • 著名数学家的故事 • 数学在生活中的应用 • 数学趣数学的发展
01
数学在古埃及和巴比伦的起源
大约在5000年前,古埃及人和巴比伦人开始使用数学来记录和计算。
他们研究了基本的算术和几何原理,为数学的发展奠定了基础。
感谢您的观看
THANKS
19世纪的数学
在19世纪,数学取得了巨大的进展。数学家研究了分析、代数、几何等领域, 并引入了极限、函数、矩阵等概念。同时,概率论和统计学也得到了发展。
20世纪的数学
在20世纪,数学继续快速发展。数学家研究了拓扑学、微分几何、实分析等领 域,并引入了抽象代数、泛函分析等新的数学分支。同时,计算机科学的兴起 也为数学的发展带来了新的机遇和挑战。
02 03
古希腊数学的贡献

趣味数学小故事ppt课件

趣味数学小故事ppt课件
2024/1/27
数学与艺术的交融
探讨数学在艺术领域的应用,如分形艺术、 音乐与数学的关系等。
数学与生活的联系
引导学生发现生活中无处不在的数学,如概 率统计、优化问题等。
31
寄语青少年勇敢追求梦想
勇于探索未知
鼓励青少年勇于探索未知的 数学领域,挑战自己的极限 。
坚持不懈追求梦想
告诉青少年只要坚持不懈地 追求自己的梦想,就一定能 够取得成功。
分享一些与数学相关的趣闻轶事,如数学家的趣 事、数学史上的趣闻等,增加学生对数学的兴趣 和好奇心。
数学之美
展示数学中的美感和艺术性,如分形、对称、黄 金分割等,让学生感受到数学的魅力和美感。
2024/1/27
22
05
互动式趣味数学活 动设计
2024/1/27
23
现场观众参与游戏环节
2024/1/27
29
学生对趣味数学认识提升
增强数学兴趣
通过接触有趣的数学问题和故事,激发学生 对数学的兴趣和好奇心。
拓展数学视野
引导学生了解数学在各个领域的应用,拓展 学生的数学视野。
2024/1/27
提升数学素养
通过学习和思考,提高学生的数学素养和解 决问题的能力。
30
探索更多未知领域可能性
数学与科技的结合
介绍数学在计算机科学、人工智能等领域的 应用和发展前景。
通过移动数字方块,将数 字按照从小到大的顺序排 列,挑战逻辑思维和推理 能力。
数学谜语竞猜
结合数学知识,设计有趣 的谜语题目,激发学习兴 趣和探究欲望。
10
数学游戏与竞技活动
2024/1/27
24点游戏
01
通过加减乘除运算让自己手中的牌达到24点,锻炼心算能力和

数学文化讲座PPT课件

数学文化讲座PPT课件

流派
• 美学派认为数学是静谧、深奥和典雅的音 乐,数学语言和符号是理性的音符,数学追求 美,也创造美,数学与艺术结合使美更加灿烂 绚丽。
• 创新说认为数学是不断创新的、无止境的, 每一步创新都是对前人的否定,例如发现无 理数,建立分数积分,创立非欧几何,无一不是 如此。
数学的若干观点
• 过程说认为,数学是实验思维过程+ 归纳抽 象思维过程+ 逻辑论证思维过程。 除此而外,还可列举若干种观点: 数学是最精密的科学, 数学是模式的科学; 数学是一门高级语言; 数学是一种活动; 数学是一种关系; 数学是人类的一种理性精神等等。
数学文化
• 文化的独立性与群体性: • 数学实在独立于个体意识而存在,却完全
依赖于人类意识; • 怀特:数学概念…存在于文化之中,即存
在于人类的行为和传统思想的主体之中。
数学文化
• 对数学文化的认识归根到底对数学本质的 认识。
• 对数学本质的认识是一个动态的认识过程, 既随着数学的发展阶段而发展,也随着各个 阶段人们的认识提高而深入。
数学文化的若干观点
• 从数学哲学史上对数学本质的争论看,可归 纳出三种观点:
• “数学是一门演绎科学”; • “数学是一门拟经验科学”; • 数学是一门演算科学”[5 ] 。 • 以上对数学的种种认识,都未显偏颇,各自从
不同侧面揭示了数学形式的丰富多彩和数 学内容的博大精深。
数学文化
• 数学是一种文化的观点,可以说是数学观 的“现在时态”。
• 在亚里士多德:数学对象就只是一种抽象的存在 也即是人类抽象思维的产物。 争论:数学对象看成一种不依赖于人类思维的独立 存在(发现活动)还是人类抽象思维的产物(数 学的发明创造)。
数学家哈代:我认为数学的实在存在于我们之外, 我们的职责是发现它和遵循它,那些被我们所证 明并被我们夸大为是我们发明的定理,其实仅仅 是我们观察的记录而已。

数学历史教学PPT课件pptx

数学历史教学PPT课件pptx
引导学生利用网络资源进行自 主学习和探究,拓展数学史知
识面。
组织学生开展数学史探究活动
设计数学史主题的探究任务, 引导学生通过查阅资料、小组 讨论等方式进行深入研究。
鼓励学生挖掘数学史与现实生 活的联系,将数学知识应用于 实际问题解决中。
组织学生开展数学史知识竞赛、 演讲等活动,提高学生的参与 度和积极性。
拓扑学的兴起
拓扑学是研究空间性质的数学分支,近代拓扑学在拓扑空间、连续 映射等方面取得了重要进展。
抽象代数的出现
抽象代数是研究代数结构的数学分支,近代抽象代数在群论、环论、 域论等方面取得了重要成果。
05
现代数学的挑战与探索
20世纪数学的发展
抽象代数与拓扑学的兴起
20世纪初,抽象代数与拓扑学成为数学研究的重要分支,推动了现代数学的发展。
数学教育改革的趋

当前数学教育改革的趋势包括强 调数学思维训练、注重问题解决 能力、倡导合作学育技术的发展,数学教育 手段不断创新,如在线教育、智 能教学系统、虚拟现实技术等都 为数学教育提供了新的可能性。
06
数学历史教学方法与策略
如何将数学史融入课堂教学
结合课程内容,适时引入相关数学史知识,帮助学生理 解数学概念的演变过程。
进制计数法和天干地支纪年法。
03
勾股定理与圆周率
中国古代数学家在勾股定理和圆周率的计算方面取得了重要成就,如商
高定理(勾股定理的特例)和祖冲之对圆周率的精确计算。
04
近代数学的辉煌
文艺复兴时期的数学
代数学的兴起
文艺复兴时期,代数学得到了极大的发展,出现了许多重 要的代数学家和著作,如韦达、卡尔达诺等人的代数理论, 为后来的数学发展奠定了基础。

中国古代数学ppt课件

中国古代数学ppt课件
评述
1.巴比伦:60进位的分数 2.埃及:单位分数 3.阿拉伯:主分数,单位分数 ——都未能给出行之有效的分数算法
中算分数算法的特点.
1. 除法运算定义分数 2. 分数概念的两重性 运算结果:独立的数; 运算过程:母与子 3 .基本性质 分子、分母同乘不为零的数,其值不变。 4. 通分——“齐同术” 母互乘子谓之齐,母相乘谓之同
初等数学理论的发展 刘徽:《九章算术注》(264AD) 祖冲之:3.1415926<π<3.1415927
刘 徽(造像)
祖冲之(造像)
隋唐:589-960AD
国家数学教育 国子监:明算科 李淳风:编纂“十部算经” 周髀算经、九章算术、海岛算经 缀术(唐朝佚) 数术记遗(南宋补) 孙子算经、张丘建算经、夏侯阳算经 五曹算经、五经算术 缉古算经
2 注释者
刘徽,魏晋间人,263AD年注释《九章算术》 “徽幼习《九章》,长再详览。观阴阳之割裂,总算术之根源,探赜之暇,遂悟其意。是以敢竭顽鲁,采其所见,为之作注。” ——刘徽:《九章算术注》
祖冲之,祖暅:南北朝,圆周率,球体体积公式 李淳风:唐朝,“十部算经”国子监教科书 杨辉:南宋,《详解九章算法》 吴敬:明,《九章算法比类大全》 李潢:清,《九章算术细草图说》 现代:钱宝琮校点《算经十书》 白尚恕《〈九章算术〉注释》《〈九章算术〉今译》 李继闵《〈九章算术〉与刘徽注研究》《〈九章算术〉校证》 《〈九章算术〉导读与译注》 郭书春:汇校《九章算术》 沈康身:《〈九章算术〉导读》
负数是怎样进入数学的?
盈余与不足、收入与支出、增加与减少是负数概念在生活中的实例,教科书在向学生讲授负数是也多循此途。这就产生一种误解:似乎人类正是从这种具有相反意义的量的认识而引进了负数的。 问题:那个文明最早使用负数?

中国古代数学史 ppt课件

中国古代数学史 ppt课件

《周髀算经》
大约成书于西汉时期(公元前1世纪)为赵君卿所作,北周 时期甄鸾重述,唐代李淳风等注。
中国传统数学框架的确立——春秋至东汉中期的数学
1.数学家与数学经典
诸子百家与数学;秦汉数学简牍;《周髀算经》和陈子;《九章算术》和张苍、耿寿昌
2.分数、今有术与盈不足术
分数及其四则运算法则 (b/a+d/c=bc/ac+ad/ac=(bc+ad)/ac;b/a÷d/c=bc/ac÷ad/ac=bc÷ad=bc/ad 今有术与衰分术、均输术设A:B=a:b,则B=Ab÷a 盈不足数
竹简著作《算数书》抄写于西汉初年(约公元前2世纪),成 书时间应更早,是一部比较完整的,也是目前可以见到的中 国最早的数学专著。全书采用问题集形式,共有69个小标 题,,71条相当抽象的公式,近百道数学问题及其解法,内 容包括整数和分数四则运算、比例问题、面积和体积问题等 等。
《九章算术》
《九章算术》是中国古代的数学专著,是《算经十书》 (汉唐之间出现的十部古算书)中最重要的一种。魏晋时 刘徽为《九章算术》作注时说:“周公制礼而有九数, 九数之流则《九章》是矣”,又说“汉北平侯张苍、大 司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各 称删补,故校其目则与古或异,而所论多近语也”。
《周礼》中的六艺 礼—礼节。五礼者,吉、凶、宾、军、嘉也。 乐—音乐。六乐 :云门、大咸、大韶、大夏、大镬、大武 射—射箭技术。五射:白矢、参连、剡注、襄尺、井仪 御—驾驶马车的技术。鸣和鸾、逐水车、过君表、舞交衢、逐禽左 书—文学。六书:象形 、指事、会意、形声、转注、假借 数—算术与数论知识
几何学 《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发 现,故又有称之为商高定理。 商高曰:……折矩以为勾广三、股修田,径隅五…”

数学问题中的文化 ppt课件

数学问题中的文化  ppt课件

47
ppt课件
韩信阅兵时,让一队士兵5人一行排队从他面前走过,
他记下最后一行士兵的人数(1人);再让这队士兵6人一 行排队从他面前走过,他记下最后一行士兵的人数(5人); 再让这队士兵7人一行排队从他面前走过,他记下最后一行 士兵的人数(4人),再让这队士兵11人一行排队从他面前 走过,他记下最后一行士兵的人数(10人)。然后韩信就 凭这些数,可以求得这队士兵的总人数。
BD 1 A,B 连 A。D作 e D(D交B) 于AD, E
2
再作e A(AE交) A于B ,C 则
AC ,5 1即C
AB 2
为 AB的黄金分割点。
D
5
E
1
A
C
B
2
23
ppt课件
证:不妨令 BD ,1 则 AB ,2 AD 22 1 ,5 AE AD ED, 5 1
AC AE
AC 5 1,
一样,我们常常需要求它的近似值。
如果把该连分数从第 n 条分数线截住,即
把第n 1条分数线上、下的部分都删去,就
得到该连分数的第n 次近似值,记作
un vn
13
ppt课件
对照
x
1
1
1 1
1
1
1
1L
可算得
u1 1, u2 1 1 , u3 1 2 , u4
1
3
v1 1 v2 1 1 2 v3 1 1 3 v4 1 1
7
ppt课件
8
ppt课件
奇数项求和得 1,3,8,21, … …
即f1 f3 f2n1 f2n
偶数项求和
即f2 f4 f2n f2n1 -1
9
ppt课件

中国古代数学中的数学文化PPT

中国古代数学中的数学文化PPT
书等多种古代珍贵的文献,还有一部数
学著作,据写在一支竹简反面的字迹识 别,这部竹简算书的书名叫?算数书?, 它是中国现存最早的数学专著。经研究 ,它和?九章算术?〔公元1世纪〕有许 多相同之处,体例也是“问题集〞形式 ,大多数题都由问、答、术三局部组成 ,而且有些概念、术语也与?九章算术? 的一样。
先秦时期——中国古代数学的萌芽
2002年湖南龙山里耶战国-秦汉城址考古
• 2002年7月,考古 人员在湖南龙山里
耶战国-秦汉古城 出土了36000余枚 秦简。
先秦时期——中国古代数学的萌芽
秦简 (2002年湖南龙山里耶出土)
• 记录的是秦始皇二十 六年至三十七年〔即
公元前221-前210年 〕的秦朝历史,其中
九九乘法表
• 文学作品中,就有很多“九九〞乘法口诀。 • ?西游记?中,唐僧师徒四人去西天取经,沿途
经历七七四十九劫,九九八十一难。 • ?越王勾践?中,翻过九九八十一座山,渡过八
八六十四条溪,走了七七十九天,终于找到秦 溪山。 • 方言俗语、地方谚语,均能看到乘法表的影子 。 • “六六三十六,阎王接你吃腊肉〞、“不管三七 二十一〞等。
先秦时期——中国古代数学的萌芽
?史记·夏本纪?
大禹治水 (公元前21世纪)
先秦时期——中国古代数学的萌芽
• 在殷墟出土的商代甲骨文中, 有一些是记录数字的文字,说 明中国已经使用了完整的十进 制记数,包括从一至十,以及 百、千、万,最大的数字为三 万。这是对世界数学最伟大的 奉献。
殷墟甲骨上数学 (商代, 公元前1400-前1100年 )
• 如图,Plato对等腰直角三 角形作了证明,他把腰上 两个正方形沿对角线切开 ,所得四个全等的等腰直 角三角形可以拼成原三角 形斜边上的正方形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档