2.3 不等式的解集 教案
北师大版数学八年级下册2.3《不等式的解集》教学设计

北师大版数学八年级下册2.3《不等式的解集》教学设计一. 教材分析《不等式的解集》是北师大版数学八年级下册第2.3节的内容。
这一节主要介绍了不等式的解集的概念,包括一元一次不等式和一元二次不等式的解集。
学生将学习如何求解不等式,如何表示不等式的解集,以及如何理解不等式解集的性质。
这一节的内容是整个初中数学不等式部分的基础,对于学生掌握数学知识体系至关重要。
二. 学情分析学生在学习本节内容之前,已经学习了不等式的基本概念和性质,包括一元一次不等式的解法。
他们已经掌握了基本的代数运算,能够进行简单的方程求解。
但是,对于一元二次不等式的解法和不等式解集的表示,他们可能还比较陌生。
因此,在教学过程中,需要逐步引导学生理解新知识,通过实例让学生直观地感受不等式解集的概念。
三. 教学目标1.理解不等式解集的概念,掌握求解一元一次不等式和一元二次不等式解集的方法。
2.能够用集合的形式表示不等式的解集,并理解解集的性质。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:不等式解集的概念,求解不等式解集的方法。
2.教学难点:一元二次不等式解集的求解和不等式解集的性质。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决实际问题,理解和掌握不等式解集的概念和方法。
2.使用多媒体教学辅助工具,通过图示和动画,直观地展示不等式解集的特点,帮助学生形象地理解知识。
3.采用小组合作学习的方式,让学生在讨论和交流中,共同解决问题,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的教学PPT,包括不等式解集的图示和实例。
2.准备一些实际问题,用于引导学生理解和应用不等式解集的知识。
3.准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何表示不等式的解集。
例如,给出不等式2x-3>1,让学生思考如何表示这个不等式的解集。
2.呈现(10分钟)通过PPT展示不等式解集的图示和实例,让学生直观地感受不等式解集的概念。
2.3 不等式的解集 教案

少填两个值)猜想:在x 取到什么样范围内的数值时,才能使以上不等式成立?而这个范围是怎么求出来的?如何表示?二 合作交流、文本探究(一)不等式的解与解集不等式的解: 不等式的解集: 解是未知数的单个取值,而解集则是所有取值的统称。
因此,解集是一个范围。
对应练习 :下列四种说法中,正确的有( )○1x =2是不等式2x -1>0的一个解;○2x =32是不等式2x -1>0的一个解; ○3x >21是不等式2x -1>0的解集;○4x >1范围内的任何一个数都能使不等式2x -1>0成立,所以x >1是不等式2x -1>0的解集。
A 、1个B 、2个C 、3个D 、4个(二)不等式解集的表示方法1.不等式的解集是一个范围,这个范围用一个最简单的不等式来表示。
如:x -1≤2的解集是x ≤32.用数轴表示:分三步进行(1)画数轴;(2)定边界点;(3)定方向 其中边界点有“实心点”和“空心点”之分,实心点包含这个数,而空心点则不包含。
如:x >a 如图:x <a 如图:x ≥a 如图:x ≤a 如图:3.解下列不等式,并把解集在数轴上表示出来。
(1) 2x <3x -2 (2) 31x ≥1三、课内检测、巩固提高 1.用不等式表示如图所示的解集,正确的是( )A 、x >2B 、x ≥2C 、x <2D 、x ≤22.在数轴上表示不等式x <-2解集,如图所示,正确的是( )A BC D3.若不等式-3x +n >0的解集是x <2,则不等式-3x +n <0的解集是4.在数轴上表示下列不等式的解集。
(1) x <32 (2) x >21 (3) -2<x ≤3 (4) x +3≤15.某厂生产一种机械零件,固定成本为2万元,每个零件成本为3元,售价为5元,纳税为总销售额的10%,若要使纯利润超过固定成本,则该零件至少要生产销售多少个?四、拓展延伸1.若不等式(a -1)x >a -1的解集为x <1,求a 的取值范围。
北师大版数学八年级下册2.3不等式的解集教学设计

-设计不同层次的练习题,从简单的数值替换到字母表达式的转换,逐步引导学生掌握一元一次不等式的解法。
2.针对难点内容的教学设想:
-对于抽象不等式的问题,采用问题驱动的教学方法,鼓励学生先将实际问题转化为数学语言,然后引导学生识别关键信息,建立不等式模型。
-对于解集的表示,通过小组讨论和合作学习,让学生在互动中探索如何在数轴上准确地表示解集,以及如何处理区间端点的包含与排除问题。
-针对不等式组等复杂问题,设计案例分析和综合练习,逐步引导学生学会分析多个不等式之间的关系,并运用逻辑推理和数学技巧解决问题。
为了有效突破重难点,教学设想还包括以下策略:
-利用信息技术,如多媒体课件和数学软件,为学生提供直观的学习工具,帮助他们在视觉和操作层面上更好地理解不等式的解集。
-实施差异化教学,根据学生的学习能力提供不同难度的任务,确保每位学生都能在原有基础上得到提升。
-创设情境教学,将数学问题融入到真实的生活情境中,让学生在实际操作中体验数学建模的过程,提高问题解决的能力。
-强化反馈机制,通过课堂提问、小组互评和课后反思,及时了解学生的学习情况,调整教学策略,确保教学目标的达成。
2.讨论过程:学生通过小组合作,共同探讨问题的解决方法,鼓励学生提出不同的观点和思路。
3.汇报展示:各小组汇报自己的解题过程和结果,其他小组进行评价,教师给予点评和指导。
(四)课堂练习
课堂练习是巩固新知、提高解题能力的重要环节。我将设计以下练习:
1.基础练习:针对一元一次不等式的解法,设计一些基础题目,让学生独立完成。
3.情感态度:强调数学在实际生活中的应用,培养学生的实用主义精神。
2024北师大版数学八年级下册2.3《不等式的解集》教学设计

2024北师大版数学八年级下册2.3《不等式的解集》教学设计一. 教材分析《不等式的解集》是北师大版数学八年级下册第2.3节的内容,主要包括不等式的解集的概念、求解不等式解集的方法以及不等式解集在不同情况下的表示方法。
通过本节课的学习,使学生掌握不等式解集的定义,能够运用正确的方法求解不等式的解集,并能够用集合表示不等式的解集。
二. 学情分析学生在学习本节课之前,已经掌握了不等式的基本性质,具备了一定的逻辑思维能力。
但对于不等式解集的概念和求解方法,以及如何用集合表示解集,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解不等式解集的概念,培养学生运用正确方法求解不等式解集的能力,以及提高学生用集合表示解集的技巧。
三. 教学目标1.理解不等式解集的概念,掌握求解不等式解集的方法。
2.学会用集合表示不等式的解集,提高学生的逻辑思维能力。
3.培养学生的数学表达能力,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.不等式解集的概念及其表示方法。
2.求解不等式解集的方法。
3.如何用集合表示不等式解集。
五. 教学方法1.采用问题驱动法,引导学生思考和探索不等式解集的概念和求解方法。
2.利用实例讲解,让学生直观地理解不等式解集的概念和表示方法。
3.采用小组合作学习,培养学生的团队协作能力和逻辑思维能力。
4.运用练习巩固法,提高学生运用所学知识解决实际问题的能力。
六. 教学准备1.教学课件:制作多媒体课件,展示不等式解集的概念和求解方法。
2.教学素材:准备一些实际问题,用于引导学生运用不等式解集的知识解决实际问题。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用一个实际问题,引导学生思考不等式解集的概念。
例如:小明身高1.6米,请问他的身高是否满足不等式x>1.5?通过这个问题的讨论,引出不等式解集的概念。
2.呈现(10分钟)讲解不等式解集的定义,并举例说明如何求解不等式的解集。
北师大版八年级下册数学《2.3 不等式的解集》教学设计

北师大版八年级下册数学《2.3 不等式的解集》教学设计一. 教材分析北师大版八年级下册数学《2.3 不等式的解集》这一节主要介绍了不等式的解集的概念以及求解不等式的解集的方法。
教材通过具体的例子让学生理解不等式的解集是什么,并通过图示和数轴帮助学生更好地理解不等式的解集。
教材还介绍了不等式解集的表示方法,包括集合表示法和区间表示法。
此外,教材还提到了不等式解集的性质,如传递性、互补性等。
二. 学情分析学生在学习这一节之前,已经学习了不等式的基本概念和性质,对不等式有一定的了解。
但是,学生可能对不等式解集的概念和表示方法比较陌生,需要通过具体的例子和图示来帮助理解。
此外,学生可能对求解不等式解集的方法不太熟悉,需要通过练习和讲解来掌握。
三. 教学目标1.了解不等式解集的概念和表示方法。
2.学会求解不等式的解集的方法。
3.能够运用不等式解集的概念和求解方法解决实际问题。
四. 教学重难点1.不等式解集的概念和表示方法。
2.求解不等式解集的方法。
五. 教学方法采用讲解法、举例法、讨论法、练习法等多种教学方法,通过具体的例子和图示帮助学生理解不等式解集的概念和表示方法,通过讲解和练习让学生掌握求解不等式解集的方法。
六. 教学准备1.教材和教辅资料。
2.PPT或者黑板。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个具体的例子引出不等式解集的概念,让学生思考和讨论这个例子中的不等式解集是什么,如何表示。
2.呈现(10分钟)讲解不等式解集的概念和表示方法,通过图示和数轴帮助学生理解。
同时,给出不等式解集的性质,如传递性、互补性等。
3.操练(10分钟)让学生练习求解一些简单的不等式解集,给予讲解和指导。
4.巩固(10分钟)通过一些练习题让学生巩固不等式解集的概念和求解方法。
5.拓展(10分钟)让学生思考和讨论如何将不等式解集的概念和求解方法应用到实际问题中,给出一些例子进行讲解。
6.小结(5分钟)对本节课的主要内容进行小结,强调不等式解集的概念和表示方法,以及求解不等式解集的方法。
北师大版数学八年级下册2.3 不等式的解集 教学设计(含教学反思)

北师大版数学八年级下册《2.3 不等式的解集》教学设计
判断一个数值是否是不等式的一个解只需代入验证即可.由于不等式的解集必须符合两个条件:
(1)解集中的每一个数值都能使不等式成立;
(2)能够使不等式成立的所有数值都在解集中,因此如果解集内有一个数能够使不等式不成立或解集外有一个数能够使不等式成立,那么这个解集就不是这个不等式的解集.
请你用自己的方式将不等式 x > 5 的解集和不等式x-5 ≤-1 的解集分别表示在数轴上,并与同伴交流.
不等式 x > 5 的解集可以用数轴上表示 5 的点的右边部分来表示,在数轴上表示 5 的点的位置上画空心圆圈,表示 5 不在这个解集内.
不等式 x-5≤ - 1 的解集 x ≤ 4 可以用数轴上表示 4 的点及其左边部分来表示,在数轴上表示 4 的点的位置上画实心圆点,表示 4 在这个解集内.。
2.3不等式的解集(教学设计)

2.3不等式的解集(教学设计)教材分析这节课是北师大版八年级数学下册第二章第三节的内容,在本节前学习了不等关系,使我们了解到数量关系还包含了不等关系,在学习了不等式的基本性质的基础上,本节内容是对不等关系的进一步研究,因此本节知识的学习具有重要意义;本节也是为学习一元一次不等式(组)及一元一次不等式与一次函数做铺垫,因此本节内容在本章中占有重要地位。
学情分析学生是在已经掌握不等式的性质、数与数轴上的点一一对应的基础上学习本节内容。
在本班学生中由于女生较多,基础相对薄弱,所以对概念的理解可能会相对较难。
因此在教学时,我选择用教师引导、简单问题引入的方式使他们对学习产生兴趣,同时也能容易理解和接受所学知识。
教学目标知识与能力:1、理解不等式的解、解集的含义,会求简单不等式的解集;2、能在数轴上表示不等式的解集,体会数形结合思想。
过程与方法:1、通过生活中的实例引入不等式的解和解集,掌握二者的区别和联系;2、经历类比数在数轴上的表示方法把不等式的解集表示在数轴上的过程,发展学生的创新意识。
情感、态度与价值观:让学生体会数学来源于生活,运用于生活,数学与我们的生活息息相关。
教学重难点重点:理解不等式解与解集的意义。
难点:掌握不等式解集的数轴表示法。
教学方法采用启发引导、实例探究、讲练结合的教学方法。
教具准备三角板、多媒体教学过程设计一、组织教学同学们与我一起玩游戏,游戏规则:我说举右手,你就举左手;我说举左手,你就举右手;我说举双手,你就不举;我说不举,你就举双手。
设计意图:有趣又简单的游戏,能让学生集中注意力,同时活跃课堂氛围。
二、复习旧知上节课学习了不等式的基本性质,你还记的不等式的基本性质有哪些吗?(学生回答,教师呈现多媒体)设计意图:让学生回顾上一节内容,也为本节课教学做准备。
三、讲授新课(一)创设情境,导入新课师:这节课我们一起来探索:不等式的解集。
(板书课题)同学们对不等式的基本性质掌握地很好,所以老师请你们欣赏烟花。
北师大版八年级数学下册2.3不等式的解集公开课优质教案 (4)

《不等式的解集》教学目的1、使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法.2、培养学生观察、分析、比较的能力,并初步掌握对比的思想方法.3、在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.教学重难点重点:不等式的解集的概念及在数轴上表示不等式的解集的方法. 难点:不等式的解集的概念.教学过程一、快速反应:你能举出不等式2x+4>0的三个解吗?这个不等式的解有多少个?它的解集是什么?有多少个解集?1-=x 是不等式( )的解.A .2+x <0B .43-x >0C .12+x <0D .25+-x >0将不等式的解集3≤x 表示在数轴上.二、自主学习:某市自来水公司按如下标准收取水费,若每户每月用水不超过5m 3则每立方米收费1.5元;若每户每月用水超过5m 3,,则超出部分每立方米收费2元.小颖家某月的水费不少于15元,那么她家这个月的用水量至少是多少? 答案:设小颖家这个月的用水量是xm 3,由于15>1.5×5,所以即:155.2215)5(255.1≥-≥-+⨯x x(1)你能找出几个使不等式155.22≥-x 成立的x 的值吗?(2)963,,=x 能使不等式155.22≥-x 成立吗?答案:(1)可以找出许多使不等式155.22≥-x 成立的x 的值,比如:取10=x ,则5.175.2102=-⨯>15不等式成立,取2.10=x 则9.175.22.102=-⨯>15不等式成立,取12=x ,则,5.215.2122=-⨯>15不等式成立,等等.(2)当3=x 时,5.35.232=-⨯<15不等式不成立.当6=x 时,5.95.262=-⨯<15不等式不成立.当9=x ,5.155.292=-⨯>15不等式成立.判断下列说法是否正确:(1)2=x 是不等式3+x <4的解;(2)2=x 是不等式x 3<7的解集;(3)不等式x 3<7的解是2=x ;(4)3=x 是不等式93≥x 的解.答案:(1)不正确; (2)不正确; (3)不正确; (4)正确. 在数轴上表示出下列不等式的解集:(1)x >﹣1; (2)1-≥x ;(3)x <﹣1; (4)1-≤x答案:(1)数轴上实心与空心的区别在于:空心点表示解集不包括这一点,实心点表示解集包括这一点.(2)数轴上表示不等式的解集遵循“大于向右走,小于向左走”这一原则.求不等式3+x <6的正整数解.答案:在不等式3x<6的两边都减去3,得:+6-x<33-+3∴x<3而满足x<3的正整数有1,2,所以不等式的正整数解为1,2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、情境导入
东东和小明、小红三人在公园里玩跷跷板,东东体重最重,坐在跷跷板的一端,小明坐在另一端,这时东东的一端着地,当体重比东东轻4公斤的小红和小明坐在一端时,东东被翘起离地.同学们,你们能算出小红的体重大约是多少吗?
二、合作探究
探究点一:不等式的解和解集
下列说法中,错误的是( )
A .不等式x <3有两个正整数解
B .-2是不等式2x -1<0的一个解
C .不等式-3x >9的解集是x >-3
D .不等式x <10的整数解有无数个
解析:A.不等式x <3有两个正整数解1,2,故A 正确;B.-2是不等式2x -1<0的一个解,故B 正确;C.不等式-3x >9的解集是x <-3,故C 正确;D.不等式x <10的整数解有无数个,故D 正确;故选C.
方法总结:判断某个数值是否是不等式的解,就是用这个数值代替不等式中的未知数,看不等式是否成立.若不等式成立,则该数是不等式的一个解;若不成立,该数值就不是不等式的解.
探究点二:用数轴表示不等式的解集 【类型一】 在数轴上表示不等式的解集
不等式3x +5≥2的解集在数轴上表示正确的是( )
A. B. C.
D.
解析:解3x +5≥2,得x ≥-1,故选B.
方法总结:注意在表示解集时大于等于,小于等于要用实心圆点表示;大于、小于要用空心圆点表示.
【类型二】 根据数轴求不等式的解
关于x 的不等式x -3<3+a
2
的解集在数轴上表示如图所示,则a 的值是( )
A .-3
B .-12
C .3
D .12
解析:化简不等式,得x <9+a
2.由数轴上不等式的解集,得9+a =12,解得a =3,故选C.
方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a 的方程是解题关键. 三、板书设计
1.不等式的解和解集
2.用数轴表示不等式的解集
1.下列数值中,是不等式x -2>2的一个解的是( )
9.在数轴上表示不等式x -1<0的解集,正确的是( )
10.如图,在数轴上所表示的是哪一个不等式的解集( )
A.1
2
x >-1 B.
x +32
≥-3
C .x +1≥-1
D .-2x >4
11.将下列不等式的解集分别表示在数轴上: (1)x ≤2; (2)x >-2.
12.用A 、B 两种型号的钢丝各两根分别作为长方形的长与宽,焊接成周长不小于2.4m 的长方形框架,已知每根A 型钢丝的长度比每根B 型钢丝长度的2倍少3cm. (1)设每根B 型钢丝长为x cm ,按题意列出不等式并求出它的解集;
(2)如果每根B 型钢丝长度有以下四种选择:30cm,40cm,41cm,45cm ,那么哪些合适?
13.请阅读求绝对值不等式|x |<3和|x |>3的解集的过程:
因为|x |<3,从如图1所示的数轴上看:大于-3而小于3的数的绝对值是小于3的,所
以|x|<3的解集是-3<x<3;因为|x|>3,从如图2所示的数轴上看:小于-3的数和大于3的数的绝对值是大于3的,所以|x|>3的解集是x<-3或x>3.
解答下面的问题:
(1)不等式|x|<a(a>0)的解集为________;不等式|x|>a(a>0)的解集为________;
(2)解不等式|x-5|<3;
(3)解不等式|x-3|>5.
本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够。