微生物技术分子生物技术中英文资料外文翻译文献
微生物专题英文文献

班级:生物工程 学生:马春玲 2013年12月13日
LOGO
试验内容
1. Purpose and meaning 2. Introduction 3. Materials and methods
4.5 正交试验结果
Table 5. Results of ortho.1 Trend curve
Fig.2 Relationship between xylanase and time of fermentation in Aspergillus niger N212
通过对出发菌株注入不同剂量的氮离子,低能氮离子 束对菌体细胞均有一定程度的致死和损伤作用,细胞及其 损伤DNA又在其修复系统的作用下得到不同程度的修复, 从而导致黑曲霉孢子的存活率先下降,后上升,然后又下 降,并且菌种的修复出错会使其突变率大大提高,从而提 高了菌株的正突变率,从而确定了氮离子最佳注入参数。 以上试验可以得出最优培养基的组成(即各组分的最 适浓度),而且在以上培养得到了黑曲霉N212(表2),当 它发酵60个小时后酶活达到600IU/ml,比之前未优化的菌 株减少了12个小时,而且相对于原出发菌株酶活增加了100 %。 试验证明离子注入对微生物进行诱变改良是一种行之 有效的诱变技术。
木聚糖酶是植物细胞壁的主要之一,属 于非淀粉多糖。可作为生物漂白剂用于造纸工 业,也可用于生物转化等等。目前木聚糖酶的 生产主要还依靠真菌。
对于产酶微生物的育种,国外多采用基因工程手段 构建高产菌,而国内多采用传统的诱变方法,如紫外辐 射、化学诱变剂处理等,这些诱变手段获得的突变株一 般稳定性差、容易产生回复突变且负突变较多及诱变选 育的工作量很大,而20世纪80年代末,人们发现离子束 可以引起靶物质原子移位和重排,使细胞表面刻蚀和穿 孔,并能影响和改变细胞电性等现象,提出了离子束可 以用于细胞加工和基因转移的设想,并陆续得到了研究 证实,由此产生了国内外普遍关注的离子束生物技术工 程学,而且离子束育种是一项具有我国自主知识产权且 被国际所承认的定向遗传改良的集物理诱变和化学诱变 于一身的综合诱变方法,具有损伤小、突变谱广、突变 率高的特点。
生物专业外语 文章翻译

Cytoplasm: The Dynamic, Mobile Factory细胞质:动力工厂Most of the properties we associate with life are properties of the cytoplasm. Much of the mass of a cell consists of this semifluid substance, which is bounded on the outside by the plasma membrane. Organelles are suspended within it, supported by the filamentous network of the cytoskeleton. Dissolved in the cytoplasmic fluid are nutrients, ions, soluble proteins, and other materials needed for cell functioning.生命的大部分特征表现在细胞质的特征上。
细胞质大部分由半流体物质组成,并由细胞膜(原生质膜)包被。
细胞器悬浮在其中,并由丝状的细胞骨架支撑。
细胞质中溶解了大量的营养物质,离子,可溶蛋白以及维持细胞生理需求的其它物质。
The Nucleus: Information Central(细胞核:信息中心)The eukaryotic cell nucleus is the largest organelle and houses the genetic material (DNA) on chromosomes. (In prokaryotes the hereditary material is found in the nucleoid.) The nucleus also contains one or two organelles-the nucleoli-that play a role in cell division. A pore-perforated sac called the nuclear envelope separates the nucleus and its contents from the cytoplasm. Small molecules can pass through the nuclear envelope, but larger molecules such as mRNA and ribosomes must enter and exit via the pores.真核细胞的细胞核是最大的细胞器,细胞核对染色体组有保护作用(原核细胞的遗传物质存在于拟核中)。
微生物英文文献及翻译—翻译

A/O法活性污泥中氨氧化菌群落的动态与分布摘要:我们研究了在厌氧—好氧序批式反应器(SBR)中氨氧化菌群落(AOB)和亚硝酸盐氧化菌群落(NOB)的结构活性和分布。
在研究过程中,分子生物技术和微型技术被用于识别和鉴定这些微生物。
污泥微粒中的氨氧化菌群落结构大体上与初始的接种污泥中的结构不同。
与颗粒形成一起,由于过程条件中生物选择的压力,AOB的多样性下降了。
DGGE测序表明,亚硝化菌依然存在,这是因为它们能迅速的适应固定以对抗洗涤行为。
DGGE更进一步的分析揭露了较大的微粒对更多的AOB种类在反应器中的生存有好处。
在SBR反应器中有很多大小不一的微粒共存,颗粒的直径影响这AOB和NOB的分布。
中小微粒(直径<0.6mm)不能限制氧在所有污泥空间的传输。
大颗粒(直径>0.9mm)可以使含氧量降低从而限制NOB的生长。
所有这些研究提供了未来对AOB微粒系统机制可能性研究的支持。
关键词:氨氧化菌(AOB),污泥微粒,菌落发展,微粒大小,硝化菌分布,发育多样性1.简介在浓度足够高的条件下,氨在水环境中对水生生物有毒,并且对富营养化有贡献。
因此,废水中氨的生物降解和去除是废水处理工程的基本功能。
硝化反应,将氨通过硝化转化为硝酸盐,是去除氨的一个重要途径。
这是分两步组成的,由氨氧化和亚硝酸盐氧化细菌完成。
好氧氨氧化一般是第一步,硝化反应的限制步骤:然而,这是废水中氨去除的本质。
对16S rRNA的对比分析显示,大多数活性污泥里的氨氧化菌系统的跟ß-变形菌有关联。
然而,一系列的研究表明,在氨氧化菌的不同代和不同系有生理和生态区别,而且环境因素例如处理常量,溶解氧,盐度,pH,自由氨例子浓度会影响氨氧化菌的种类。
因此,废水处理中氨氧化菌的生理活动和平衡对废水处理系统的设计和运行是至关重要的。
由于这个原因,对氨氧化菌生态和微生物学更深一层的了解对加强处理效果是必须的。
当今,有几个进阶技术在废水生物处理系统中被用作鉴别、刻画微生物种类的有价值的工具。
微生物英文文献及翻译—原文

微生物英文文献及翻译—原文本期为微生物学的第二讲,主要讨论炭疽和蛔虫病这两种既往常见而当今社会较为罕见的疾病。
炭疽是由炭疽杆菌所致的一种人畜共患的急性传染病。
人因接触病畜及其产品及食用病畜的肉类而发生感染。
临床上主要表现为皮肤坏死、溃疡、焦痂和周围组织广泛水肿及毒血症症状;似蚓蛔线虫简称蛔虫,是人体内最常见的寄生虫之一。
成虫寄生于小肠,可引起蛔虫病。
其幼虫能在人体内移行,引起内脏幼虫移行症。
案例分析Case 1:A local craftsman who makes garments from the hides of goats visits his physician because over the past few days he has developed several black lesions on his hands and arms. The lesions are not painful, but he is alarmed by their appearance. He is afebrile and his physical examination is unremarkable.案例1:一名使用鹿皮做皮衣的当地木匠来就医,主诉过去几天中手掌和手臂上出现几个黑色皮肤损害。
皮损无痛,但是外观较为骇人。
患者无发热,体检无异常发现。
1. What is the most likely diagnosis?Cutaneous anthrax, caused by Bacillus anthracis. The skin lesions are painless and dark or charred ulcerations known as black eschar. It is classically transmitted by contact with thehide of a goat at the site of a minor open wound.皮肤炭疽:由炭疽杆菌引起,皮损通常无痛、黑色或称为焦痂样溃疡。
微生物学术语双语(中英文)对照

微生物学术语双语(中英文)对照Brock Biology of Microorganisms Bilingual Glossary(For Internal Circulation Only)微生物学术语双语(中英文)对照北京林业大学生物科学与技术学院微生物教研室谢响明2007年6月10日Catalogue目录Chapter1 Microorganisms and MicrobiologyChapter 2 An Overview of Microbial LifeChapter 3 MacromoleculesChapter 4 Cell Structure/FunctionChapter5 Nutrition, Laboratory Culture, and Metabolism of MicroorganismsChapter 6 Microbial GrowthChapter 7 Principles of Microbial Molecular Biology Chapter 8 Regulation of Gene ExpressionChapter 9 Essentials of VirologyChapter 10 Bacterial GeneticsChapter 11 Microbial Evolution and Systematics Chapter 15 Microbial GenomicsChapter 18 Methods in Microbial EcologyChapter 19 Microbial Habitats, Nutrients Cycles Chapter 20 Microbial Growth ControlBilingual Glossary for MicrobiologyChapter 1Landmark:里程碑Ramifications:分支non-cellular life :非细胞生命prion:朊病毒microbial diversity and evolution:微生物的多样性和进化pathogens:病原体genetic engineering:基因工程entity:实体macromolecules:大分子Reproduction:繁殖Differentiation:分化Communication:信息沟通coding devices:编码机制attributes:特征,品质coordination.:协调regulation:调节optimally attuned to最适地调和populations:种群habitat.:生境assemblages:集合体microbial communities:微生物群落biofilms:生物被膜hot springs:温泉Aquatic:水生的Terrestrial:陆生的Prokaryotic cells:原核细胞ecosystem :生态系统biomass:生物量nitrogen:氮phosphorus:磷Bubonic Plague:鼠疫Fleas:跳蚤Mortality:死亡率Grotesque:奇异Liquefy:液化Influenza and pneumonia:流感和肺炎Tuberculosis:肺结核spontaneous generation:自然发生学说microbes:微生物Broth:肉汤Flask:烧瓶Guncotton filters:棉花滤器Dissolved:溶解的Ether:醚Particles:微粒flask with swan neck:曲颈瓶sterilization:灭菌vaccines:疫苗anthrax:炭疽热fowl cholera:禽流感rabies:狂犬病Germ theory:病菌说Koch’s postulates:科赫假设(法则) contagious diseases:传染病artificially infected animals:人工感染的动物Solid medium:固体培养基Gelatin:明胶Agar:琼脂Colony formation:菌落形成Differential staining:鉴别染色Pure culture:纯培养isolation:分离, 隔离inoculation:接种Tuberculin:结核菌素Diagnosis:诊断Subdisciplines:(学科的)分支enrichment culture:富集培养aerobic:需氧的N-fixing bacteria:固氮细菌sulfate-reducing:硫酸盐还原sulfur-oxidizing bacteria:硫氧化细菌root nodule:根瘤Lactobacillus:乳酸杆菌tobacco mosaic virus:烟草花叶病毒tenets:原则virology:病毒学nitrifying bacteria:硝化细菌nitrification:硝化作用oxidation of ammonia to nitrate:从氨氧化为硝酸盐hydrogen sulfide:硫化氰chemolithotrophy:无机化能营养型autotrophs:自养生物anaerobe :厌氧生物Clostridium pasteurianum:巴斯德羧菌属Medical microbiology and immunology:医学微生物学和免疫学Aquatic microbiology:水生微生物学Microbial ecology:微生物生态学Microbial systematic:微生物的系统学Microbial physiology:微生物生理学Cytology :细胞学Bacterial genetics:细菌遗传学Chapter 2Evolutionary History:进化史Elements:原理,基础Viral Structure:病毒结构The Tree of Life:生命树Physiological:生理学的Eukaryotic:真核的Cytoplasmic (cell)membrane:细胞质膜Cytoplasm:细胞质Macromolecules:大分子Ribosome:核糖体organic molecules:有机分子inorganic ions:无机离子rod-shaped prokaryote:杆状原核生物organelles:细胞器Archaea:古生菌Nucleus:细胞核(nuclear的复数)Mitochondrion (Mitochondrion复数)线粒体Chloroplast:叶绿体Metazoans:后生生物Cytoplasmic:细胞质的Membrane:膜,隔膜Endoplasmic reticulum:内质网Nucleoid:类核,拟核Nucleolus:核仁Nuclear:核的,细胞核Static:静态的metabolic abilities:代谢能力biosynthetic:生物合成genetic alterations:遗传改造Genomes:基因组Chromosome:染色体Circular:环状copy:拷贝haploid:单倍体extrachromosomal:染色体外的。
Microbiology 微生物学分类相关中英文对照

Microbiology 微生物学分类相关中英文对照微生物学microbiology病毒学virology噬菌体学bacteriophagology细菌学bacteriology鉴定细菌学determinative bacteriology系统细菌学systematic bacteriology真菌学mycology原生生物学protistology原生动物学protozoology普通微生物学general microbilogy微生物分类学microbial taxonomy微生物生理学microbial physiology微生物生物化学microbial biochemistry 微生物遗传学microbial genetics微生物生态学microbial ecology古微生物学paleomicrobiology土壤微生物学soil microbiology水生微生物学aquatic microbiology海洋微生物学marine microbiology悉生生物学gnotobiology医学微生物学medical microbiology兽医微生物学veterinary microbiology农业微生物学agricultural microbiology工业微生物学industrial microbiology石油微生物学petroleum microbiology食品微生物学food microbiology乳品微生物学diary microbiology瘤胃微生物学rumen microbiology诊断微生物学diagnostic microbiology病原学etiology国际微生物学会联合会International Union of Microbiological Societies, IUMS中国微生物学会Chinese Society for Microbiology, CSM世界培养物保藏协会World Federation for Culture Collection, WFCC中国微生物菌种保藏管理委员会China Committee for Culture Collection of Microorganisms,CCCCM美国模式培养物保藏所American Type Culture Collection, ATCC 自然发生说,无生源说spontaneous generation, abiogenesis原界urkingdom始祖生物progenote古始生物界archetista古细菌archaebacteria原生生物protista原生动物protozoan原生植物protophyte真核生物eukaryote原核生物prokaryote裂殖植物schizophyte微生物microorganism数值分类法numerical taxonomy模式目type order模式科type family模式属type genus模式种type species模式株type strain真菌fungi捕食真菌predacious fungi虫道真菌ambrosia fungi地下真菌hypogeal fungi虫生真菌entomogenous fungi 菌根真菌mycorrhizal fungi 木腐菌wood-decay fungi霉菌mold, mould半知菌imperfect fungi子囊菌ascomycetes粘菌slime mold, slime mould 壶菌chytrid卵菌oomycetes接合菌zygomycetes担子菌basidiomycetes核菌pyrenomycetes盘菌cup fungi块菌truffles锈菌rust fungi蘑菇mushrooms毒蘑菇poisonous mushroom酵母菌yeast无孢子酵母菌asporogenous yeasts 有孢子酵母菌sporogenous yeasts 黑粉菌smut fungi双态性真菌dimorphic fungi毛外癣菌ectothrix毛内癣菌endothrix完全真菌perfect fungi黑粉病smut disease锈病rust disease菌丝hypha菌髓trama假菌丝体pseudomycelium气生菌丝体aerial mycelium基内菌丝体substrate mycelium球拍状菌丝体racquet mycelium结节状菌丝nodular mycelium梳状菌丝pectinafe mycelium螺旋菌丝spiral mycelium匍匐菌丝stolon次生菌丝体secondary mycelium有隔菌丝septate hypha无隔菌丝nonseptate hypha生殖菌丝体reproductive mycelium 营养菌丝体vegetative mycelium不育菌丝体sterile mycelium菌丝体mycelium黄癣菌丝favic chandelier mycelium 产囊丝ascogenous hypha产囊体ascogonium原植体thallus粘菌体aethalium合胞体syncytium虫菌体hyphal body盾状体clypeus子实体fruiting body产孢体gleba子实层体hymenophore 子实层hymenium子实下层subhymenium 菌丝层subiculum菌丝段hyphal fragment 菌丝束coremium菌丝索funiculus菌核sclerotium器菌核pycnosclerotium 菌环annulus菌裙indusium菌盖pileus顶体apicle藏卵器oogonium雄器antheridium[锈菌]性孢子器pycnium锈子器aecium精子器spermogonium囊状体cystidium粉孢子梗oidiophore小梗sterigma接合孢子柄zygosporophore 孢囊柄sporangiophore配囊柄suspensor孢子梗sporophore分生孢子梗conidiophore雄器柄androphore帚状枝penicillus瓶梗phialide梗基metulae芽孔germ pore芽管germ tube芽缝germ slit孢丝capillitium周丝periphysis类周丝periphysoid侧丝paraphysis拟侧丝pseudoparaphysis类侧丝paraphysoid[孢子]外壁exosporium外生菌根ectomycorrhiza内生菌根endomycorrhiza内外生菌根ectendomycorrhiza泡囊丛枝菌根vesicular-arbuscular mycorrhiza 刺突spike弹丝elater刚毛seta微体microbody泡囊vesicle隔膜septum假隔膜pseudoseptum分生孢子盘acervulus分生孢子座sporodochium 精子团spermatium囊基膜hypothallus囊层基hypothecium囊层被epithecium囊间丝hamathecium囊托apophysis囊领collarette囊轴columella孔口ostiole菌托volva孢子角cirrus孢子球spore ball孢子印spore print聚簇cluster[菌丝]融合anastomosis [孢子]切落abjunction [孢子]缢断abstriction多态[现象] polymorphism 缢缩[作用] constriction 粉孢子oidium孢子spore掷孢子ballistospore厚壁孢子chlamydospore 环痕孢子annellospore节孢子arthrospore卷旋孢子helicospore腊肠形孢子allantospore孔出孢子porospore星形孢子staurospore线形孢子scolecospore砖格孢子dictyospore侧生孢子aleuriospore芽生孢子blastospore瓶梗孢子phialospore无梗孢子thallospore分生孢子conidium大分生孢子macroconidium 小分生孢子microconidium 节分生孢子arthroconidium 芽分生孢子blastoconidium 器孢子pycnidiospore无隔孢子amerospore双胞孢子didymospore多隔孢子phragmospore休眠孢子hypnospore顶生孢子acrospore顶生厚壁孢子fuseau内分生孢子endoconidium担孢子basidiospore双孢担孢子dispore同形孢子isospore柄生孢子stylospore[锈菌]性孢子pycniospore产雄器孢子androspore锈孢子aeciospore夏孢子urediniospore, aeciospore 冬孢子teliospore四分孢子tetraspore粘孢子myxospore多核孢子coenospore孢囊孢子sporangiospore子囊孢子ascospore多核细胞coenocyte分生孢子果conidiocarp分生孢子器pycnidium孢[子]囊sporangium柱孢子囊merosporangium四分孢子囊tetrasporangium原孢子囊prosporangium多核孢子囊coenosporangium 休眠孢子囊hypnosporangium 子囊ascus接合孢子zygospore拟接合孢子azygospore原囊壁子囊prototunicate ascus 单囊壁子囊unitunicate ascus 双囊壁子囊bitunicate ascus子囊果ascocarp子囊壳perithecium闭囊壳cleistothecium闭囊果cleistocarp盘状子囊果discocarp孢囊果sporangiocarp [接]合子zygote单性合子azygote多核合子coenozygote异形合子heterozygote合子核zygotonucleus游动合子planozygote担子basidium半担子hemibasidium隔担子heterobasidium无隔担子holobasidium有隔担子phragmobasidium 内生担子endobasidium原担子protobasidium上担子epibasidium下担子hypobasidium同担子homobasidium担子果basidiocarp担子体basidiophore配子gamete原配子progamete雄配子androgamete雄核发育androgenesis同形配子isogamete异形配子heterogamete游动配子zoogamete多核配子coenogamete配子囊gametangium配子母细胞gametocyte同形配子囊isogametangium 原配子囊progametangium 小孢子囊sporangiole微包囊microcyst足细胞foot cell脚胞foot cell固着器holdfast附着枝hyphopodium吸盘sucker锁状细胞clamp cell锁状联合clamp connection 偶核细胞zeugite卵球oosphere卵质ooplasm孢原质sporoplasm卵配子oogamete卵孢子oospore球状胞sphaerocyst子囊腔locule子囊盘apothecium子囊座ascostroma缝裂壳hysterothecium下子座hypostroma包被peridium子座stroma壳心centrum拟包被pseudoperidium无融合生殖apomixis同宗配合homothallism准性生殖parasexuality异宗配合heterothallism同配生殖isogamy异配生殖heterogamy无配生殖apogamy配囊交配gametangial copulation 交配型mating type全型holomorph夏孢子期uredostage冬孢子堆teleutosorus, telium 夏孢子堆uredinium子囊孢子形成ascosporulation 孢子形成sporulation细菌bacteria薄壁[细]菌类gracilicutes硬壁[细]菌类fermicutes疵壁[细]菌类mendosicutes无壁[细]菌类tenericutes柔膜细菌mollicutes真细菌eubacteria暗细菌scotobacteria无氧光细菌anoxyphotobacteria 生氧光细菌oxyphotobacteria 放线菌actinomycetes螺[旋]菌spirilla粘细菌slime bacteria。
分子生物学文献翻译
在旱地土壤中产甲烷古菌活性对养牛业的影响维维安radl1,5,安德烈亚斯gattinger1,5,艾莉卡时ˇ一´可娃´2,3,安娜NEˇmcova´2,3,Jiri Cˇuhel2,3,米洛斯拉夫的ˇimek2,3,让查尔斯munch1,4,迈克尔schloter4和Dana elhottova´21土壤生态学,慕尼黑工业大学,上施莱斯海姆,慕尼黑,德国;2生物中心,土壤生物学研究所,Cˇ艾斯克´不得ˇjovice,捷克共和国;3生物科学,南波西米亚州大学,Cˇ艾斯克´不得ˇjovice,捷克共和国;4gsf国家研究中心环境与健康,土壤生态,Neuherberg学院,德国。
在本研究中,我们测试的假设是动物的行走与作为越冬牧场土壤中的甲烷有机物有关。
因此,捷克共和国指出,在波西米亚南部的一个农场中,甲烷排放量和产甲烷菌种群对牛有不同程度的影响。
在春天,甲烷排放与动物影响的梯度相一致。
分析应用磷脂,该古细菌量最高的影响,发现部分(SI)对其有影响,其次是温和的影响(MI)没有影响。
对于产甲烷菌的实时显示甲基辅酶M还原酶(MCRA)基因的定量PCR分析观察到了相同的趋势。
检测单不饱和脂肪酸异戊烯基侧链的碳氢化合物(i20:1)表示的乙酸分解的存在影响牛产甲烷菌。
这个结果是由mcrA基因序列分析证实得到的,这表明,所分析的克隆的33%属于甲烷。
克隆序列的大部分(41%)与未培养瘤胃有关。
由此可得到的假设是,相当大的一部分来自放牧本身产生甲烷的区域。
相比于春天采样,在秋天,古细菌的生物量和mcrA数显著减少主要用于截面MI基因观察。
可以得出结论,5个月后没有牛的影响,严重影响了部分保持其产甲烷的潜力,而在温和的冲击后甲烷生产潜力。
期刊名称(2007)1,443,452–;DOI: 10.1038/ismej.2007.60;网上公布19七月2007学科类别:微生物生态学和自然栖息地的功能多样性关键词:多样性;甲烷排放;甲基辅酶M还原酶引言农业对于在土壤和植物生物量的二氧化碳(OCA,2006)气体减排和系统隔离提供了巨大的潜力。
关于微生物的英文作文
关于微生物的英文作文Microorganisms: The Hidden World Within.Microorganisms, the tiniest of living organisms,inhabit every conceivable environment on Earth, from the depths of the ocean to the high-altitude atmosphere. Despite their diminutive size, microorganisms play an indispensable role in the functioning of our planet, influencing everything from the cycling of nutrients to the regulation of the climate.Types of Microorganisms.The vast array of microorganisms can be classified into three main types: bacteria, archaea, and protists. Bacteria are single-celled organisms with a simple cell structure, lacking a nucleus or membrane-bound organelles. Archaea, once classified as bacteria, are now recognized as a distinct group with unique cell structures and genetic makeup. Protists, on the other hand, represent a diversegroup of eukaryotes, characterized by a membrane-bound nucleus and more complex cell structures.Diversity and Distribution.The diversity of microorganisms is staggering, with an estimated 10 million to 1 trillion species existing on Earth. They occupy an incredible range of habitats, from extreme environments like hot springs and acid lakes to the bodies of plants, animals, and humans. Microorganisms are found in soil, water, air, and even on the surface of rocks. Their ubiquitous presence underscores their adaptabilityand resilience.Role in Nutrient Cycling.Microorganisms play a crucial role in the cycling of nutrients, including carbon, nitrogen, and phosphorus,within ecosystems. Bacteria and fungi decompose organic matter, breaking down complex molecules into simpler ones that can be taken up by plants. Nitrogen-fixing bacteria convert atmospheric nitrogen into a form that can be usedby plants, a process essential for maintaining soil fertility.Ecological Impact.Microorganisms significantly impact various ecosystems. They are primary producers in many food chains, generating organic matter through photosynthesis or other metabolic processes. Microorganisms also participate in biodegradation, breaking down pollutants and contributing to waste decomposition. Additionally, they influence symbiotic relationships with other organisms, providing nutrients or protection in exchange for shelter or other benefits.Human Health.Microorganisms exert complex effects on human health. Some bacteria, viruses, and protists are pathogenic, causing diseases such as pneumonia, influenza, and malaria. However, many microorganisms also contribute to our well-being. The human microbiome, a vast community ofmicroorganisms residing in and on our bodies, aids in digestion, immune function, and disease resistance.Industrial and Agricultural Applications.Microorganisms have numerous industrial andagricultural applications. Bacteria and fungi are employed in the production of pharmaceuticals, enzymes, and antibiotics. They are also used in the fermentation of food and beverages, such as cheese, yogurt, and beer. In agriculture, microorganisms enhance soil health, improve plant growth through nitrogen fixation, and protect plants from pests and diseases.Environmental Issues.While microorganisms offer many benefits, they can also pose environmental challenges. Harmful algal blooms, caused by excessive growth of algae, can produce toxins that contaminate water supplies and harm aquatic life. Microbial pollution in drinking water systems can lead to waterborne diseases. Furthermore, the release of greenhouse gases bymicroorganisms contributes to climate change.Future Perspectives.Ongoing research continues to illuminate the intricate world of microorganisms. Advancements in sequencing technology have enabled scientists to explore the vast diversity of microorganisms and their role in various environments. Studying microorganisms holds great potential for discovering new antibiotics, developing sustainable agricultural practices, and mitigating the impact of climate change.Conclusion.Microorganisms are the unseen architects of our planet, playing a crucial role in the functioning of ecosystems, influencing human health, and contributing to industrial processes. Their diversity and adaptability have shaped the history of life on Earth and continue to impact our present and future. As we delve deeper into the hidden world of microorganisms, we gain a greater appreciation for theirprofound significance and the interconnectedness of all living organisms.。
微生物文献翻译
微生物文献翻译张宇生物科学2011031021Ethanol, isopropanol, and 1-butanol are the only naturally produced alcohol biofuels. Isopropanol can be used directly as a fuel supplement to gasoline or as a feedstock for the transesterification of fats into biodiesel [35]. Both isopropanol and 1-butanol are produced in a mixed product fermentation in various strains of Clostridium [36], with maximum production levels reaching 2 g/L and 20 g/L, respectively [37, 38]. With a renewed interest in alternative fuels, the production of isopropanol and 1-butanol has been recently investigated in genetically tractable heterologous organisms. These organisms, such as Escherichia coli and Saccharomyces cerevisiae, facilitate the design and optimization of new biofuels processes by combining an increasing synthetic biology toolbox with a well-studied metabolism. Isopropanol production in E. coli has surpassed that of Clostridium by assembling the pathway for acetone production and a secondary alcohol dehydrogenase [8, 12]. The production of 1-butanol, however, has proven to be more difficult. Initial efforts were able to produce ~0.5 g/L using E. coli as a host [7]. Construction of a new strain harboring a single construct resulted in an increase in production to 1.2 g/L [9]. In addition to E. coli, 1-butanol production has been investigated in Pseudomonas putida, Bacillus subtilis, and S. cerevisiae [10, 11], although production in E. coli has thus far shown the most promise. Each ofthese processes, however, is far from industrial feasibility, as yields (~0.05 g/g) and productivities (~0.01 g/L/h) must increase significantly to match the same figures for corn ethanol (~0.5 g/g and 2 g/L/h). The advancement of these processes is thought to be limited by the low activity of pathway enzymes due to poor expression, solubility, or oxygen sensitivity, as well as the metabolic imbalance introduced by these heterologous pathways. While productivity in each of these platforms is low in comparison with Clostridial fermentation, the ability to engineer and manipulate these user-friendly hosts will facilitate the development of these processes.翻译:唯一的自然生产的酒精燃料乙醇、异丙醇、和1-丁醇。
微生物专业名词英文小作文
微生物专业名词英文小作文Microbiology is the study of microorganisms, which are tiny living organisms that are invisible to the naked eye. These microorganisms include bacteria, viruses, fungi, and protozoa. Microbiology is a broad field that encompasses many different areas of study, including medical microbiology, environmental microbiology, and industrial microbiology.Medical microbiology focuses on the study of microorganisms that cause disease in humans. This includes the study of bacteria and viruses that cause infections, as well as the development of vaccines and other treatments to combat these pathogens. Medical microbiologists also study the role of microorganisms in the human microbiome, whichis the collection of microorganisms that live in and on our bodies and play a crucial role in our health.Environmental microbiology, on the other hand, focuses on the study of microorganisms in the environment. This includes the study of how microorganisms impact the health of ecosystems, as well as their role in processes such as nutrient cycling and bioremediation. Environmentalmicrobiologists also study the use of microorganisms in environmental monitoring and pollution control.Industrial microbiology is the application of microorganisms in industrial processes. This includes the use of microorganisms in the production of food and beverages, the synthesis of pharmaceuticals, and the production of biofuels. Industrial microbiologists also study the use of microorganisms in waste treatment and the development of new biotechnologies.Overall, microbiology is a diverse and exciting field that plays a crucial role in many aspects of our lives. From understanding the causes of infectious diseases to developing new ways to produce sustainable energy, microbiology has the potential to make a significant impact on our world.微生物学是研究微生物的学科,微生物是一种肉眼无法看到的微小生物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微生物技术分子生物技术中英文资料外文翻译文献A/O法活性污泥中氨氧化菌群落的动态与分布摘要:我们研究了在厌氧—好氧序批式反应器(SBR)中氨氧化菌群落(AOB)和亚硝酸盐氧化菌群落(NOB)的结构活性和分布。
在研究过程中,分子生物技术和微型技术被用于识别和鉴定这些微生物。
污泥微粒中的氨氧化菌群落结构大体上与初始的接种污泥中的结构不同。
与颗粒形成一起,由于过程条件中生物选择的压力,AOB的多样性下降了。
DGGE测序表明,亚硝化菌依然存在,这是因为它们能迅速的适应固定以对抗洗涤行为。
DGGE更进一步的分析揭露了较大的微粒对更多的AOB种类在反应器中的生存有好处。
在SBR反应器中有很多大小不一的微粒共存,颗粒的直径影响这AOB和NOB的分布。
中小微粒(直径<0.6mm)不能限制氧在所有污泥空间的传输。
大颗粒(直径>0.9mm)可以使含氧量降低从而限制NOB的生长。
所有这些研究提供了未来对AOB微粒系统机制可能性研究的支持。
关键词:氨氧化菌(AOB),污泥微粒,菌落发展,微粒大小,硝化菌分布,发育多样性1.简介在浓度足够高的条件下,氨在水环境中对水生生物有毒,并且对富营养化有贡献。
因此,废水中氨的生物降解和去除是废水处理工程的基本功能。
硝化反应,将氨通过硝化转化为硝酸盐,是去除氨的一个重要途径。
这是分两步组成的,由氨氧化和亚硝酸盐氧化细菌完成。
好氧氨氧化一般是第一步,硝化反应的限制步骤:然而,这是废水中氨去除的本质。
对16S rRNA的对比分析显示,大多数活性污泥里的氨氧化菌系统的跟ß-变形菌有关联。
然而,一系列的研究表明,在氨氧化菌的不同代和不同系有生理和生态区别,而且环境因素例如处理常量,溶解氧,盐度,pH,自由氨例子浓度会影响氨氧化菌的种类。
因此,废水处理中氨氧化菌的生理活动和平衡对废水处理系统的设计和运行是至关重要的。
由于这个原因,对氨氧化菌生态和微生物学更深一层的了解对加强处理效果是必须的。
当今,有几个进阶技术在废水生物处理系统中被用作鉴别、刻画微生物种类的有价值的工具。
目前,分子生物技术的应用能提供氨氧化菌群落的详细分类说明。
如今,主要由于其细胞固定策略,好氧污泥颗粒处理已经成为传统废水处理的替代工艺。
颗粒有更加彻底的紧密结构和快速适应速率。
因此,颗粒污泥系统比传统活性污泥法有更高的混合悬浮固体浓度浓度(MLSS)和更长的污泥龄(SRT)。
更长的污泥龄能提供足够长的时间让时代时间长的微生物生长(例如氨氧化菌)。
有些研究表示,硝化颗粒可以在富铵离子废水中培养出来,并且颗粒的直径很小。
其他研究报告说,大直径颗粒已经在序批式反应器(SBR)中人工合成的有机废水里培育出来了。
污泥颗粒里的大量不同微生物共存,并去除COD和氮磷。
然而,对于直径大于0.6mm的大颗粒来说,由于氧传递被限制不能到达颗粒核心,外部好氧壳和内部厌氧地带共存。
这些特性表明,大颗粒污泥内部环境不适合氨氧化菌的生长。
有些研究表明,颗粒大小和密度导致了氨氧化菌、亚硝酸氧化菌和反硝化菌的分布和优势种群。
虽然不少研究力求评估废水处理系统中氨氧化菌的生态生理,但是至今仍然被污泥颗粒化过程的水力学、分布、氨氧化菌群落的数量化限制着。
2.原理和方法2.1反应器设置和操作污泥颗粒被接种在有效体积为4L的实验室规模的SBR里。
反应器有效直径和高度分别为10cm和51cm。
水力停留时间设为8h。
来自全尺寸污泥处理设置(中国天津污水处理厂)的活性污泥被作为反应器的种污泥,其MLSS初始浓度为3876mg/L。
反应器操作6小时为一循环,由2分钟的进水时间,90分钟厌氧混合,240反正抛弃阶段和5分钟出水阶段组成。
在20天80个SBR循环后,污泥沉降时间逐渐从10分钟降到5分钟,并且只有沉降速度大禹4.5m/h的颗粒才能在反应器中停留。
入流中的主要化合物包括NaAc(450mg/L),NH4Cl(100mg/L),(NH4)2SO4(10mg/L),KH2PO4(20mg/L),MgSO4·7H2O(50mg/L),KCl(20mg/L),CaCl2(20 mg/L),FeSO4·7H2O(1mg/L),pH 7.0-7.5,and 0.1 mg/L元素示踪剂。
分析方法-TOC、TN、TP、MLSS、SVI都根据标准方法定期检测。
污泥大小分布由筛法决定。
4个干净的直径为5cm钢制筛,筛孔直径分别0.9,0.6,0.45,和0.2mm,这4个筛子被全程监控。
用友刻度的圆柱从反应器中取100mL的污泥,然后放到0.9mm筛孔的筛子上。
随后用蒸馏水冲洗,直径小于0.9mm的颗粒通过这个筛子,到达筛孔更小的筛子上。
冲洗过程要重复几次,以分开污泥团。
不同面上收集到的颗粒恢复用蒸馏水反冲洗。
每一部分都手机在不同的烧杯里,然后用量化的滤纸过滤来测定TSS。
一旦留在各个筛子上TSS的数量确定了,就可以确定不同大小的颗粒占污泥总重的比例了。
2.2DNA提取和PCR-DGGE来自大约8mg的MLSS种的污泥被转化成1.5mL的Eppendorf管,然后在14000g条件下离心10分钟。
移除上清液,向其中加入1mL磷酸钠缓冲液,然后在无菌条件下研磨以分离颗粒。
使用E.Z.N.A.Soil DNA工具,离心物种DNA染色体被分离。
为了放大氨氧化菌特征16s rRNA来进行DGGE,一个巢式PCR被用为先前描述。
30µl的巢式PCR放大剂被加载并被在聚丙烯酰胺凝胶上的加了线性分布为35%-55%的变性剂DGGE分开。
这个胶体在维持60度、140V、1×TAE缓冲液中(通用突变检测系统)运行 6.5h。
电泳结束后,银染色和胶体的发展表现正如Sanguinetti所表述。
接下来是空气干燥和用凝胶成像分析系统扫描。
凝胶扫描图像用Quantity One分析,版本号4.31。
成对群落相似性的色子指数是计算评估氨氧化菌群落在DGGE中线路相似性的。
这个用Quantity One测出的指数范围从0%(无共同频带)到100%(频带相同)。
Shannon多样性指数(H)是用来衡量将一个菌群中每个菌种的丰富度和比例加入考虑的微生物多样性。
H用下列等式计算:其中,ni/N表示i菌种占总群落的比例(i条带亮度在条带总亮度中的比例)。
微生物系统树图模板相似性使用Quantity One不用非加权配对组算术平均数(UPGMA法)算法就能计算出来。
突出的DGGE条带被切除并溶解在30mL Milli-Q水中过夜,温度维持4摄氏度。
在冷冻解冻3次后凝胶中的DNA被回收。
目标DNA片段的克隆及测序按照既定的方法(Zhang等,2010)进行。
2.3硝化细菌的分布为了调查AOB和NOB在颗粒中的空间分布,3种大小([0.2-0.45],[0.45-0.6],>0.9 mm)的颗粒在第180天被选定做FISH分析。
2mg的污泥样品被固定在在4摄氏度下的4%多聚甲醛溶液16-24 h,然后用磷酸钠缓冲液冲洗两次;样本分别在在50%,80%和100%的乙醇中脱水10分钟。
在室温下,将颗粒在乙醇—二甲苯体积比分别为3:1,1:1,1:3然后100%二甲苯的溶液中连续浸泡,每次10分钟后,颗粒中的乙醇然后完全被二甲苯取代。
随后,将颗粒在二甲苯与石蜡体积比为1:1的60度溶液中浸泡30分钟,接着再在100%石蜡溶液中浸泡30分钟,颗粒被石蜡嵌入。
在石蜡固化后,切为8mm厚的片,放置在涂了明胶的显微镜上。
将切片在二甲苯和乙醇中各浸泡30分钟,石蜡被去除,然后将切片干燥。
三个寡核苷酸探针被用于杂交:FITC标记为Nso190,指明了大多数AOB;TRITC标记为NIT3,指明了硝化sp。
所有的探针序列,杂交条件,以及洗涤条件都在表1中给出。
寡核苷酸的合成以及荧光标记都来自Takara公司。
杂交是在包含了各个标记了的探针(5ng µ/L)的46摄氏度度杂交缓冲液(0.9M NaCl,甲酰胺的百分比见表1,20mM Tris/ HCl,pH值8.0,0.01% SDS)下进行了2小时。
杂交后,未被结合的寡核苷酸由一个严格的洗涤步骤去除:在48度与洗涤液含有相同化合物的缓冲液中洗涤15分钟。
为了所有DNA的探测,DAPI被用甲醇最终稀释到浓度为1ng µ/L。
将切片用DAP-Iemethanol覆盖并保持恒温37度15分钟。
然后将切片用甲醇清洗一次,再用蒸馏水简单清洗,完了立刻空气干燥。
使用Vectashield(媒介实验室)以防止照片变白。
使用激光共聚焦显微镜来抓拍杂交图像(CLSM,Zeiss 710)。
每种颗粒大小的每个探头都各自一共拍了10张图像。
最后使用Adobe PhotoShop选出代表图像和最终图像的评价。
表1:用于不同大小颗粒的寡核苷酸探针图1:生物量和SVI10在整个操作过程中的变化3.结果3.1SBR性能及颗粒特征在启动阶段,反应器能高效去除TOC以及氨氮。
98%的氨氮和100%的TOC 分别在第3天和第5天从入流中被去除(图S2,S3)。
这一期间总氮和总磷的去除率不高,虽然总磷的去除率逐渐提高,在第33天达到100%(图S4)。
为了确定污泥颗粒的污泥体积指数,沉淀时间由10分钟代替30分钟,因为颗粒污泥在60分钟和5分钟后有一个相似的SVI数值。
接种污泥的SVI值是108.2Ml/g。
在连续操作中MLSS和SVI10的变化如图1所示。
污泥沉降性在设置阶段明显提升。
图2反应了污泥颗粒的慢速形成,从流动态到颗粒状态。
3.2DGGE技术分析:AOB的群落结构在污泥颗粒化中的变化巢式PCR的结果在图S1中显示。
在GSBR的操作中,较好显示的DGGE条带被在代表性点上得到,那些条带揭示AOB群落的结构在污泥颗粒化和稳定化过程中是动态的(图3)。
实验结束时的菌群结构与初始接种污泥的菌群结构是不同的。
AOB群落在第一天和GSBR操作的最后仅有40%的相似度,指明接种污泥和形成的颗粒污泥中AOB群落有重大变化。
通过计算Shannon指数H分析DGGE 模板得出的生物多样性见图5.图2:污泥中颗粒大小分布在操作过程中的变化图3:AOB群落在污泥颗粒化过程中DGGE分析(顶部表示取样时间)。
主要条带已用数字标出(条带1-15)在污泥接种阶段(在第38天前),指数H由于反应器中一些菌种的消失明显下降。
虽然几种接种污泥中的优势菌种(条带2,7,10,11)得以保留,但是许多条带削弱或消失了(条带3,4,6,8,13,14,15)。
在第45天后,多样性指数趋于稳定,并且显示流动性变小(从0.72到0.82)。
模板条带相似性利用UPGMA程序分析。
UPGMA分析显示三个组菌落群相似度约为67%-78%,群体内部约为44%-62%。