迭代动态规划算法及并行化研究

合集下载

算法设计与分析中的动态规划问题研究

算法设计与分析中的动态规划问题研究

算法设计与分析中的动态规划问题研究动态规划是一种常用的算法设计与分析方法,它在解决许多问题时具有较高的效率和准确度。

本文将结合实例,深入研究动态规划在算法设计与分析中的应用。

动态规划是一种通过分解问题,将大问题转换为小问题并求解小问题的方法。

它与分治法类似,但动态规划所分解的小问题可能重叠,因此可以将解决过的小问题保存起来,避免重复计算,提高效率。

动态规划常用于求解最优化问题,如寻找最大值或最小值。

一个经典的动态规划问题是背包问题。

背包问题是指给定一个背包以及一系列物品,每个物品都有自己的价值和重量。

背包的容量是有限的,我们的目标是在保持背包总重量不超过容量的情况下,选择一些物品放入背包,使得背包中物品的总价值最大。

假设我们有n个物品,背包的容量为W,我们可以使用一个二维数组dp[i][j]来表示前i个物品恰好放入容量为j的背包的最大价值。

dp[i][j]的值可以通过以下的状态转移方程得到:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中,w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。

根据状态转移方程,我们可以通过填表的方式,自底向上地计算dp[n][W],即前n个物品放入容量为W的背包的最大价值。

除了背包问题,动态规划还可以用于求解其他类型的优化问题。

比如,在图论中,最短路径和最小生成树问题也可以使用动态规划来求解。

例如,最短路径问题可以通过定义一个二维数组dp[i][j]来表示从顶点i到顶点j的最短路径的长度。

通过状态转移方程dp[i][j] =min(dp[i][j], dp[i][k] + dp[k][j]),我们可以逐步更新dp数组,最终得到从起点到终点的最短路径长度。

对于最小生成树问题,可以先计算任意两个顶点之间的最短路径,然后通过Prim算法或Kruskal算法来生成最小生成树。

除了上述问题,动态规划还可以用于解决其他一些经典问题,如编辑距离、最长公共子序列等。

动态规划算法综述

动态规划算法综述

6 动态规划算法基本框架
代码如下所示院
f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)} for(j=1; j<=m; j=j+1) // 第一个阶段
xn[j] = 初始值;
渊下转第 1缘愿 页冤
作者简介院张莹渊1991要冤袁女袁汉族袁新疆昌吉人袁天津师范大学计算机与信息工程学院 2013 级计算机应用技术在读硕士研究生袁研究方向为生物信息学遥
}
揖参考文献铱 咱员暂网上的文献(举例院最长公共子序列-动态规划-算法导论实践[EB/OL].http:// /jiaxiaobosuper/item/5f0e7510979bb0413b176e4b袁2011-03-27. 咱圆暂Wang Xiaodong. Design and analysis of computer algorithms [Z].Beijing: Publishing House of electronics industry, 2012援王晓东.计算机算法设计与分析.北 京:电子工业出版社,2012.
源 工程技术保证措施
源援员 开工前要落实各级人员岗位责任制袁要明确主管领导抓技术曰现 场设立专职技术负责人遥 使责任制度落实到个人遥 源援圆 做好施工图与方案的技术交底袁施工中要认真检查执行情况遥 源援猿 现场设专人做好技术档案管理工作袁做好日常设计文件尧签证尧 变更等的收集整理工作袁做好隐蔽记录和施工日记遥
Science & Technology Vision
科技视界
动态规划算法综述
张莹 渊天津师范大学计算机与信息工程学院袁中国 天津 300387冤
揖摘 要铱本文通过系统的介绍动态规划算法的基本概念尧基本思想尧适用情况分析尧基础求解步骤尧实现的说明和算法的基本框架袁对动态 规划算法进行了总结和概述遥

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。

动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。

它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。

1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。

2.定义状态:确定存储子问题解的状态变量和状态方程。

3.确定边界条件:确定初始子问题的解,也称为边界状态。

4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。

5.求解最优解:通过遍历状态变量找到最优解。

1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。

可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。

2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。

给定一个序列,找到其中最长的递增子序列。

可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。

3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。

给定一系列矩阵,求解它们相乘的最小计算次数。

可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。

4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。

可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。

组合优化中的动态规划并行实现

组合优化中的动态规划并行实现

组合优化中的动态规划并行实现动态规划是一种经典的优化算法,可以解决很多组合优化问题。

在实际应用中,为了加速计算速度,我们常常会使用并行计算来实现动态规划。

本文将介绍组合优化中的动态规划并行实现的一些方法与技巧。

首先,我们需要明确组合优化问题的定义。

组合优化问题是指在给定的一组元素中,通过选择其中的若干个元素,使得满足一定的约束条件,并使得目标函数达到最优。

例如,在旅行商问题中,我们需要确定一条路径,使得旅行商能够依次经过所有的城市,并使得总行程最短。

动态规划是一种自底向上的求解方法,适用于具有重叠子问题和最优子结构性质的问题。

其基本思想是将大问题分解为小问题,并将小问题的解保存起来,以避免重复计算。

在串行实现中,动态规划通常通过填表格的方式进行计算,而并行实现则可以利用多个计算单元同时进行计算。

在组合优化中的动态规划并行实现中,一种常用的方法是任务划分。

我们将问题划分成多个子问题,并分配给不同的计算单元进行计算。

每个计算单元独立地计算自己负责的子问题,并将结果存储起来。

最后,通过组合各个计算单元得到最终的解。

另一种方法是数据划分。

我们将原始数据划分成多个部分,并分配给不同的计算单元进行计算。

每个计算单元只需要处理自己负责的数据部分,然后将计算结果传递给其他计算单元。

最后,通过合并各个计算单元的计算结果得到最终的解。

除了任务划分和数据划分,还可以采用混合并行的方法。

即将任务划分和数据划分结合起来使用,以充分发挥多核处理器的计算能力。

这种方法可以将计算任务划分成多个子任务,并且每个子任务处理自己负责的数据部分。

每个计算单元都可以独立地进行计算,并将计算结果传递给其他计算单元。

最后,通过合并各个计算单元的计算结果得到最终的解。

在实际应用中,选择合适的并行实现方法是一项具有挑战性的任务。

我们需要根据问题的特点以及计算资源的情况,综合考虑任务划分、数据划分和混合并行等不同的实现方法,并选择最优的方法来解决组合优化问题。

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。

本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。

二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。

其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。

具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。

这种分解可以通过递归的方式进行。

2. 定义状态:确定每个子问题的独立变量,即问题的状态。

状态具有明确的定义和可计算的表达式。

3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。

这个方程可以是简单的递推关系式、递归方程或其他形式的方程。

4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。

三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。

假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。

目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。

这个问题可以通过动态规划算法来求解。

具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。

(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。

(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。

(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。

2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。

动态规划法

动态规划法

动态规划法动态规划法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题性质和最优子结构性质的问题。

动态规划法通过把问题分解为更小的子问题,并将子问题的解存储起来,以避免重复计算,从而提高了算法的效率。

动态规划法有两个核心概念:状态和状态转移方程。

在动态规划过程中,我们需要定义状态,即问题的子问题解,以及状态之间的关系,即状态转移方程。

动态规划法的一般步骤如下:1. 定义问题的子问题:将问题划分为更小的子问题,并明确子问题的解是什么。

2. 定义状态:将问题的子问题解抽象为状态,即用一个变量或者数组表示子问题的解。

3. 定义状态转移方程:根据子问题的关系,定义状态之间的转移方程,即如何根据已知的子问题解计算出更大的问题的解。

4. 缓存子问题解:为了避免重复计算,我们需要将已经计算过的子问题解存储起来,以便后续使用。

5. 递推计算:通过状态转移方程和缓存的子问题解,逐步计算出更大的问题的解,直到计算出最终的问题解。

动态规划法的关键在于找到正确的状态转移方程和合理的存储子问题解的方式。

有些问题的状态转移方程比较容易找到,比如斐波那契数列,每个数都是前两个数的和;而有些问题的状态转移方程可能比较复杂,需要通过观察问题的特点和具体分析来确定。

动态规划法的时间复杂度通常为O(n),其中n 表示问题规模。

由于利用了子问题的解,避免了重复计算,因此动态规划法相对于暴力求解法能够大大提高算法的效率。

但是,动态规划法的空间复杂度通常较高,需要存储大量的子问题解,因此在实际应用中需要权衡时间和空间的消耗。

总的来说,动态规划法是一种非常灵活且强大的算法思想,能够解决许多复杂的问题,特别适用于具有重叠子问题性质和最优子结构性质的问题。

通过正确定义状态和状态转移方程,并结合缓存子问题解和递推计算,我们可以高效地求解这类问题,提高算法的效率。

动态规划算法原理与的应用

动态规划算法原理与的应用

动态规划算法原理与的应用动态规划算法是一种用于求解最优化问题的常用算法。

它通过将原问题划分为子问题,并将每个子问题的解保存起来,以避免重复计算,从而降低了问题的时间复杂度。

动态规划算法的核心思想是自底向上地构建解,以达到求解整个问题的目的。

下面将介绍动态规划算法的原理以及一些常见的应用。

1.动态规划算法的原理1)将原问题划分为多个子问题。

2)确定状态转移方程,即找到子问题之间的关系,以便求解子问题。

3)解决子问题,并将每个子问题的解保存起来。

4)根据子问题的解,构建整个问题的解。

2.动态规划算法的应用2.1最长公共子序列1) 定义状态:假设dp[i][j]表示序列A的前i个字符和序列B的前j个字符的最长公共子序列的长度。

2) 确定状态转移方程:若A[i] == B[j],则dp[i][j] = dp[i-1][j-1] + 1;若A[i] != B[j],则dp[i][j] = max(dp[i-1][j],dp[i][j-1])。

3) 解决子问题:从前往后计算dp数组中每个元素的值。

4) 构建整个问题的解:dp[m][n]即为最终的最长公共子序列的长度,其中m和n分别为序列A和序列B的长度。

2.2背包问题背包问题是指给定一个背包的容量和一些物品的重量和价值,要求在不超过背包容量的情况下,选择若干物品放入背包中,使得背包中物品的总价值最大。

该问题可通过动态规划算法求解,具体步骤如下:1) 定义状态:假设dp[i][j]表示在前i个物品中选择若干物品放入容量为j的背包中,能够获得的最大价值。

2) 确定状态转移方程:考虑第i个物品,若将其放入背包,则dp[i][j] = dp[i-1][j-wi] + vi;若不将其放入背包,则dp[i][j] = dp[i-1][j]。

3) 解决子问题:从前往后计算dp数组中每个元素的值。

4) 构建整个问题的解:dp[n][C]即为最终的背包能够获得的最大价值,其中n为物品的个数,C为背包的容量。

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用

基于Matlab的动态规划算法的实现及应用动态规划算法是一种解决多阶段决策问题的优化方法,它可以在每个阶段选择最优决策,并且在各个阶段间保持最优子结构,从而达到整体最优的目的。

在实际应用中,动态规划算法被广泛用于求解优化问题、路径规划、资源分配等方面。

本文将介绍基于Matlab 的动态规划算法的实现及应用,并深入探讨其在实际问题中的应用。

一、动态规划算法的基本原理动态规划算法的基本原理是通过将问题分解为子问题,并计算每个子问题的最优解,然后存储下来以供后续使用。

最终得到整体最优解。

动态规划算法通常包括以下几个步骤:1. 确定状态和状态转移方程:首先需要确定问题的状态,然后建立状态之间的转移关系,也就是状态转移方程。

状态转移方程描述了问题的子问题之间的关系,是动态规划算法的核心。

2. 初始化:初始化动态规划数组,将初始状态下的值填入数组中。

3. 状态转移:利用状态转移方程计算出各个阶段的最优解,并将其存储在动态规划数组中。

4. 求解最优解:根据动态规划数组中存储的各个阶段的最优解,可以得到整体最优解。

Matlab是一种强大的计算软件,具有丰富的数值计算函数和可视化工具,非常适合实现动态规划算法。

下面以一个简单的背包问题为例,介绍如何在Matlab中实现动态规划算法。

假设有n件物品,每件物品的重量为w[i],价值为v[i]。

现在有一个容量为C的背包,问如何选择物品放入背包,使得背包中物品的总价值最大。

我们需要确定问题的状态和状态转移方程。

在这个问题中,我们可以定义状态dp[i][j]表示在前i件物品中选择若干个放入容量为j的背包中所能获得的最大价值。

状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])然后,我们可以利用Matlab实现这个动态规划算法,代码如下:```matlabfunction max_value = knapsack(w, v, C)n = length(w);dp = zeros(n+1, C+1);for i = 1:nfor j = 1:Cif j >= w(i)dp(i+1,j+1) = max(dp(i,j+1), dp(i,j-w(i)+1)+v(i));elsedp(i+1,j+1) = dp(i,j+1);endendendmax_value = dp(n+1,C+1);end```三、动态规划算法在实际问题中的应用动态规划算法在实际问题中有着广泛的应用,下面以路径规划问题为例,介绍动态规划算法的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作者:张玉斌
学位授予单位:中国石油大学(华东)
1.吴涛动态规划算法应用及其在时间效率上的优化[学位论文]2008
2.王玉青具有调整时间的多工件组成的产品加工问题[学位论文]2006
3.王忠策.魏文超.张鹏程.WANG Zhong-ce.WEI Wen-chao.ZHANG Peng-cheng迭代并行动态规划算法在铸钢熔炼成本优化控制方面的应用[期刊论文]-铸造2009,58(12)
中国石油大学(华东)
硕士学位论文
迭代动态规划算法及并行化研究
姓名:张玉斌
申请学位级别:硕士
专业:控制理论与控制工程
指导教师:李树荣20080 Nhomakorabea01迭代动态规划算法及并行化研究
引用本文格式:张玉斌迭代动态规划算法及并行化研究[学位论文]硕士 2008
相关文档
最新文档