子集和空集易错题型
集合易错题举例

集合易错题举例易错点1 忽视对空集的讨论空集是任何集合的子集,是任何非空集合的真子集.空集与任何集合的交集为空集,与任何集合的并集仍等于这个集合.由题目的条件得到“”时,若集合B A B ⊆为含参集合(为指明非空),则应对集合B 分和两种情况进行讨论. ∅=B ∅≠B 例1. 设集合,,若,则实数的取值范{}62≤≤=x x A {}32+≤≤=a x a x B A B ⊆a 围是【 】(A ) (B ) (C ) (D ) []3,1)[∞+,3)[∞+,1()3,1解:∵,∴分为两种情况:A B ⊆①当时,有,解之得:;∅=B 32+>a a 3>a ②当,则有:,解之得:1≤≤3.∅≠B ⎪⎩⎪⎨⎧≤+≥+≤632232a a a a a 综上,实数的取值范围是.选择【 C 】.a )[∞+,1易错点2 对集合元素认识不清解集集合问题时,需要先确定集合的代表元素是点还是数,从而确定集合是数集还是点集.数集的表达形式为,点集的表达形式为. {})(x p x ()(){}y x p y x ,,例2. 设,,则必有【 】 ()(){}021,2=-++=y x y x A {}2,1-=B (A ) (B )(C ) (D ) B A ⊇B A ⊆B A =∅=B A 解:,表示一个点集,是含有两个()(){}(){}2,1021,2-==-++=y x y x A {}2,1-=B 元素的数集,所以它们的交集为空集.选择【 D 】.易错点3 忽视集合中元素的范围 例3. 已知,,求. {}Z x x x y y M ∈+-==,342{}Z x x x y y N ∈--==,22N M 解:∵ {}(){}{}Z y y y Z x x y y Z x x x y y M ∈-≥=∈--==∈+-==,1,12,3422 {}(){}{}Z y y y Z x x y y Z x x x y y N ∈≤=∈++-==∈--==,1,11,222∴中可能含有元素, 0 , 1.N M 1-当中含有元素时,有且. N M 1-1-M ∈1-N ∈若,则1342-=+-x x ,解之得:; 1-M ∈Z x ∈=2若,则,解之得:. 1-N ∈122-=--x x Z x ∉±-=21∴;1-N M ∉同样可以验证,. N M ∈0N M ∉1综上,.{}0=N M。
2、子集、真子集、空集

第一章 1.1 1.1.2 子集、真子集、空集基础巩固一、选择题1.对于集合A,B,“A⊆B”不成立的含义是()A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A2.下列命题中,正确的有()①空集是任何集合的真子集;②若A≠⊂B,B≠⊂C,则A≠⊂C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A.①②B.②③C.②④D.③④3.已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x是等腰直角三角形},D={x|x是等边三角形},则()A.A⊆B B.C⊆BC.D⊆C D.A⊆D.4.下列四个集合中,是空集的是()A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}5.若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A有()A.3个B.4个C.5个D.6个6.设集合A={x|1<x<2},B={x|x<a},若A≠⊂B,则实数a的取值范围为()A.a≥2 B.a≤1C.a≥1 D.a≤2二、填空题7.用适当的符号填空:(1){x|x是菱形}________{x|x是平行四边形};{x|x是三角形}________{x|x是斜三角形}.(2)Z________{x∈R|x2+2=0};0________{0};Ø________{0};N________{0}.8.已知集合A={1,2,m3},B={1,m},B⊆A,则m=________.三、解答题9.判断下列集合间的关系:(1)A={x|x-3>2},B={x|2x-5≥0};(2)A={x∈Z|-1≤x<3},B={x|x=|y|,y∈A}.10.已知集合M={x|x=m+16,m∈Z},N={x|x=n2-13,n∈Z},P={x|x=p2+16,p∈Z},试确定M,N,P之间的关系.\。
高一必修1数学错题集

1、设集合 M={x|x2-x<0},N={x||x|<2},则…()A.M∩N=B.M∩N=MC.M∪N=MD.M∪N=R参考答案与解析:解:M={x|0<J<1},N={x|-2<x<2},MN.∴M∩N=M,M∪N=N.答案:B主要考察知识点:集合2、下列四个集合中,是空集的是( )A. {x|x+3=3}B. {(x, y)| y2=-x2, x、y∈R}C. {x|x2≤0}D. {x|x2-x+1=0}参考答案与解析:解析:空集指不含任何元素的集合.答案:D3、下列说法:①空集没有子集;②空集是任何集合的真子集;③任何集合最少有两个不同子集;④{x|x2+1=0,x∈R};⑤{3n-1|n∈Z}={3n+2|n∈Z}.其中说确的有( )A.0个B.1个C.2个D.3个参考答案与解析:解析:空集、子集、真子集是本题考查的重点,要明确空集是除了它自身之外的任何一个集合的真子集,当然是任何集合的子集.根据集合的含义、性质和运算法则逐一判断真假.空集也有子集,是它本身,所以①不正确;空集不是它自身的真子集,所以②也是不正确的;空集就只有一个子集,所以③也是不正确的;因为空集是任何集合的子集,所以④是正确的;设A={3n-1|n∈Z},B={3n+2|n∈Z},则A={3n-1|n∈Z}={3(k+1)-1|(k+1)∈Z}={3k+2|k∈Z}=B={3n+2|n∈Z},所以⑤也是正确的.因此,选C.答案:C主要考察知识点:集合4、函数f(x)=-1的定义域是( )A.x≤1或x≥-3B.(-∞,1)∪[-3,+∞)C.-3≤x≤1D.[-3,1]参考答案与解析:思路解析:考查函数的定义域.由1-x≥0,x+3≥0可知,-3≤x≤1,所以原函数的定义域为[-3,1],故选D.答案:D主要考察知识点:函数5、下列各组函数中,表示同一个函数的是()A.y=x-1和y=B.y=x0和y=1C.f(x)=x2和g(x)=(x+1)2D.f(x)=和g(x)=参考答案与解析:解析:A中两函数定义域不同;B中y=x0=1(x≠0)与y=1的定义域不同;C 中两函数的对应关系不同;D中f(x)==1(x>0),g(x)==1(x>0).∴D正确.答案:D主要考察知识点:函数6、函数f(x)=若f(x)=3,则x的值是()A.1B.±C.,1D.参考答案与解析:解析:若x+2=3,则x=1(-∞,-1),应舍去.若x2=3,则x=±,∵-(-1,2),应舍去.若2x=3,∴x=[2,+∞),应舍去.∴x=.应选D.答案:D主要考察知识点:函数7、如下图,可表示函数y=f(x)的图象的只可能是()参考答案与解析:D主要考察知识点:函数8、设b>0,二次函数y=ax2+bx+a2-1的图象是下列图象之一,则a的值为()A.1B.-1C.-1-52D.-1+52参考答案与解析:解析:令y=f(x),若函数的图象为第一个图形或第二个图形,对称轴为y 轴,即b=0,不合题意;若函数的图象为第三个图形,由对称轴的位置可得->0,由于b>0,所以a<0,符合题意.又f(0)=0,解得a=-1.若函数的图象为第四个图形,则->0,由于b>0,所以a<0,函数的图象开口应该向下,不符合题意.因此,a=-1.答案:B主要考察知识点:函数9、在下列选项中,可表示函数y=f(x)的图象的只可能是( )您的答案:C参考答案与解析:解析:判断一幅图象表示的是不是函数的图象,关键是在图象中能不能找到一个x对应两个或两个以上的y,如果一个x对应两个以上的y,那么这个图象表示的就不是函数的图象.A的图象表示的不是函数的图象,∵存在一个自变量x的取值(如:x=0)有两个y与之对应,不符合函数的定义.因此A不正确;B的图象是关于x轴对称也不符合函数的定义.因此B也不正确;C的图象是关于原点对称,但是当自变量x=0时,有两个y值与之对应,不符合函数的定义.∴C选项也不正确;D表示的图象符合函数的定义,因此它表示的是函数的图象.因此选D.答案:D主要考察知识点:函数10、甲、乙两人同时从A地赶往B地,甲先骑自行车到中点改为跑步,而乙则是先跑步到中点改为骑自行车,最后两人同时到达B地,又知甲骑自行车比乙骑自行车的速度快,并且两人骑车速度均比跑步速度快.若某人离开A地的距离s与所用时间t的函数关系可用图象表示,则下列给出的四个函数图象中,甲、乙的图象为( )A. 甲是图①,乙是图②B. 甲是图①,乙是图④C. 甲是图③,乙是图②D. 甲是图③,乙是图④参考答案与解析:B主要考察知识点:映射与函数11、设a、b都是非零实数,y=++可能的取值组成的集合为()A.{3}B.{3,2,1}C.{3,1,-1}D.{3,-1}参考答案与解析:解析:根据两个字母的符号分类讨论即可得出答案D,在讨论的过程中,注意集合元素的互异性.答案:D主要考察知识点:集合12、下列说法中,正确的命题个数是( )①-2是16的四次方根②正数的n次方根有两个③a的n次方根就是④=a(a≥0)A.1B.2C.3D.4参考答案与解析:解析:从n次方根和n次根式的概念入手,认清各概念与各符号之间的关系.(1)是正确的.由(-2)4=16可验证.(2)不正确,要对n分奇偶讨论.(3)不正确,a的n次方根可能有一个值,可能有两个值,而只表示一个确定的值,它叫根式.(4)正确,根据根式运算的依据,当n为奇数时,=a是正确的,当n为偶数时,若a≥0,则有=a.综上,当a≥0时,无论n为何值均有=a成立.答案: B主要考察知识点:指数与指数函数参考答案与解析:解析:此函数可以看成是以u=(x+1)(x-3)与y=(-1) u复合而成的函数,显然y=(-1) u单调递减,所以求层函数也是递减区间即可,借助二次函数图象可知它在(-∞,1)上满足要求.答案:B主要考察知识点:指数与指数函数13、把根式-2改写成分数指数幂的形式为( )A. B.C. D.参考答案与解析:思路解析:考查根式与分数指数幂的转化.原式可化为 =.故选A.答案:A主要考察知识点:指数与指数函数14、化简()-4等于( )A. B. C. D.参考答案与解析:解析:原式====.答案:A主要考察知识点:指数与指数函数15、下列命题中,错误的是()A.当n为奇数时,=xB.当n为偶数时,=xC.当n为奇数时,=xD.当n为偶数时,=x参考答案与解析:解析:由对根式性质中奇偶条件限制的理解,很容易知道选B. 答案:B16、函数y=(a2-3a+3)a x是指数函数,则有()A.a=1或a=2B.a=1C.a=2D.a>0,且a≠1参考答案与解析:解析:由指数函数的定义解得a=2.答案:C主要考察知识点:指数与指数函数17、函数y=-e x的图象()A.与函数y=e x的图象关于y轴对称B.与函数y=e x的图象关于坐标原点对称C.与函数y=e -x的图象关于y轴对称D.与函数y=e -x的图象关于坐标原点对称参考答案与解析:解析:y=f(-x)的图象与y=f(x)的图象关于y轴对称;y=-f(x)与y=f(x)的图象之间关于x轴对称,y=f(-x)与y=f(x)的图象之间关于原点对称.所以选D.答案:D主要考察知识点:指数与指数函数18、如果函数f(x)=(a 2-1) x在R上是减函数,那么实数a的取值围是( )A. |a|>1B. |a|<2C. |a|>3D.1<|a|<参考答案与解析:解析:由函数f(x)=(a2-1)x的定义域是R且是单调函数,可知底数必须大于零且不等于1,因此该函数是一个指数函数,由指数函数的性质可得0<a2-1<1,解得1<|a|<.答案:D主要考察知识点:指数与指数函数19、设f(x)=,若0<a<1,试求:(1)f(a)+f(1-a)的值;(2) f()+f()+f()+…+f()的值..参考答案与解析:解:(1)f(a)+f(1-a)=+=+=+=+==1.(2)f()+f()+f()+…+f()=[f()+f()]+[f()+f()]+…+[f()+f()]=500×1=500.主要考察知识点:指数与指数函数20、函数y=(-1) (x+1)(x-3)的单调递增区间是( )A. (1, +∞)B. (-∞, 1)C. (1, 3)D. (-1, 1)您的答案:C参考答案与解析:解析:此函数可以看成是以u=(x+1)(x-3)与y=(-1) u复合而成的函数,显然y=(-1) u单调递减,所以求层函数也是递减区间即可,借助二次函数图象可知它在(-∞,1)上满足要求.答案:B主要考察知识点:指数与指数函数21、函数y=(2m-1) x是指数函数,则m的取值围是__________.参考答案与解析:解析:考查指数函数的概念.据指数函数的定义,y=a x中的底数a约定a>0且a≠1.故此2m-1>0且2m-1≠1,所以m>且m≠1.答案:m>且m≠1主要考察知识点:指数与指数函数。
高中数学:集合部分易错点集锦

高中数学:集合部分易错点集锦在高中数学中,集合这部分是非常容易的,在考试中是最不应该失分的部分,特别是在高考中。
但是有一些易错点,很多学生遇到之后还是会出错,今天在这里总结一下,希望能帮到一部分学生。
易错点1:对描述法表示集合的理解不透彻而出错用描述法表示集合,一定要注意两点:1、一定要清楚符号“{x|x 的属性}”表示的是具有某种属性的x的全体,而不是部分;2、一定要从代表元素入手,弄清代表元素是什么。
易错点2:混淆数集和点集的表示使用特征法表示集合时,首先要明确集合中的代表元素是什么,比如,1{y|y=x2+1};2{(x,y)|y=x2+1},这两个集合中德代表元素的属性表达式都和y=x2+1有关,但由于代表元素符号形式不同,因而表示的集合也不一样。
1代表的数集,2代表的是点集。
易错点3:忽视集合中元素的互异性在学习集合的相关概念时,对含有参数的集合问题都容易出错,尽管知道集合众元素是互异的,也不会写出{3,3}这样的形式,但当字母x出现时,就会忽略x=3的情况,导致集合中出现相同元素。
易错点4:忽略空集的存在空集是一个特殊而又重要的结,它不含任何元素,记为∅。
在解隐含有空集参与的集合问题时,非常容易忽略空集的特殊性而出错。
特别是在求参数问题时,会进行分类讨论,讨论过程中非常容易忘记空集的存在,导致最终答案出错。
易错点5:利用数轴求参数时忽略端点值在求集合中参数的取值范围时,要特别注意该参数在取值范围的边界处能否取等号,最稳妥的办法就是把端点值带入原式,看是否符合题目要求。
要注意两点:1、参数值代入原集合中看是否满足集合的互异性;2、所求参数能否取到端点值。
易错点6:混淆子集和真子集而错集合之间的关系类问题涉及到参数时,需要分类讨论,分类讨论时非常容易忽略两个集合完全相等这种情况,认为子集就是真子集,最终导致参数求错或者集合的关系表达不准确。
易错点7:求参数问题时,忘记检验而出错根据条件求集合的中的参数时,一定要带入检验,看是否满足集合的“三性”中互异性,同时还要检验是否满足题干中的其他条件。
集合问题中常见易错点归类分析答案

集合问题中常见易错点归类分析答案集合问题中常见易错点归类分析集合问题涉及范围广,内容多,难度大,题目灵活多变。
初学时,由于未能真正理解集合的意义、性质、表示法或考虑问题不全,容易出现错解。
本文将常见易错点归纳如下:1.代表元素意义不清致误例1:设集合A={(x。
y)∣x+2y=5},B={(x。
y)∣x-2y=-3},求A∩B。
错解:由x+2y=5得x=1,从而A∩B={1,2}。
x-2y=-3分析:上述解法混淆了点集与数集的区别。
集合A、B中元素为点集,所以A∩B={(1,2)}。
例2:设集合A={y∣y=x^2+1,x∈R},B={x∣y=x+2},求A∩B。
错解:显然A={y∣y≥1},B={x∣x≥0},所以A∩B=B。
分析:错因在于对集合中的代表元素不理解。
集合A中的代表元素是y,从而A={y∣y≥1},但集合B中的元素为x,所以B={x∣x≥0},故A∩B=A。
2.忽视集合中元素的互异性致错例5:已知集合A={1,3,a},B={1,a-a+1},且A∪B,求a的值。
错解:经过分析知,若a-a+1=3,则a-a-2=0,即a=-1或a=2.分析:错因在于忽视了集合中元素的互异性。
集合B中包含了1和a-a+1,即a-1,所以B={1,a-1}。
因此,A∪B={1,3,a,a-1},而集合中元素互异,所以a-1≠3,解得a=2.2.集合论中易犯的三种错误在集合论中,常常会犯三种错误,分别是:混淆元素与集合,忽视元素的互异性,忽视空集的特殊性。
首先,混淆元素与集合是集合论中最常见的错误之一。
在集合论中,元素是集合的基本成分,而集合则是由元素组成的整体。
因此,在列举集合时,必须明确元素和集合的区别,不可混淆。
其次,忽视元素的互异性也是一个常见的错误。
在集合中,元素是互异的,即同一个集合中不能有两个相同的元素。
在解题时,必须注意元素的互异性,否则会得到错误的结果。
最后,忽视空集的特殊性也是一个常见的错误。
高中数学必修一常用逻辑用语重点易错题

(每日一练)高中数学必修一常用逻辑用语重点易错题单选题1、下列说法中,正确的有()①空集是任何集合的真子集;②“A∩B=B”是“B=∅”的必要不充分条件;③若a<b,则1a >1b;④∀x∈R,x2+x+3>0A.0个B.1个C.2个D.3个答案:C解析:对①,任何集合要考虑空集情况;对②,由A∩B=B可得:B⊆A,再根据必要不充分条件的判定求解;对③,利用不等式的性质,可举反例;对④,根据二次函数的判别式求解.对①,空集是空集的真子集是错误的,故①错误;对②,因为A∩B=B可得:B⊆A,此时无法推出B=∅,但B=∅可推出B⊆A,故②正确;对③,若a=−1,b=2,则−1>12不成立,故③错误;对④,令f(x)=x2+x+3,则Δ=1−12=−11<0,所以f(x)>0对任意的实数恒成立,故④正确.故选:C.小提示:本题考查对给定命题正误的判断,考查对概念的理解与应用,求解时若要说明命题错误,则需举出反例.2、关于x的方程x2+ax+b=0,有下列四个命题:甲:x=1是该方程的根;乙:x=3是该方程的根;丙:该方程两根之和为2;丁:该方程两根异号.如果只有一个假命题,则该命题是()A.甲B.乙C.丙D.丁答案:A解析:对甲、乙、丙、丁分别是假命题进行分类讨论,分析各种情况下方程x2+ax+b=0的两根,进而可得出结论. 若甲是假命题,则乙丙丁是真命题,则关于x的方程x2+ax+b=0的一根为3,由于两根之和为2,则该方程的另一根为−1,两根异号,合乎题意;若乙是假命题,则甲丙丁是真命题,则x=1是方程x2+ax+b=0的一根,由于两根之和为2,则另一根也为1,两根同号,不合乎题意;若丙是假命题,则甲乙丁是真命题,则关于x的方程x2+ax+b=0的两根为1和3,两根同号,不合乎题意;若丁是假命题,则甲乙丙是真命题,则关于x的方程x2+ax+b=0的两根为1和3,两根之和为4,不合乎题意.综上所述,甲命题为假命题.故选:A.小提示:关键点点睛:本题考查命题真假的判断,解题的关键就是对甲、乙、丙、丁分别是假命题进行分类讨论,结合已知条件求出方程的两根,再结合各命题的真假进行判断.3、已知直线a,b,平面,,α∩β=b,a//α,a⊥b,那么“a⊥β”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:C解析:过直线a作平面γ,交平面α于直线a′,∵a//α,∴a//a′,∴a′⊥b,由a⊥β可推出α⊥β,由α⊥β可推出a⊥β,故“a⊥β”是“α⊥β”的充要条件.解:若a⊥β,过直线a作平面γ,交平面α于直线a′,∵a//α,∴a//a′,又a⊥β,∴a′⊥β,又∵a′⊆α,∴α⊥β,若α⊥β,过直线a作平面γ,交平面α于直线a′,∵a//α,∴a//a′,∵a⊥b,∴a′⊥b,又∵α⊥β,α∩β=b,∴a′⊥β,∴a⊥β,故“a⊥β”是“α⊥β”的充要条件,故选:C.≤1成立的充要条件是()4、不等式|a+b||a|+|b|A.ab≠0B.a2+b2≠0C.ab>0D.ab<0答案:B解析:≤1,可得出|a|+|b|≠0,进而可得出a2+b2≠0,由此可得出|a+b|≤|a|+|b|,在所得不等式由于|a+b||a|+|b|两边平方化简后得出ab≤|ab|,进而可得出结论.≤1,则|a|+|b|≠0,即a、b不同时为零,即a2+b2≠0,则|a|+|b|>0.由于|a+b||a|+|b|≤1可得|a+b|≤|a|+|b|,不等式两边平方可得a2+2ab+b2≤a2+2|ab|+b2,由|a+b||a|+|b|即ab≤|ab|,显然ab≤|ab|恒成立,≤1成立的充要条件是a2+b2≠0.因此,不等式|a+b||a|+|b|故选:B.小提示:本题考查充要条件的寻找,考查分析问题和解决问题的能力,属于中等题.5、设a∈R,则“a=−2”关于x的方程“x2+x+a=0有实数根”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:以a=−2为条件,判断x2+x+a=0有实数根是否成立;以x2+x+a=0有实数根为条件,判断a=−2是否成立,即可选出正确答案.解:当a=−2时,Δ=1−4a=9>0,此时x2+x+a=0有实数根;当x2+x+a=0有实数根时,Δ=1−4a≥0,即a≤1.4故选:A.小提示:本题考查了命题的充分必要条件的判断.一般此类问题分为两步,若p⇒q,则p是q的充分条件;若q⇒p,则p是q的必要条件.。
集合间的关系练习题及答案

【补充练习】1.判断正误:(1)空集没有子集. ()(2)空集是任何一个集合的真子集. ()(3)任一集合必有两个或两个以上子集. ()(4)若BA,那么凡不属于集合A的元素,则必不属于B. ()分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有(4)是正确的,其余全错.对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.对于(4)来讲,当x∈B时必有x∈A,则xA时也必有xB.2.集合A={x|-1<x<3,x∈Z},写出A的真子集.分析:区分子集与真子集的概念,空集是任一非空集合的真子集,一个含有n个元素的子集有2n个,真子集有2n-1个,则该题先找该集合元素,后找真子集.解:因-1<x<3,x∈Z,故x=0,1,2,即a={x|-1<x<3,x∈Z}={0,1,2}.真子集:、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个.3.(1)下列命题正确的是()A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为()①{1}∈{0,1,2}②{1,-3}={-3,1}③{0,1,2}{1,0,2}④∈{0,1,2}⑤∈{0}A.5B.2C.3D.4(3)M={x|3<x<4},a=π,则下列关系正确的是()A.aMB.aMC.{a}∈MD.{a}M分析:(1)该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于只有一个子集,即它本身,排除B;由于1不是质数,排除D.(2)该题涉及到的是元素与集合,集合与集合的关系.①应是{1}{0,1,2},④应是{0,1,2},⑤应是{0}.故错误的有①④⑤.(3)M={x|3<x<4},a=π.因3<a<4,故a是M的一个元素.{a}是{x|3<x<4}的子集,那么{a}M.答案:(1)C(2)C(3)D4.判断如下集合A与B之间有怎样的包含或相等关系:(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};(2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.解:(1)因A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},故A、B都是由奇数构成的,即A=B. (2)因A={x|x=2m,m∈Z},B={x|x=4n,n∈Z},又x=4n=2·2n,在x=2m 中,m 可以取奇数,也可以取偶数;而在x=4n 中,2n 只能是偶数.故集合A 、B 的元素都是偶数.但B 中元素是由A 中部分元素构成,则有BA.点评:此题是集合中较抽象的题目.要注意其元素的合理寻求.5.已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足QP,求a 所取的一切值.解:因P={x|x2+x-6=0}={2,-3},当a=0时,Q={x|ax+1=0}=,QP 成立.又当a ≠0时,Q={x|ax+1=0}={a 1-},要QP 成立,则有a 1-=2或a 1-=-3,a=21-或a=31. 综上所述,a=0或a=21-或a=31. 点评:这类题目给的条件中含有字母,一般需分类讨论.本题易漏掉a=0,ax+1=0无解,即Q 为空集的情况,而当Q=时,满足QP.6.已知集合A={x ∈R|x2-3x+4=0},B={x ∈R|(x+1)(x2+3x-4)=0},要使APB,求满足条件的集合P.解:由A={x ∈R|x2-3x+4=0}=,B={x ∈R|(x+1)(x2+3x-4)=0}={-1,1,-4},由A PB 知集合P 非空,且其元素全属于B,即有满足条件的集合P 为{1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}.点评:要解决该题,必须确定满足条件的集合P 的元素,而做到这点,必须明确A 、B,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.7.设A={0,1},B={x|xA},则A 与B 应具有何种关系?解:因A={0,1},B={x|xA},故x 为,{0},{1},{0,1},即{0,1}是B 中一元素.故A ∈B.点评:注意该题的特殊性,一集合是另一集合的元素.8.集合A={x|-2≤x ≤5},B={x|m+1≤x ≤2m-1},(1)若BA,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.解:(1)当m+1>2m-1即m<2时,B=满足BA.当m+1≤2m-1即m ≥2时,要使BA 成立,需⎩⎨⎧>+-≥+51,121m m m 可得2≤m ≤3.综上所得实数m 的取值范围m ≤3. (2)当x ∈Z 时,A={-2,-1,0,1,2,3,4,5},所以,A 的非空真子集个数为2上标8-2=254.(3)∵x ∈R,且A={x|-2≤x ≤5},B={x|m+1≤x ≤2m-1},又没有元素x 使x ∈A 与x ∈B 同时成立. 则①若B ≠即m+1>2m-1,得m<2时满足条件;②若B ≠,则要满足条件有:⎩⎨⎧>+-≤+51,121m m m 或⎩⎨⎧-<--≤+212,121m m m 解之,得m>4. 综上有m<2或m>4.点评:此问题解决要注意:不应忽略;找A 中的元素;分类讨论思想的运用.。
(完整版)集合问题中常见易错点归类分析答案与解析

集合问题中常见易错点归类分析有关集合问题,涉及范围广,内容多,难度大,题目灵活多变.初学时,由于未能真正理解集合的意义,性质,表示法或考虑问题不全,而造成错解.本文就常见易错点归纳如下:1.代表元素意义不清致误例1 设集合A ={(x , y )∣x +2 y =5},B ={(x , y )∣x -2 y =-3},求A I B . 错解: 由⎩⎨⎧-=-=+3252y x y x 得⎩⎨⎧==21y x 从而A I B ={1,2}. 分析 上述解法混淆了点集与数集的区别,集合A 、B 中元素为点集,所以A I B ={(1,2)}例2 设集合A ={y ∣y =2x +1,x ∈R },B ={x ∣y =x +2},求A∩B.错解: 显然A={y ∣y≥1}B={x ∣y≥2}.所以A ∩B=B .分析 错因在于对集合中的代表元素不理解,集合A 中的代表元素是y ,从而A ={y∣y≥1},但集合B 中的元素为x , 所以B ={ x ∣x ≥0},故A ∩B=A .变式:已知集合}1|{2+==x y y A ,集合}|{2y x y B ==,求B A I解:}1|{}1|{2≥=+==y y x y y A ,R y x y B ===}|{2}1|{≥=y y B A I例3 设集合}06{2=--=x x A ,}06|{2=--=x x x B ,判断A 与B 的关系。
错解:}32{,-==B A分析:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
元素的属性可以是方程,可以是数,也可以是点,还可以是集合等等。
集合A 中的元素属性是方程,集合B 中的元素属性是数,故A 与B 不具包含关系。
例4设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( )A .A ⊆B B .B ⊆AC .A ∈BD .B ∈A错解:B分析:选D.∵B 的子集为{1},{2},{1,2},∅,∴A ={x|x ⊆B}={{1},{2},{1,2},∅},从集合与集合的角度来看待A 与B ,集合A 的元素属性是集合,集合B 的元素属性是数,两者不具包含关系,故应从元素与集合的角度来看待B 与A,∴B ∈A.评注:集合中的代表元素,反映了集合中的元素所具有的本质属性,解题时应认真领会,以防出错.2 忽视集合中元素的互异性致错例5 已知集合A={1,3,a },B={1,2a -a +1}, 且A ⊇B ,求a 的值.错解:经过分析知,若2a -,31=+a 则2a ,02=--a 即1-=a 或2=a .若2a ,1a a =+-则2a ,012=+-a 即1=a .从而a =-1,1,2.分析 当a =1时,A 中有两个相同的元素1,与元素的互异性矛盾,应舍去,故a =-1,2.例6 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 错解:由2x +(b+2)x+b+1=0得 (x+1)(x+b+1)=0(1)当b=0时,x1 =x 2 -1,此时A中的元素之和为-2.(2)当b≠0时,x1 +x 2 =-b-2.分析 上述解法错在(1)上,当b=0时,方程有二重根-1,集合A={-1},故元素之和为-1,犯错误的原因是忽视了集合中元素的“互异性”.因此,在列举法表示集合时,要特别注意元素的“互异性”.评注:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合与集合的运算易错题型
集合的基本运算
1. 已知集合}20|{<-<=b x x A ,}22|{<<-=x x B ,若B A ⊆,则b 的取值范围是___________
2. 已知集合}1|{},023|{2a x x B x x x A ≤≤=≤+-=,且∅≠B .
(1) 若B A ⊂(真子集),求a 的取值范围;
(2) 若A B ⊆,求a 的取值范围.
3. 已知集合},2|{R x x x A ∈≤=,}|{a x x B ≥=,且B A ⊆,则实数a 的取值范围是___________
4. 已知集合}|{a x x A <=,}21|{<<=x x B ,且()R B C A R =⋃,则实数a 的取值范围是__________
5. 设集合},1|{R x a x x A ∈<-=,},51|{R x x x B ∈<<=.若∅=⋂B A ,则实数a 的取值范围是___________
6. 已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若∅=⋂M C N I ,则=⋃N M ( )
A.M
B.N
C.I
D.∅
7.设集合},1|{R x a x x A ∈<-=,},2|{R x b x x B ∈>-=,若B A ⊆,则b a ,必满足( ) A.3≤+b a B.3≥+b a C.3≤-b a D.3≥-b a 忽视空集特殊性
1. 已知集合}02|{},023|{2=-==+-=ax x B x x x A .若A B ⊆,求实数a 的取值集合.
2. 集合}52|{≤≤-=x x A ,}121|{-≤≤+=m x m x B ,若A B A =⋃,求实数m 的取值范围
3.设}04|{2=+=x x x A ,}01)1(2|{22=-+++=a x a x x B .若B B A =⋂,求a 的值构成的集合
4.设集合01|{≤+=x x A 或}04≥-x ,}22|{+≤≤=a x a x B .
(1)若∅≠⋂B A ,求实数a 的取值范围;
(2)若B B A =⋂,求实数a 的取值范围.
5.已知集合},01)2(|{2R x x p x x A ∈=+++=,}0|{>=x x B ∅=⋂B A .求实数p 的取值范围.
补充题:
1.已知全集为R ,集合}121|{≤⎪⎭
⎫ ⎝⎛=x x A ,}086|{2≤+-=x x x B ,则()B C A R ⋂=______________
2.设R U =,集合}023|{2=++=x x x A ,}0)1(|{2=+++=m x m x x B .若()∅=⋂B A C U ,则m 的值是_______________。