【数学6份合集】上海市闸北区2019-2020学年中考数学考前模拟卷
上海市闸北区2019-2020学年中考数学仿真第一次备考试题含解析

上海市闸北区2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将抛物线y=x 2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( ) A .y=(x ﹣2)2+3 B .y=(x ﹣2)2﹣3 C .y=(x+2)2+3 D .y=(x+2)2﹣32.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )A .10.7×104B .1.07×105C .1.7×104D .1.07×1043.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y <0;③3a+c=0;④若(x 1,y 1)(x 2、y 2)在函数图象上,当0<x 1<x 2时,y 1<y 2,其中正确的是( )A .①②④B .①③C .①②③D .①③④4.如图,函数y=﹣2x+2的图象分别与x 轴,y 轴交于A ,B 两点,点C 在第一象限,AC ⊥AB ,且AC=AB ,则点C 的坐标为( )A .(2,1)B .(1,2)C .(1,3)D .(3,1)5.下列运算正确的是( )A .()a b c a b c -+=-+B .()2211x x =++ C .()33a a -= D .235236a a a =⋅ 6.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AG GF的值是( )A.43B.54C.65D.767.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差8.下列运算正确的是()A.5a+2b=5(a+b)B.a+a2=a3C.2a3•3a2=6a5D.(a3)2=a59.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%10.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )A.12B.25C.35D.71811.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A.B.C.D.12.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.12B.2 C.5D.25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,分别以正六边形相间隔的3个顶点为圆心,以这个正六边形的边长为半径作扇形得到“三叶草”图案,若正六边形的边长为3,则“三叶草”图案中阴影部分的面积为_____(结果保留π)14.关于x的一元二次方程220--=x x k有两个相等的实数根,则k=________.15.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.16.“五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x 人,为求x,可列方程_____.17.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.18.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.①是否同时存在点D 和点P ,使得△APQ 和△CDO 全等,若存在,求点D 的坐标,若不存在,请说明理由;②若∠DCB=∠CDB ,CD 是MN 的垂直平分线,求点M 的坐标.20.(6分)在ABC ∆中,AB AC =,以AB 为直径的圆交BC 于D ,交AC 于E .过点E 的切线交OD 的延长线于F .求证:BF 是O e 的切线.21.(6分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m =________,n =________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.22.(8分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃)从加热开始计算的时间为x (min ).据了解,当该材料加热时,温度y 与时间x 成一次函数关系:停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?23.(8分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:2≈1.41,3≈1.73)24.(10分)计算:(﹣3)0﹣|﹣3|+(﹣1)2015+(12)﹣1.25.(10分)如图,AD是△ABC的中线,过点C作直线CF∥AD.(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.26.(12分)如图,在边长为1 个单位长度的小正方形网格中:(1)画出△ABC 向上平移6 个单位长度,再向右平移5 个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.27.(12分)求不等式组()7153x3x134x x⎧+≥+⎪⎨-->⎪⎩的整数解.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.2.D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:10700=1.07×104, 故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.B【解析】∵函数图象的对称轴为:x=-2b a =132-+=1,∴b=﹣2a ,即2a+b=0,①正确; 由图象可知,当﹣1<x <3时,y <0,②错误;由图象可知,当x=1时,y=0,∴a ﹣b+c=0,∵b=﹣2a ,∴3a+c=0,③正确;∵抛物线的对称轴为x=1,开口方向向上,∴若(x 1,y 1)、(x 2,y 2)在函数图象上,当1<x 1<x 2时,y 1<y 2;当x 1<x 2<1时,y 1>y 2;故④错误;故选B .点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理.4.D【解析】【分析】过点C 作CD ⊥x 轴与D ,如图,先利用一次函数图像上点的坐标特征确定B (0,2),A (1,0),再证明△ABO ≌△CAD ,得到AD =OB =2,CD =AO =1,则C 点坐标可求.【详解】如图,过点C 作CD ⊥x 轴与D.∵函数y=﹣2x+2的图象分别与x 轴,y 轴交于A ,B 两点,∴当x =0时,y =2,则B (0,2);当y =0时,x =1,则A (1,0).∵AC ⊥AB ,AC =AB ,∴∠BAO +∠CAD =90°,∴∠ABO =∠CAD.在△ABO 和△CAD 中,,∴△ABO ≌△CAD ,∴AD =OB =2,CD =OA =1,∴OD =OA +AD =1+2=3,∴C 点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。
上海市闸北区2019-2020学年中考数学考前模拟卷(2)含解析

上海市闸北区2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1052.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°3.a≠0,函数y=ax与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.4.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.3yx=D.3yx=-5.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是()A.①②③④B.②④C.①②③D.①③④6.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.37.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.2003米C.2203米D.100(31)+米8.下列计算正确的是()A.a2+a2=a4B.a5•a2=a7C.(a2)3=a5D.2a2﹣a2=29.如图,已知AB∥CD,DE⊥AF,垂足为E,若∠CAB=50°,则∠D的度数为()A.30°B.40°C.50°D.60°10.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.411.计算36÷(﹣6)的结果等于()A.﹣6 B.﹣9 C.﹣30 D.612.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知23是一元二次方程240x x c-+=的一个根,则方程的另一个根是________.14.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.15.如图,已知△ABC和△ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB=4,则OE的最小值为_____.16.已知A(x1,y1),B(x2,y2)都在反比例函数y=6x的图象上.若x1x2=﹣4,则y1⋅y2的值为______.17.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1=.18.计算:(2111mm m+--)•1m+1=__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?20.(6分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.(1)如图①,求∠ODE的大小;(2)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.21.(6分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE22.(8分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边 AB 上的高 CD .如图①,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC 、AC 分别交于点 E 、F .如图②,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E .23.(8分)如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在点E 处,BE 与AD 交于点F . (1)求证:△ABF ≌△EDF ;(2)若AB=6,BC=8,求AF 的长.24.(10分)对于平面直角坐标系xOy 中的点()(),0Q x y x ≠,将它的纵坐标y 与横坐标x 的比y x 称为点Q 的“理想值”,记作Q L .如()1,2Q -的“理想值”221Q L ==--.(1)①若点()1,Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_______; ②如图,()3,1C ,C e 的半径为1.若点Q 在C e 上,则点Q 的“理想值”Q L 的取值范围是_______. (2)点D 在直线33y x =-+上,D e 的半径为1,点Q 在D e 上运动时都有03Q L ≤≤,求点D 的横坐标D x 的取值范围;(3)()()2,0M m m >,Q 是以r 为半径的M e 上任意一点,当022Q L ≤≤时,画出满足条件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)25.(10分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:本次比赛参赛选手共有 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为 ;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.26.(12分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A ﹣﹣﹣不超过5天”、“B ﹣﹣﹣6天”、“C ﹣﹣﹣7天”、“D ﹣﹣﹣8天”、“E ﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?27.(12分)如图,在△ABC中,∠C = 90°,E是BC上一点,ED⊥AB,垂足为D.求证:△ABC∽△EBD.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.3.D【解析】【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项【详解】当a>0时,函数y=ax的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=ax的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【点睛】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.4.B【解析】试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=﹣3x,y随着x的增大而减小,正确;C、3yx=,每个象限内,y随着x的增大而减小,故此选项错误;D、3yx=-,每个象限内,y随着x的增大而增大,故此选项错误;故选B.考点:反比例函数的性质;正比例函数的性质.5.A【解析】分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;详解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,故选A.点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.6.D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.7.D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD∴AB=AD+BD=100(故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.8.B【解析】【分析】根据整式的加减乘除乘方运算法则逐一运算即可。
上海市闸北区2019-2020学年第五次中考模拟考试数学试卷含解析

上海市闸北区2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果2a b =r r (a r ,b r 均为非零向量),那么下列结论错误的是( )A .a r //b rB .a r -2b r =0C .b r =12a rD .2a b =r r 2.如图所示,从☉O 外一点A 引圆的切线AB ,切点为B ,连接AO 并延长交圆于点C ,连接BC ,已知∠A=26°,则∠ACB 的度数为( )A .32°B .30°C .26°D .13°3.在直角坐标系中,已知点P (3,4),现将点P 作如下变换:①将点P 先向左平移4个单位,再向下平移3个单位得到点P 1;②作点P 关于y 轴的对称点P 2;③将点P 绕原点O 按逆时针方向旋转90°得到点P 3,则P 1,P 2,P 3的坐标分别是( )A .P 1(0,0),P 2(3,﹣4),P 3(﹣4,3)B .P 1(﹣1,1),P 2(﹣3,4),P 3(4,3)C .P 1(﹣1,1),P 2(﹣3,﹣4),P 3(﹣3,4)D .P 1(﹣1,1),P 2(﹣3,4),P 3(﹣4,3)4.如图是正方体的表面展开图,则与“前”字相对的字是( )A .认B .真C .复D .习5.四组数中:①1和1;②﹣1和1;③0和0;④﹣23和﹣112,互为倒数的是( ) A .①② B .①③ C .①④D .①③④ 6.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .7.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h8.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A .0.8x ﹣10=90B .0.08x ﹣10=90C .90﹣0.8x=10D .x ﹣0.8x ﹣10=909.把6800000,用科学记数法表示为( )A .6.8×105B .6.8×106C .6.8×107D .6.8×10810.下列说法不正确的是( )A .选举中,人们通常最关心的数据是众数B .从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C .甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .数据3,5,4,1,﹣2的中位数是411.如图所示,有一条线段是ABC ∆(AB AC >)的中线,该线段是( ).A .线段GHB .线段ADC .线段AED .线段AF12.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .18二、填空题:(本大题共6个小题,每小题4分,共24分.)13.当x 为_____时,分式3621x x -+的值为1. 14.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若()P 1,1-,()Q 2,3,则P ,Q 的“实际距离”为5,即PS SQ 5+=或PT TQ 5.+=环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B 两个小区的坐标分别为()A 3,1,()B 5,3-,若点()M 6,m 表示单车停放点,且满足M 到A ,B 的“实际距离”相等,则m =______.15.若关于x 的一元二次方程2210mx x --=无实数根,则一次函数y mx m =+的图象不经过第_________象限.16.如图,已知CD 是ABC △的高线,且CD 2cm =,30B ∠=︒,则BC =_________.17.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A 、B 、C 、D 、O 都在横格线上,且线段AD ,BC 交于点O ,则AB :CD 等于______.18.阅读下面材料:在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知△ABC 内接于⊙O ,BC 交直径AD 于点E ,过点C 作AD 的垂线交AB 的延长线于点G ,垂足为F .连接OC .(1)若∠G=48°,求∠ACB的度数;(1)若AB=AE,求证:∠BAD=∠COF;(3)在(1)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S1.若tan∠CAF=12,求12SS的值.20.(6分)已知关于x的方程220x ax a++-=.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.21.(6分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.22.(8分)计算:|﹣13|+(π﹣2017)0﹣2sin30°+3﹣1.23.(8分)如图所示,已知一次函数y kx b=+(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数ymx=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.24.(10分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.25.(10分)如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=3,求⊙O的直径.26.(12分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同.(1)A,B两种型号的自行车的单价分别是多少?(2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.27.(12分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题解析:向量最后的差应该还是向量.20.a b v vv -= 故错误.故选B.2.A【解析】【分析】连接OB ,根据切线的性质和直角三角形的两锐角互余求得∠AOB=64°,再由等腰三角形的性质可得∠C=∠OBC ,根据三角形外角的性质即可求得∠ACB 的度数.【详解】连接OB ,∵AB 与☉O 相切于点B ,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC ,∴∠C=∠OBC ,∴∠AOB=∠C+∠OBC=2∠C ,∴∠C=32°.故选A.【点睛】本题考查了切线的性质,利用切线的性质,结合三角形外角的性质求出角的度数是解决本题的关键.3.D【解析】【分析】把点P的横坐标减4,纵坐标减3可得P1的坐标;让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.【详解】∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).∵点P关于y轴的对称点是P2,∴P2(﹣3,4).∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).故选D.【点睛】本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).4.B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”.故选B.点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.5.C【解析】【分析】根据倒数的定义,分别进行判断即可得出答案.【详解】∵①1和1;1×1=1,故此选项正确;②-1和1;-1×1=-1,故此选项错误;③0和0;0×0=0,故此选项错误;④−23和−112,-23×(-112)=1,故此选项正确;∴互为倒数的是:①④,故选C.【点睛】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.6.D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.7.C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.8.A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.9.B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:把6800000用科学记数法表示为6.8×1.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.D【解析】试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.故选D.考点:随机事件发生的可能性(概率)的计算方法11.B【解析】【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.12.B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,∴x=2,当x=2时,2x+1≠1.∴当x=2时,分式的值是1.故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.14.1.【解析】【分析】根据两点间的距离公式可求m的值.【详解】依题意有2222(63)(m 1)(65)(m 3)-+-=-++,解得m 0=,故答案为:1.【点睛】考查了坐标确定位置,正确理解实际距离的定义是解题关键.15.一【解析】【分析】根据一元二次方程的定义和判别式的意义得到m≠0且△=(-2)2-4m×(-1)<0,所以m <-1,然后根据一次函数的性质判断一次函数y=mx+m 的图象所在的象限即可.【详解】∵关于x 的一元二次方程mx 2-2x-1=0无实数根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m <-1,∴一次函数y=mx+m 的图象经过第二、三、四象限,不经过第一象限.故答案为一.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.16.4cm【解析】【分析】根据三角形的高线的定义得到90BDC ∠=︒,根据直角三角形的性质即可得到结论.【详解】解:∵CD 是ABC ∆的高线,∴90BDC ∠=︒,∵30B ∠=︒,2CD =,∴24BC CD cm ==.故答案为:4cm.【点睛】本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题17.2:1.【解析】【分析】过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得AB OECD OF=,由此即可求得答案.【详解】如图,过点O作OE⊥AB于点E,延长EO交CD于点F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴AB OECD OF==23,故答案为:2:1.【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键. 18.两点确定一条直线;同圆或等圆中半径相等【解析】【分析】根据尺规作图的方法,两点之间确定一条直线的原理即可解题.【详解】解:∵两点之间确定一条直线,CD和AB都是圆的半径,∴AB=CD,依据是两点确定一条直线;同圆或等圆中半径相等.【点睛】本题考查了尺规作图:一条线段等于已知线段,属于简单题,熟悉尺规作图方法是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)48°(1)证明见解析(3)3 4【解析】(1)连接CD,根据圆周角定理和垂直的定义可得结论;(1)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得»»»CD PB PD==,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=1x-a,根据勾股定理列方程得:(1x-a)1=x1+a1,则a=34x,代入面积公式可得结论.【详解】(1)连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴»»CD PB=,∵AD是⊙O的直径,AD⊥PC,∴»»CD PD=,∴»»»CD PB PD==,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠COF;(3)过O作OG⊥AB于G,设CF=x,∵tan∠CAF=12=CFAF,∴AF=1x,∵OC=OA,由(1)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,设OF=a,则OA=OC=1x﹣a,Rt△COF中,CO1=CF1+OF1,∴(1x﹣a)1=x1+a1,a=34x,∴OF=AG=34x,∵OA=OB,OG⊥AB,∴AB=1AG=32x,∴1213··3 22 1·24·2AB OG x xSS x xCF AF===.【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(1)根据外角的性质和圆的性质得:»»»CD PB PD==;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.20.(1)12,32-;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可. (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可. 试题解析:(1)设方程的另一根为x1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.21.见解析【解析】试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS 推出△BCD ≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.试题解析:∵△ABC 是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD 绕点C 顺时针旋转60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD 与△ACE 中,BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE ∥BC.22.23【解析】分析:化简绝对值、0次幂和负指数幂,代入30°角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可.详解:原式=13+1﹣2×12+13=23.点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键.23.(1)A (-1,0),B (0,1),D (1,0)(2)一次函数的解析式为y x 1=+ 反比例函数的解析式为2y x=【解析】解:(1)∵OA=OB=OD=1,∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0)。
上海市闸北区2019-2020学年第三次中考模拟考试数学试卷含解析

上海市闸北区2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0)D .(-32,0) 2.已知地球上海洋面积约为361 000 000km 2,361 000 000这个数用科学记数法可表示为( ) A .3.61×106B .3.61×107C .3.61×108D .3.61×109 3.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.如图,△ABC 的面积为8cm 2 , AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .2cm 2B .3cm 2C .4cm 2D .5cm 25.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x 的值是( ).A .3-B .3C .2D .86.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( )A .31DE BC =B .DE 1BC 4= C .31AE AC =D .AE 1AC 4= 7.若代数式11x x -x 的取值范围是( ) A .x≠1 B .x≥0 C .x≠0 D .x≥0且x≠18.如图,在矩形纸片ABCD 中,已知AB 3BC =1,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿直线AE 折叠,得到多边形AFGE ,点B 、C 的对应点分别为点F 、G .在点E 从点C 移动到点D 的过程中,则点F 运动的路径长为( )A .πB .3πC .3πD .23π 9.下列运算正确的是( )A .x 2•x 3=x 6B .x 2+x 2=2x 4C .(﹣2x )2=4x 2D .( a+b )2=a 2+b 2 10.3的倒数是( )A .3B .3-C .13D .13- 11.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A .133B .92C 413D .2512.若α,β是一元二次方程3x 2+2x -9=0的两根,则+βααβ的值是( ). A .427 B .-427 C .-5827 D .5827二、填空题:(本大题共6个小题,每小题4分,共24分.)13.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.14.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_____环的成绩.15.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=23,∠AEO=120°,则FC的长度为_____.16.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=k x的图象上,若点A的坐标为(﹣2,﹣2),则k的值为_____.17.若关于x的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.18.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.20.(6分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.21.(6分)先化简,再求值:2 2122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.22.(8分)如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,8 ,6OA OC==.(1)求直线AC的表达式;(2)若直线y x b=+与矩形OABC有公共点,求b的取值范围;(3)直线:10l y kx=+与矩形OABC没有公共点,直接写出k的取值范围.23.(823182sin60(1)2-︒⎛⎫+-+ ⎪⎝⎭解不等式组3(1)45513x xxx--⎧⎪-⎨->⎪⎩…,并写出它的所有整数解.24.(10分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A 种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.25.(10分)如图,平面直角坐标系中,直线y2x2=+与x轴,y轴分别交于A,B两点,与反比例函数ky(x0)x=>的图象交于点()M a,4.()1求反比例函数ky(x0)x=>的表达式;()2若点C在反比例函数ky(x0)x=>的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.26.(12分)如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.27.(12分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=23x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以2=-3k+b-2=b⎧⎨⎩,解得:4k=-3b=-2⎧⎪⎨⎪⎩,即可得直线CD′的解析式为y=﹣43x﹣1.令y=﹣43x﹣1中y=0,则0=﹣43x﹣1,解得:x=﹣32,所以点P的坐标为(﹣32,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.2.C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361 000 000用科学记数法表示为3.61×1.故选C.3.C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像4.C【解析】【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE 等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.5.D【解析】【分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.6.D【解析】【详解】如图,∵AD=1,BD=3,∴AD1 AB4=,当AE1AC4=时,AD AEAB AC=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.7.D【解析】试题分析:∵代数式11x x+-∴10 {xx-≠≥,解得x≥0且x≠1.故选D.考点:二次根式,分式有意义的条件.8.D【解析】【分析】点F的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题.【详解】如图,点F的运动路径的长为弧FF'的长,在Rt△ABC中,∵tan∠BAC=333BCAB==,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的长120323π⨯=.故选D.【点睛】本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径.9.C【解析】【分析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【详解】A、x2•x3=x5,故A选项错误;B、x2+x2=2x2,故B选项错误;C、(﹣2x)2=4x2,故C选项正确;D、( a+b)2=a2+2ab+b2,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键10.C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.11.A【解析】试题解析:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=43,∴DM=3+43=133,故选B.考点:1.切线的性质;3.矩形的性质.12.C【解析】分析:根据根与系数的关系可得出α+β=-23、αβ=-3,将其代入+βααβ=()22αβαβαβ+-中即可求出结论.详解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-23,αβ=-3,∴+βααβ=22βααβ+=()22αβαβαβ+-=()22()23583327--⨯-=--.故选C.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba、两根之积等于ca是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6017.【解析】【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC=ADAC,∴x5=12-x12,∴x=6017,故答案为6017.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.14.8【解析】为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.设第8次射击环数为x 环,根据题意列出一元一次不等式62+x+2×10>89解之,得x >7x 表示环数,故x 为正整数且x >7,则x 的最小值为8即第8次至少应打8环.点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”——不等式,再由不等式的相关知识确定问题的答案.15.1【解析】【分析】先根据矩形的性质,推理得到OF=CF ,再根据Rt △BOF 求得OF 的长,即可得到CF 的长.【详解】解:∵EF ⊥BD ,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD 是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,∴OF=CF ,又∵Rt △BOF 中,BO=12BD=12, ∴OF=tan30°×BO=1,∴CF=1,故答案为:1.【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分. 16.1【解析】试题分析:设点C 的坐标为(x ,y ),则B (-2,y )D (x ,-2),设BD 的函数解析式为y=mx ,则y=-2m ,x=-2m ,∴k=xy=(-2m )·(-2m)=1. 考点:求反比例函数解析式.17.5m <且1m ≠【解析】试题解析: ∵一元二次方程()21410m x x --+=有两个不相等的实数根, ∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m 的取值范围为m<5且m≠1.故答案为:m<5且m≠1.点睛:一元二次方程()200.ax bx c a ++=≠ 方程有两个不相等的实数根时:0.∆>18.(y ﹣1)1(x ﹣1)1.【解析】解:令x+y=a ,xy=b ,则(xy ﹣1)1﹣(x+y ﹣1xy )(1﹣x ﹣y )=(b ﹣1)1﹣(a ﹣1b )(1﹣a )=b 1﹣1b+1+a 1﹣1a ﹣1ab+4b=(a 1﹣1ab+b 1)+1b ﹣1a+1=(b ﹣a )1+1(b ﹣a )+1=(b ﹣a+1)1;即原式=(xy ﹣x ﹣y+1)1=[x (y ﹣1)﹣(y ﹣1)]1=[(y ﹣1)(x ﹣1)]1=(y ﹣1)1(x ﹣1)1. 故答案为(y ﹣1)1(x ﹣1)1.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)AC =1.【解析】【分析】(1)要证明DB 为⊙O 的切线,只要证明∠OBD =90即可.(2)根据已知及直角三角形的性质可以得到PD =2BD =2DA =2,再利用等角对等边可以得到AC =AP ,这样求得AP 的值就得出了AC 的长.【详解】(1)证明:连接OD ;∵PA 为⊙O 切线,∴∠OAD =90°;在△OAD 和△OBD 中,0A 0B DA DB DO DO =⎧⎪=⎨⎪=⎩,∴△OAD ≌△OBD ,∴∠OBD =∠OAD =90°,∴OB ⊥BD∴DB 为⊙O 的切线(2)解:在Rt △OAP 中;∵PB =OB =OA ,∴OP =2OA ,∴∠OPA =10°,∴∠POA =60°=2∠C ,∴PD =2BD =2DA =2,∴∠OPA =∠C =10°,∴AC =AP =1.【点睛】本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况.20.(1)证明见解析;(2)4.【解析】【分析】(1)首先证明△ABC ≌△DFE 可得∠ACE=∠DEF ,进而可得AC ∥DE ;(2)根据△ABC ≌△DFE 可得BC=EF ,利用等式的性质可得EB=CF ,再由BF=13,EC=5进而可得EB 的长,然后可得答案.【详解】解:(1)在△ABC 和△DFE 中AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFE (SAS ),∴∠ACE=∠DEF ,∴AC ∥DE ;(2)∵△ABC ≌△DFE ,∴BC=EF ,∴CB ﹣EC=EF ﹣EC ,∴EB=CF ,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【点睛】考点:全等三角形的判定与性质.21.12【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再由x 2-2x-2=0得x 2=2x+2=2(x+1),整体代入计算可得.详解:原式=()()()()2222112[]111x x x x x x x x x x ----÷+++ =()()()2121•121x x x x x x +-+- =21x x+, ∵x 2-2x-2=0,∴x 2=2x+2=2(x+1),则原式=()11212x x +=+. 点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.(1)364y x =-+;(2)86b -≤≤;(3)12k >- 【解析】【分析】(1)由条件可求得A 、C 的坐标,利用待定系数法可求得直线AC 的表达式;(2)结合图形,当直线平移到过C 、A 时与矩形有一个公共点,则可求得b 的取值范围;(3)由题意可知直线l 过(0,10),结合图象可知当直线过B 点时与矩形有一个公共点,结合图象可求得k 的取值范围.【详解】解:(1) 8 , 6OA OC ==Q()()8,0 , 0,6A C ∴,设直线AC 表达式为y kx b =+,806k b b +=⎧∴⎨=⎩,解得346k b ⎧=-⎪⎨⎪=⎩ ∴直线AC 表达式为364y x =-+; (2) Q 直线 y x b =+可以看到是由直线y x =平移得到,∴当直线 y x b =+过A C 、时,直线与矩形OABC 有一个公共点,如图1,当过点A 时,代入可得08b =+,解得8b =-.当过点C 时,可得6b =∴直线 y x b =+与矩形OABC 有公共点时,b 的取值范围为86b -≤≤;(3) 10y kx =+Q ,∴直线l 过()0, 10D ,且()8, 6B ,如图2,直线l 绕点D 旋转,当直线过点B 时,与矩形OABC 有一个公共点,逆时针旋转到与y 轴重合时与矩形OABC 有公共点,当过点B 时,代入可得6810k =+,解得12k =- ∴直线l :10y kx =+与矩形OABC 没有公共点时k 的取值范围为12k >-【点睛】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识.在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC 有一个公共点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.23.(1)73-(1)0,1,1. 【解析】【分析】(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可【详解】解:(1)原式=1﹣1×3+1+42, =73(1)()3145{513x x x x -≥---①>② , 解不等式①得:x≤1,解不等式②得:x >﹣1,∴不等式组的解集是:﹣1<x≤1.故不等式组的整数解是:0,1,1.【点睛】此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键24.(1)A 、B 两种奖品的单价各是10元、15元;(2)W (元)与m (件)之间的函数关系式是W=﹣5m+1,当购买A 种奖品75件时,费用W 的值最少.【解析】【分析】(1)设A 种奖品的单价是x 元、B 种奖品的单价是y 元,根据题意可以列出相应的方程组,从而可以求得A 、B 两种奖品的单价各是多少元;(2)根据题意可以得到W (元)与m (件)之间的函数关系式,然后根据A 种奖品的数量不大于B 种奖品数量的3倍,可以求得m 的取值范围,再根据一次函数的性质即可解答本题.【详解】(1)设A 种奖品的单价是x 元、B 种奖品的单价是y 元,根据题意得:32605395x y x y +=⎧⎨+=⎩解得:1015x y =⎧⎨=⎩. 答:A 种奖品的单价是10元、B 种奖品的单价是15元.(2)由题意可得:W=10m+15(100﹣m )=﹣5m+1.∵A 种奖品的数量不大于B 种奖品数量的3倍,∴m≤3(100﹣m ),解得:m≤75∴当m=75时,W 取得最小值,此时W=﹣5×75+1=2.答:W (元)与m (件)之间的函数关系式是W=﹣5m+1,当购买A 种奖品75件时,费用W 的值最少.【点睛】本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.25.(1)y=4x(1)(1,0) 【解析】【分析】(1)将点M 的坐标代入一次函数解析式求得a 的值;然后将点M 的坐标代入反比例函数解析式,求得k 的值即可;(1)根据平行四边形的性质得到BC ∥AD 且BD =AD ,结合图形与坐标的性质求得点D 的坐标.【详解】解:(1)∵点M (a ,4)在直线y=1x+1上,∴4=1a+1,解得a=1,∴M(1,4),将其代入y=kx得到:k=xy=1×4=4,∴反比例函数y=kx(x>0)的表达式为y=4x;(1)∵平面直角坐标系中,直线y=1x+1与x轴,y轴分别交于A,B两点,∴当x=0时,y=1.当y=0时,x=﹣1,∴B(0,1),A(﹣1,0).∵BC∥AD,∴点C的纵坐标也等于1,且点C在反比例函数图象上,将y=1代入y=4x,得1=4x,解得x=1,∴C(1,1).∵四边形ABCD是平行四边形,∴BC∥AD且BD=AD,由B(0,1),C(1,1)两点的坐标知,BC∥AD.又BC=1,∴AD=1,∵A(﹣1,0),点D在点A的右侧,∴点D的坐标是(1,0).【点睛】考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.26.(1)6yx(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t的方程,则可求得P点坐标.详解:(1)把A点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x;(2)在y=12x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.27.(1)90°;(1)AE1+EB1=AC1,证明见解析.【解析】【分析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答.【详解】解:(1)∵点D是BC边的中点,DE⊥BC,∴DE是线段BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(1)AE1+EB1=AC1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。
上海市闸北区2019-2020学年中考数学最后模拟卷含解析

上海市闸北区2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在△ABC 中,CD ⊥AB 于点D ,E ,F 分别为AC ,BC 的中点,AB=10,BC=8,DE=4.5,则△DEF 的周长是( )A .9.5B .13.5C .14.5D .172.如图,菱形ABCD 中,∠B =60°,AB =4,以AD 为直径的⊙O 交CD 于点E ,则»DE的长为( )A .3πB .23π C .43π D .76π 3.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A .12B .13C .310D .154.如图,PA 、PB 是O e 的切线,点D 在»AB 上运动,且不与A ,B 重合,AC 是O e 直径.62P ∠=︒,当//BD AC 时,C ∠的度数是( )A .30°B .31︒C .32︒D .33︒5.关于x 的方程=无解,则k 的值为( )A .0或B .﹣1C .﹣2D .﹣36.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103B.28×104C.2.8×105D.0.28×1067.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.23﹣2 D.4﹣238.如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB 的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )A.5 cm B.6 cm C.8 cm D.10 cm9.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()A.B.C.D.10.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。
上海市闸北区名校2019-2020学年中考数学模拟试卷

上海市闸北区名校2019-2020学年中考数学模拟试卷一、选择题1.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为()A.6πm2B.9πm2C.12πm2D.18πm22.计算a6÷a2的结果是()A.a3B.a4C.a8D.a123.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x (cm2)之间的大致图象是()A.B.C.D.4.如图是将一多边形剪去一个角,则新多边形的内角和()A.比原多边形少180°B.与原多边形一样C.比原多边形多360°D.比原多边形多180°5.如图,设一枚5角硬币的半径为1个单位长度,将这枚硬币放置在平面内一条数轴上,使硬币边缘上一点P与原点O重合,让这枚硬币沿数轴正方向无滑动滚动,转动一周时,点P到达数轴上点P'的位置,则点P'所对应的数是()A.2πB.6.28 C.πD.3.146.如图,在平面直角坐标系中,直线l:y=与y轴交于点B1,以OB1为一边在OB1右侧作等边三角形A1OB1,过点A1作A1B2平行于y轴,交直线l于点B2,以A1B2为一边在A1B2右侧作等边三角形A2A1B2,过点A2作A2B3平行于y轴,交直线l于点B3,以A2B3为一边在A2B3右侧作等边三角形A3A2B3,……则点A2019的纵坐标是()A. B. C. D.7.某城区青年在“携手添绿,美丽共创”植树活动中,共栽植、养护树木15000株将15000用科学计数法表示为( ) A.41.510⨯B.31510⨯C.51.510⨯D.60.1510⨯8.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A.|a|>|b|B.a >﹣3C.a >﹣dD.11c< 9.如图将一把直尺,含有60°的直角三角板和光盘如图摆放,已知点A 为60°角与直尺交点,AB =2,则光盘的直径是( )A.2C.410.下列运算中,不正确的是( ) A .(x+1)2=x 2+2x+1 B .(x 2)3=x 5C .2x 4⋅3x 2=6x 6D .x 2÷x ﹣1=x 3(x≠0)11.如图,将直线y=x 向下平移b 个单位长度后得到直线l ,l 与反比例函数2y x=(x >0)的图像相交于点A ,与x 轴相交于点B ,则22OA OB -的值是( )A .4B .3C .2D .112.如图,在⊙O 中,弦AB =10,PA =6㎝,OP =5㎝,则⊙O 的半径R 等于( )A .7㎝B ㎝C .49㎝D ㎝二、填空题13.如图,在菱形ABCD 中,AB=BD,点E 、F 分别在AB ,AD 上,且AE=DF ,连接BF 与DE ,相交于点G ,连接CG ,与BD 相交于点H ,下列结论①△AED ≌△DFB ;②S 四边形BCDG =4CG 2;③若AF=2FD ,则BG=6GF,其中正确的有____________.(填序号)14.已知x 满足(x+3)3=64,则x 等于_____.15.如图,∠APB=30°,圆心在PB 上的⊙O 的半径为1cm ,OP=3cm ,若⊙O 沿BP 方向平移,当⊙O 与PA 相切时,圆心O 平移的距离为_____cm .16.如图,在四边形ABCD 中,E 为AB 的中点,DE ⊥AB 于点E ,∠A =66°,∠ABC =90°,BC =AD ,∠C 的度数________.17.已知174a 2+10b 2+19c 2﹣4ab =13a ﹣2bc ﹣19,则a ﹣2b+c =_____.18.已知函数,自变量x 的取值范围是________. 三、解答题19.定义:在平面直角坐标系中,图形G 上点P x y (,)的纵坐标y 与其横坐标x 的差y x -称为P 点的“坐标差”,记作Zp ,而图形G 上所有点的“坐标差”中的最大值称为图形G 的“特征值”. (1)①点A (3,1)的“坐标差”为 ; ②求抛物线25y x x =-+的“特征值”;(2)某二次函数2(0)y x bx c c =-++≠的“特征值”为1-,点B (m ,0)与点C 分别是此二次函数的图象与x 轴和y 轴的交点,且点B 与点C 的“坐标差”相等. ①直接写出m = ;(用含c 的式子表示) ②求此二次函数的表达式.20.设等腰三角形的三条边长分别为a ,b ,c ,已知a =2,b 、c 是关于x 的方程x 2﹣6x+m =0的两个根,求m 的值.21.直觉的误差:有一张8cm×8cm 的正方形纸片,面积是64cm 2.把这些纸片按图1所示剪开成四小块,其中两块是三角形,另外两块是梯形.把剪出的4个小块按图2所示重新拼合,这样就得到了一个13cm×5cm 的长方形,面积是65cm 2,面积多了1cm 2,这是为什么? 小明给出如下证明:如图2,可知,tan ∠CEF =83,tan ∠EAB =52,∵tan ∠CEF >tan ∠EAB ,∴∠CEF >∠EAB ,∵EF ∥AB ,∴∠EAB+∠AEF =180°,∴CEF+∠AEF >180°,因此A 、E 、C 三点不共线.同理A 、G 、C 三点不共线,所以拼合的长方形内部有空隙,故面积多了1cm 2(1)小红给出的证明思路为:以B 为原点,BC 所在的直线为x 轴,建立平面直角坐标系,证明三点不共线.请你帮小红完成她的证明;(2)将13cmx13cm 的正方形按上述方法剪开拼合,是否可以拼合成一个长方形,但面积少了1cm 2?如果能,求出剪开的三角形的短边长;如果不能,说明理由.22.甲、乙两班分别选5名同学组成代表队参加学校组织的“国防知识”选拔赛,现根据成绩(满分10分)制作如图统计图和统计表(尚未完成) 甲、乙两班代表队成绩统计表(1)填空:a = ,b = ;(2)学校预估如果平均分能达8.5分,在参加市团体比赛中即可以获奖,现应选派 代表队参加市比赛;(填“甲”或“乙”)(3)现将从成绩满分的3个学生中随机抽取2人参加市国防知识个人竞赛,请用树状图或列表法求出恰好抽到甲,乙班各一个学生的概率.23.(1)计算+--0(12sin 45(2)化简:22()a b ab b a a a--÷- 24.解不等式组:()23423x x x x ⎧-≤-⎪⎨-<⎪⎩,并求非负整数解.25.先化简,再求值:(1+12x -)•2241x x --,其中x =3.【参考答案】*** 一、选择题13.①②③ 14. 15.1或5 16.78° 17.-14. 18.x≥-3 三、解答题19.(1)①2-;②抛物线25y x x =-+的“特征值”为4;(2)①c -;②232y x x =-+-.【解析】 【分析】(1)①由“坐标差”的定义可求出点A(3,1)的“坐标差”;②用y-x 可找出y-x 关于x 的函数关系式,再利用配方法即可求出y-x 的最大值,进而可得出抛物线y=-x 2 +5x 的“特征值”;(2)①利用二次函数图象上点的坐标特征可求出点C 的坐标,由“坐标差”的定义结合点B 与点C 的“坐标差"相等,即可求出m 的值;②由点B 的坐标利用待定系数法可找出b,c 之间的关系,找出y-x 关于x 的函数关系式,再利用二次函数的性质结合二次函数y=-x 2 +bx+c(c≠0)的“特征值"为-1,即可得出关于b 的一元二次方程,解之即可得出b 的值,进而可得出c 的值,此问得解; 【详解】解:(1)①1-3=-2,故答案为:2-②22524y x x x x x -=-+-=--+(), ∵10-<,∴当2x =时,y-x 取得最大值,最大值为4. ∴抛物线25y x x =-+的“特征值”为4. (2)①-c②由①可知:点B 的坐标为(c -,0).将点B (c -,0)代入2y x bx c =-++,得:20c bc c =--+, ∴1210c b c =-=,(舍去).∵二次函数2(0)y x bx c c =-++≠的“特征值”为1-,∴211y x x b x b -=-+-+-()的最大值为1-, ∴()()()24111141()b b ⨯-⨯---=-⨯-, 解得:3b =, ∴12c b =-=-,∴二次函数的解析式为232y x x =-+-. 【点睛】此题考查了二次函数综合,需要利用到坐标差,特征值等一系列知识点 20.m 的值为9. 【解析】 【分析】已知等腰三角形的一边长为2,但并不知道这条边为腰长还是底边长,因此需要分两种情况进行分析:当2为等腰三角形的腰长时;当2为等腰三角形的底边长时.需要注意的是所求出的m 的值要满足两个条件:①要使一元二次方程中的判别式大于等于0;②所求出的三角形三边要满足三角形的三边关系. 【详解】∵b 、c 是关于x 的方程x 2﹣6x+m =0两个根, ∴b+c =6,bc =m .当a =2为腰长时,b =4,c =2,此时m =8(或c =4,b =2,m =8), ∵4,2,2不能组成等腰三角形, ∴m =8不符合题意;当a =2为底边长时,∵b+c =6,b =c , ∴b =c =3, ∴m =9,∵3,3,2可组成等腰三角形, ∴m =9符合题意. 综上所述,m 的值为9. 【点睛】此题考查的是一元二次方程根与系数的关系,等腰三角形的性质及三角形的三边关系.根据等腰三角形的性质把问题分为两种情况进行讨论是解答此题的基础,根据一元二次方程根与系数的关系求得方程的两个根和m 的值是解答此题的重点.在利用根与系数的关系时一定要使方程中的判别式大于等于0,在求出两根后根据三角形的三边关系进行判断三角形是否存在是解答此题的易忽视点和易错点. 21.(1) 见解析;(2) 5cm 【解析】 【分析】(1)以B 为原点,BC 所在的直线为x 轴,建立平面直角坐标系,在Rt △EFC 中,求出EC 的长,在直角梯形ABFE 中,求出AE 长,若A 、E 、C 三点共线,则在Rt △ABC 中,利用勾股定理求出AC 长,比较AC 与AE+EC 的大小即可得出结论;(2)设剪开的长方形短边长为xcm ,根据题意可得关于x 的方程,解方程即可求得答案. 【详解】(1)以B 为原点,BC 所在的直线为x 轴,建立平面直角坐标系,在Rt △EFC 中,EC在直角梯形ABFE 中,过点E 作EM ⊥AB ,则四边形BFEM 是矩形, ∴BM=EF=3, ∴AM=5-3=2,∴AE若A 、E 、C 三点共线,则在Rt △ABC 中,AC =≠∴A、E、C三点共线不共线,∴所以拼合的长方形内部有空隙;(2)设剪开的长方形短边长为xcm,根据题意可得:(13﹣x)(13+13﹣x)=13×13﹣1,∴x2﹣39x+170=0,∴x=5或x=34(舍),∴可以拼成成一个长方形,但面积少了1cm2,剪开的三角形的短边长是5cm.【点睛】本题考查了勾股定理、矩形的判定与性质,正方形性质,一元二次方程的应用等,综合性较强,熟练掌握相关知识是解题的关键.22.(1)8.5,b=8;(2)甲班;(3)23.【解析】【分析】(1)利用条形统计图,结合众数、中位数的定义分别求出答案;(2)利用平均数、方差的定义分析得出答案;(3)首先根据题意列表,然后由列表求得所有等可能的结果与恰好抽到甲,乙班各一个学生的情况,再利用概率公式求解即可求得答案.【详解】解:(1)甲的众数为:8.5,乙的中位数为:8,故答案为:8.5,8;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;从方差看,甲班的方差小,所以甲班的成绩更稳定.故答案为:甲班;(3)列表如下:所以P(抽到A,B)=4263 =.【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比. 23.1;(2)1a b- 【解析】 【分析】(1)先化简二次根式,计算零指数幂,代入特殊角的三角函数值,然后合并同类二次根式即可; (2)通分计算括号内分式的减法,然后将除法转化为乘法,分子、分母分解因式后约分即可; 【详解】(1)解:原式=122+-⨯1;(2)解:原式=222a b a ab b a a--+÷=()2a b aa ab -⋅- =1a b-. 【点睛】本题考查了含特殊角三角函数的实数运算和分式的混合运算,熟记特殊角三角函数值和分式的运算法则是解决此题的关键.24.不等式组的解集为﹣1<x≤2,非负整数解是0,1,2. 【解析】 【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案. 【详解】()23423x x x x ①②⎧-≤-⎪⎨-<⎪⎩, 解不等式①得:x≤2, 解不等式②得:x >﹣1, ∴不等式组的解集为﹣1<x≤2, ∴不等式组的非负整数解是0,1,2. 【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键. 25.12【解析】 【分析】先通分计算括号里的,再计算乘法,最后合并,然后把x 的值代入计算即可. 【详解】解:原式=()()()221211xxx x x--⋅-+-=21 x+,当x=3时,原式=23+1=12.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.。
上海市闸北区名校2019-2020学年中考数学模拟试卷
上海市闸北区名校2019-2020学年中考数学模拟试卷一、选择题1.已知关于x的不等式组314(1)x xx m--⎧⎨⎩无解,则m的取值范围是()A.m≤3B.m>3 C.m<3 D.m≥32.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF 交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1B.2C.3D.43.只用下列一种正多边形不能镶嵌成平面图案的是()A.正三角形B.正方形C.正五边形D.正六边形4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给下以下结论:①2a﹣b=0;②9a+3b+c<0;③关于x的一元二次方程ax2+bx+c+3=0有两个相等实数根;④8a+c<0.其中正确的个数是()A.2B.3C.4D.55.如图,△ABC中,下面说法正确的个数是()个.①若O是△ABC的外心,∠A=50°,则∠BOC=100°;②若O是△ABC的内心,∠A=50°,则∠BOC=115°;③若BC=6,AB+AC=10,则△ABC的面积的最大值是12;④△ABC的面积是12,周长是16,则其内切圆的半径是1.A.1 B.2 C.3 D.46.如图,AB是⊙O的直径,点C是圆上任意一点,点D是AC中点,OD交AC于点E,BD交AC于点F,若BF=1.25DF,则tan∠ABD的值为()A.23B.3C.35D.47.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=54或t=154.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④8.《九章算术》中的“折竹抵地”问题上:今有竹高一丈,末折抵地,去本六尺。
〖精选4套试卷〗上海市闸北区2020年中考数学考前模拟卷
2019-2020学年数学中考模拟试卷一、选择题1.下列图形中既是中心对称图形又是轴对称图形的是( )A. B. C. D.2.已知x a =2,x b =3,则x 3a+2b 的值( ) A .48B .54C .72D .173.在某次数学测验中,随机抽取了10份试卷,其成绩如下:73,78,79,81,81,81,83,83,85,91,则这组数据的众数、中位数分别为( ) A.81,82 B.83,81C.81,81D.83,824.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A. B.C. D.5.在某学校“国学经典诵读”比赛中,有11名同学参加某项比赛,预赛成绩各不相同,要取前5名参加决赛,小明已经知道了自己的成绩,他想知道自己能否进入决赛,只需要再知道这11名同学成绩的( ) A .中位数 B .平均数 C .众数 D .方差 6.下列整数中,比﹣π小的数是( ) A .﹣3B .0C .1D .﹣47.下列命题中,正确的是( ) A .两条对角线相等的四边形是平行四边形 B .两条对角线相等且互相垂直的四边形是矩形 C .两条对角线互相垂直平分的四边形是菱形 D .两条对角线互相平分且相等的四边形是正方形8.如图,证明矩形的对角线相等知:四边形ABCD 是矩形,求证:AC BD =,以下是排乱的证明过程:①AB CD ∴=,ABC DCB ∠=∠.②BC CB =Q ,③Q 四边形ABCD 是矩形.④AC DB ∴=.⑤ABC ∴V ≌DCB V .证明步骤正确的顺序是( )A.③①②⑤④B.②①③⑤④C.②⑤③①④D.③⑤②①④9.16=( ) A .±4B .4C .±2D .210.下列立体图形中,主视图是三角形的是( )A .B .C .D .11.移动通信公司建设的钢架信号塔(如图1),它的一个侧面的示意图(如图2).CD 是等腰三角形ABC 底边上的高,分别过点A 、点B 作两腰的垂线段,垂足分别为B 1,A 1,再过A 1,B 1分别作两腰的垂线段所得的垂足为B 2,A 2,用同样的作法依次得到垂足B 3,A 3,….若AB 为3米,sinα=45,则水平钢条A 2B 2的长度为( )A .95米 B .2米 C .4825米 D .125米 12.我们用[a]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;已知,x y 满足方程组[][][][]329,30,x y x y ⎧+=⎪⎨-=⎪⎩则[]2x y +可能的值有 ( ) A .2个 B .3个C .4个D .5 个二、填空题13.如图,在一张矩形纸片ABCD 中,AB =6cm ,点E ,F 分别是AD 和BC 的三等分点,现将这张纸片折叠,使点C 落在EF 上的点G 处,折痕为BP .若PG 的延长线恰好经过点A ,则AD 的长为_____cm .14.在数学课上,老师提出如下问题: 己知:直线l 和直线外的一点P. 求作:过点P 作直线PQ l ⊥于点Q.小华的作法如下:如图,第一步:以点P为圆心,适当长度为半径作弧,交直线于A,B两点;第二步:连接PA、PB,作APB∠的平分线,交直线l于点Q.直线PQ即为所求作.老师说:“小华的作法正确”.请回答:小华第二步作图的依据是__________.15.在半径为10cm的⊙O中,弦AB的长为16cm,则点O到弦AB的距离是_____cm.16.命题:“若a=b,则a2=b2”,写出它的逆命题:______.17.如图,点A在双曲线y= 3x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D,连接OB,与AD相交于点C,若AC=2CD,则k的值为________.18.某学习小组设计了一个摸球试验,在袋中装有黑、白两种除颜色外完全相同的小球,在看不到球的前提下,随机从袋中摸出一个球,记下颜色,再把它放回去,不断重复.下表是由试验得到的一组统计数据:摸球的次数n 100 200 300 400 500 600摸到白球的次数m 69 139 213 279 351 420摸到白球的频率mn0.69 0.69 0.71 0.698 0.702 0.70三、解答题19.解方程:32x-﹣12xx--=120.先化简:(x+2+342xx+-)÷2692x xx++-,然后判断当x=2sin60o-3时,原式取值的正负情况.21.已知矩形ABCD,作∠ABC的平分线交AD边于点M,作∠BMD的平分线交CD边于点N.(1)若N为CD的中点,如图1,求证:BM=AD+DM;(2)若N与C点重合,如图2,求tan∠MCD的值;(3)若12CNDN,AB=6,如图3,求BC的长.22.如图1,点A在x轴上,OA=4,将OA绕点O逆时针旋转120°至OB的位置.(1)求经过A、O、B三点的抛物线的函数解析式;(2)在此抛物线的对称轴上是否存在点P使得以P、O、B三点为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3 )如图2,OC=4,⊙A的半径为2,点M是⊙A上的一个动点,求MC+12OM的最小值.23.发现如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……A n中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠A n﹣(n﹣4)×180°.验证(1)如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.(2)证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸(3)如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……A n中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠A n﹣(n﹣)×180°.24.如图,在平面直角坐标系中,Rt△AOC的直角边OA在y轴正半轴上,且顶点O与坐标原点重合,点C的坐标为(1,2),直线y=﹣x+b过点C,与x轴交于点B,与y轴交于点D.(1)B点的坐标为,D点的坐标为;(2)动点P从点O出发,以每秒1个单位长度的速度,沿O→A→C的路线向点C运动,同时动点Q从点B出发,以相同速度沿BO的方向向点O运动,过点Q作QH⊥x轴,交线段BC或线段CO于点H.当点P 到达点C时,点P和点Q都停止运动,在运动过程中,设动点P运动的时间为t秒:①设△CPH的面积为S,求S关于t的函数关系式;②是否存在以Q、P、H为顶点的三角形的面积与S相等?若存在,直接写出t的值;若不存在,请说明理由.25.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,(1)作出△APC的PC边上的高;(2)若∠2=51°,求∠3;(3)若直尺上点P处刻度为2,点C处为8,点M处为3,点N处为7,求S△BMN:S△BPC的值.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D C C A A D C A B B C C13.4214.等腰三角形三线合一15.616.如果,那么a=b.17.918.70三、解答题19.x=3.【解析】【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】原方程可变为:32x-﹣12xx--=1,方程两边同乘(x ﹣2),得3﹣(x ﹣1)=x ﹣2, 解得:x =3,检验:当x =3时,x ﹣2≠0, ∴原方程的解为x =3. 【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 20.3xx +, 值为负数 【解析】 【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x 的值,代入计算即可求出值. 【详解】 解:原式2(3)22(3)3x x x xx x x +-=⋅=-++ 当32333x =⨯-=-时, 原式=331303-=-< 故答案为:3xx +, 值为负数 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键. 21.(1)详见解析;(2)242+; 【解析】 【分析】(1)如图1,作辅助线,构建全等三角形,证明△DNM ≌△CNE (AAS ),得DM=CE ,证明∠BMN=∠E=67.5°,可得结论;(2)如图2,当N 与C 重合时,BC=BM ,设AB=x ,则BM=BC=2x ,表示DM 的长,根据三角函数定义可得结论;(3)如图3,延长MN 、BC 交于点G ,根据等腰直角三角形定义可得BM 的长,即是BG 的长,设CG=m ,则DM=2m ,表示BC 的长,列方程可得结论. 【详解】(1)证明:如图1,延长MN 、BC 交于点E ,∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC ,∠ABC =90°, ∴∠D =∠NCE ,∠DMN =∠NEC ,∵N是DC的中点,∴DN=CN,∴△DNM≌△CNE(AAS),∴DM=CE,∵BM平分∠ABC,∠ABC=90°,∴∠ABM=∠MBE=45°,∵AD∥BC,∴∠AMB=∠EBM=45°,∴∠BMD=180°﹣45°=135°,∵MN平分∠BMD,∴∠BMN=∠DMN=67.5°,∴∠E=∠DMN=67.5°,∴∠BMN=∠E=67.5°,∴BM=BE=BC+CE=AD+DM;(2)解:如图2,当N与C重合时,由(1)知:∠BMC=∠DMN=∠BCM,∴BC=BM,设AB=x,则BM=BC=2x,∵AD=BC,∴DM=2x﹣x,Rt△DMC中,tan∠MCD=221 DM x xDC-==-;(3)解:如图3,延长MN、BC交于点G,∵四边形ABCD是矩形,∴CD=AB=6,∵12 CNDN=,∴CN=2,DN=4,∵△ABM是等腰直角三角形,∴BM=2,由(1)知:BM=BG=2,∵DM∥CG,∴△DMN∽△CGN,∴422DN DMCN CG===,设CG=m,则DM=2m,62=6+2m+m,m=22﹣2,∴BC=6+2m=2+42.【点睛】本题是四边形的综合题,考查了矩形的性质的运用,等腰三角形的判定,勾股定理的运用,相似三角形的性质的运用,平行线和角平分线的性质的运用,三角函数的定义的运用,解答时合理运用角平分线的定义和矩形的性质求解是关键.22.(1)y=36x2﹣233x;(2)存在△POB为等腰三角形,符合条件的点P只有一个,坐标为(2,23);(3)MC+12OM的最小值为CK=5.【解析】【分析】(1)设出抛物线解析式,利用待定系数法求出拋物线解析式即可(2)设点P的坐标为(2,y),分三种情况讨论,①OB=OP,②2OB=PB,③OP=PB,分别求出y的值,即可得出点P的坐(3)在OA上取点K,使AK=1,连接CK交圆与点M,连接OM、CM ,利用△AKM∽△AMO ,求出MC+12OM=MC+KM=CK,即可解答【详解】(1)如图1,过点B作BD⊥x轴于点D,∴∠BDO=90°,∵OA绕点O逆时针旋转120°至OB,∴OB=OA=4,∠AOB=120°,B在第二象限,∴∠BOD=60°,∴sin∠BOD=3BDOB=,cos∠BOD=102ODB=,∴BD 3=3,OD=12OB=2,∴B(﹣2,3),设过点A(4,0),B(﹣2,3O(0,0)的抛物线解析式为y=ax2+bx+c,∴1640420a b ca b cc++=⎧⎪-+=⎨⎪=⎩解得:323abc⎧=⎪⎪⎪⎪=-⎨⎪=⎪⎪⎪⎩,∴抛物线的函数解析式为y=3x2﹣23x;(2)存在△POB为等腰三角形,∵抛物线与x轴交点为A(4,0),O(0,0),∴对称轴为直线x=2,设点P坐标为(2,p),则OP2=22+p2=4+p2,BP2=(2+2)2+(p﹣23)2=p2﹣43p+28,①若OP=OB=4,则4+p2=42解得:p1=23,p2=﹣23,当p=﹣23时,∠POA=60°,即点P、O、B在同一直线上,∴p≠﹣23,∴P(2,23),②若BP=OB=4,则p2﹣43p+28=42解得:p1=p2=23,∴P(2,23);③若OP=BP,则4+p2=p2﹣43p+28,解得:p=23,∴P(2,23);综上所述,符合条件的点P只有一个,坐标为(2,23);(3)在OA上取点K,使AK=1,连接CK交圆与点M,连接OM、CM,此时,MC+12OM=MC+KM=CK为最小值,理由:∵AK=1,MA=2,OA=4,∴AM2=AK•OA,而∠MAO=∠OAM,∴△AKM∽△AMO,∴KMOM=12,即:MC+12OM=MC+KM=CK,CK2243+=5,即:MC+12OM的最小值为CK=5.【点睛】此题考查了二次函数的综合应用,勾股定理和三角形相似,综合性较大23.(1)见解析;(2)见解析;(3)6.【解析】【分析】(1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1A n于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答【详解】(1)如图2,延长AB交CD于E,则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°;(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1A n于B,则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A6……+∠A n),而∠2+∠4=360°﹣(∠1+∠3)=360°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A6……+∠A n)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠A n﹣(n﹣6)×180°.故答案为:6.【点睛】此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型24.(1)(3,0);(0,3);(2)①S = 22153(02)2256(23)t t t t t t ⎧-+<⎪⎨⎪-+-<<⎩…;②存在,t =1或73时,以Q 、P 、H 为顶点的三角形的面积与S 相等. 【解析】 【分析】(1)把点C 坐标代入直线求得b 的值即得到直线解析式,令y =0求点B 坐标,令x =0求点D 坐标. (2)①由Rt △AOC 中∠OAC =90°求得OA+AC =OB =3,即t 的取值范围为0≤t<3且t≠2.画图发现有两种情况:当0≤t<2时,点P 在线段OA 上,点H 在线段BC 上,可证得PH ∥x 轴,故S =S △CPH =12PH•AP,用t 表示PH 、AP 的值再代入即能用t 表示S ;当2<t <3时,点P 在线段AC 上,点H 在线段OC 上,此时以PC 为底、点H 到CP 距离h 为高来求S ,用t 表示CP 、h 的值再代入即能用t 表示S .再把两式统一写成S 关于t 的分段函数关系式.②与①类似把点P 、Q 的位置分两种情况讨论计算;其中P 在AC 上、H 在OC 上时,以QH 为底求△QPH 的面积,需对点P 到QH 的距离PE 的表示再进行一次分类.用t 表示△QPH 面积后与S 相等列得方程,解之求得t 的值. 【详解】解:(1)∵直线y =﹣x+b 过点C (1,2) ∴﹣1+b =2∴b =3,即直线为y =﹣x+3当y =0时,﹣x+3=0,得x =3;当x =0时,y =3 ∴B (3,0),D (0,3)故答案为:(3,0);(0,3).(2)①∵Rt △AOC 中,∠OAC =90°,C (1,2) ∴A (0,2),OA =2,AC =1 ∵OB =OD =3,∠BOD =90° ∴OA+AC =OB =3,∠OBD =45° ∴0≤t<3,且t≠2i )当0≤t<2时,点P 在线段OA 上,点H 在线段BC 上,如图1∴OP =BQ =t∴AP =OA ﹣OP =2﹣t ,OQ =OB ﹣BQ =3﹣t ∵HQ ⊥x 轴于点Q ∴∠BQH =90°∴△BQH 是等腰直角三角形 ∴HQ =BQ =t∴HQ∥OP且HQ=OP∴四边形OPHQ是平行四边形∴PH∥x轴,PH=OQ=3﹣t∴S=S△CPH=12PH•AP=12(3﹣t)(2﹣t)=12t2﹣52t+3ii)当2<t<3时,点P在线段AC上,点H在线段OC上,如图2∴CP=OA+AC﹣t=3﹣t,x H=OQ=3﹣t∵直线OC解析式为:y=2x∴QH=y H=2(3﹣t)=6﹣2t∴点H到CP的距离h=2﹣(6﹣2t)=2t﹣4∴S=S△CPH=12CP•h=12(3﹣t)(2t﹣4)=﹣t2+5t﹣6综上所述,S关于t的函数关系式为S=22153(02)2256(23)t t tt t t⎧-+<⎪⎨⎪-+-<<⎩…②存在以Q、P、H为顶点的三角形的面积与S相等.i)当0≤t<2时,如图3∵S△CPH=S△QPH,两三角形有公共底边为PH∴点C和点Q到PH距离相等,即AP=OP∴t=2﹣t∴t=1ii)当2<t≤2.5时,如图4,延长QH交AC于点E∴AE=OQ=3﹣t,AP=t﹣2,QH=6﹣2t∴PE=AE﹣AP=(3﹣t)﹣(t﹣2)=5﹣2t∴S△QPH=12QH•PE=12(6﹣2t)(5﹣2t)=2t2﹣11t+15∵S△CPH=S△QPH∴﹣t2+5t﹣6=2t2﹣11t+15解得:t1=3(舍去),t2=7 3iii)当2.5<t<3时,如图5,延长QH交AC于点E∴PE=AP﹣AE=(t﹣2)﹣(3﹣t)=2t﹣5∴S△QPH=12QH•PE=12(6﹣2t)(2t﹣5)=﹣2t2+11t﹣15∴﹣t2+5t﹣6=﹣2t2+11t﹣15 解得:t1=t2=3(舍去)综上所述,t=1或73时,以Q、P、H为顶点的三角形的面积与S相等.【点睛】本题考查了一次函数的图象与性质,等腰三角形的性质,平行四边形的性质,解一元二次方程.由于点P、Q位置不同导致求三角形的计算不同是解决本题的关键,需画出图形数形结合地进行分类讨论.25.(1)详见解析;(2)21°;(3)4 9【解析】【分析】(1)根据过直线外一点作该直线的垂线的作图方法,即可作出PC边上的高;(2)由题意得:DG∥EF,推出∠APD=∠2=51°,再由∠1=30°,根据外角的性质,即可推出∠3的度数;(3)由题意推出MN、PC的长度,再根据平行线的性质,推出△BMN与△BPC相似,然后根据相似三角形的面积比等于相似比的平方,即可推出S △BMN :S △BPC 的值. 【详解】(1)作法:①以点A 为圆心,任意长为半径画弧,设弧与直线PC 交于点I 、G , ②分别以点I 、G 为圆心大于IG 为半径作弧,设两弧交于点R , ③连接AR ,设AR 与直线PC 交于点H , ④则AH 为所求作的PC 边上的高,(2)∵将三角尺的直角顶点放在直尺的一边上, ∴DG ∥EF , ∴∠APD =∠2, ∵∠2=51°, ∴∠APD =51°, ∵∠1=30°,∴∠3=∠APD ﹣∠1=51°﹣30°=21°, (3)∵EF ∥DG , ∴△BMN ∽△BPC ,∵直尺上点P 处刻度为2,点C 处为8,点M 处为3,点N 处为7, ∴MN =7﹣3=4,PC =8﹣2=6,∴24()9BMN BPC S MN S PC ∆∆==. 【点睛】本题主要考查过直线外一点作该直线的垂线、平行线的性质、相似三角形的判定与性质等知识点,关键在于能够充分的理解和熟练地运用相关的性质定理,认真的进行计算.2019-2020学年数学中考模拟试卷一、选择题1.下列分式中,最简分式是()A.2211xx-+B.211xx+-C.2222x xy yx xy-+-D.236212xx-+2.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC 的度数是()A.45°B.60°C.75°D.90°3.-4的相反数是( )A.-4B.4C.14- D.144.如图所示的几何体的左视图()A. B.C. D.5.下列各图中,∠1=∠2的图形的个数有()A.3B.4C.5D.66.沿一张矩形纸较长两边中点将纸一分为二,所得两张矩形纸与原来的矩形纸相似,那么原来那张纸的长和宽的比是()A2B3C.2:1 D.3:17.如图,嘉淇一家驾车从A地出发,沿着北偏东30°的方向行驶30公里到达B地游玩,之后打算去距离A地正东30公里处的C地,则他们行驶的方向是()A .南偏东60°B .南偏东30°C .南偏西60°D .南偏西30°8.如图所示,E 是边长为的正方形ABCD 的对角线BD 上一点,且BE=BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ+PR 的值是( )A .2B .12C .3 D .239.下表是摄氏温度和华氏温度之间的对应表,则字母a 的值是( ) 华氏°F 2332 41 a 59 摄氏°C ﹣55101510.下列计算正确的是( )A .a+2a =3a 2B .3a ﹣2a =aC .a 2•a 3=a 6D .6a 2÷2a 2=3a 211.如图,AB 为O e 的切线,切点为A ,BO 交O e 于点C ,点D 在O e 上,若32ABO ∠=︒,则ADC ∠的度数为( )A.48︒B.29︒C.36︒D.72︒12.如图,点E 在BC 的延长线上,则下列条件中,能判定AD 平行于BC 的是( )A .∠1=∠2B .∠3=∠4C .∠D+∠DAB =180°D .∠B =∠DCE二、填空题13.如图,AD 和BE 分别为三角形ABC 的中线和角平分线,AD BE ⊥,若4AD BE ==,则AC 的长__________.14.关于x 的方程2x ax 2a 0+-=的一个根为3,则该方程的另一个根是________. 15.计算:()2241-+-=____________。
上海市闸北区2019-2020学年中考数学考前模拟卷(4)含解析
上海市闸北区2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数2.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.304015x x=-B.304015x x=-C.304015x x=+D.304015x x=+3.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( ) A.B.C.D.4.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣14,y1)、C(﹣12,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.55.如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )A.72海里/时B.73海里/时C.76海里/时D.282海里/时6.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+57.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为()A.B.C.D.8.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是()A.1 B.2 C.5 D.69.一元二次方程(x+3)(x-7)=0的两个根是A.x1=3,x2=-7 B.x1=3,x2=7C.x1=-3,x2=7 D.x1=-3,x2=-710.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C.2.8×104D.0.28×10511.4的算术平方根为()A.2±B.2C.2±D.212.如果,则a的取值范围是( )A.a>0 B.a≥0C.a≤0D.a<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个正四边形的内切圆半径与外接圆半径之比为:_________________14.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.15.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.16.若1+23xx--x的范围是_____.17.如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_____(结果保留π).18.方程1125x x ++-=的根为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.20.(6分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空m =_______,n =_______,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计D 等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A 级学生的数学成绩的平均分数.①如下分数段整理样本 等级等级 分数段 各组总分 人数A110120X <≤ P 4 B 100110X <≤ 843n C 90100X <≤ 574m D8090X <≤ 171 2 ②根据上表绘制扇形统计图21.(6分)计算:(1)21(62)12(8)3--- (2)221cos60cos 45tan 603+-o o o 22.(8分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.23.(8分)如图,直线l 切⊙O 于点A ,点P 为直线l 上一点,直线PO 交⊙O 于点C 、B ,点D 在线段AP 上,连接DB ,且AD =DB .(1)求证:DB 为⊙O 的切线;(2)若AD =1,PB =BO ,求弦AC 的长.24.(10分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题: (1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.25.(10分)计算:﹣(﹣2)2+|﹣3|﹣20180×32726.(12分)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是⊙O的切线.27.(12分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.2.C【解析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为x 千米/小时,则乙甲车的速度为15x +千米/小时∴甲车行驶30千米的时间为30x,乙车行驶40千米的时间为4015x +, ∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得304015x x =+.故选C . 3.A【解析】根据轴对称图形的概念求解.解:根据轴对称图形的概念可知:B ,C ,D 是轴对称图形,A 不是轴对称图形,故选A .“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 4.D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】 解:①由抛物线的对称轴可知:02b a-<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=,∵12b a -=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确;⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.5.A【解析】试题解析:设货船的航行速度为x 海里/时,4小时后货船在点B 处,作PQ AB ⊥于点Q .由题意56AP =海里,4PB x =海里,在Rt APQ △中, 60APQ ∠=o,所以28.PQ =在Rt PQB △中, 45BPQ ∠=o , 所以2cos45.PQ PB x =⨯=o 所以2282x =, 解得:7 2.x =故选A.6.A【解析】【分析】结合向左平移的法则,即可得到答案.【详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答. 7.A【解析】【分析】过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.【详解】过O作OC⊥AB于C,过N作ND⊥OA于D,∵N在直线y=x+3上,∴设N的坐标是(x,x+3),则DN=x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,∴3×4=5OC,OC=,∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=,∴ON=,在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,∵N在第二象限,∴x只能是-,x+3=,即ND=,OD=,tan∠AON=.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.8.C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.9.C【解析】【分析】根据因式分解法直接求解即可得.【详解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故选C.【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键. 10.C【解析】试题分析:28000=1.1×1.故选C.考点:科学记数法—表示较大的数.11.B【解析】详解:∵4=2,而2的算术平方根是2,∴4的算术平方根是2,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.12.C【解析】【分析】根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.若|-a|=-a,则可求得a的取值范围.注意1的相反数是1.【详解】因为|-a|≥1,所以-a≥1,那么a的取值范围是a≤1.故选C.【点睛】绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,利用正方形的性质得到OH为正方形ABCD 的内切圆的半径,∠OAB=45°,然后利用等腰直角三角形的性质得OA=OH即可解答.【详解】解:如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,则OH为正方形ABCD的内切圆的半径,∵∠OAB =45°, ∴OA =OH , ∴即一个正四边形的内切圆半径与外接圆半径之比为,故答案为:.【点睛】本题考查了正多边形与圆的关系:把一个圆分成n (n 是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.理解正多边形的有关概念. 14.42 【解析】试题分析:因为OC=OA ,所以∠ACO=22.5A ∠=︒,所以∠AOC=45°,又直径AB 垂直于弦CD ,4OC =,所以CE=22,所以CD=2CE=42.考点:1.解直角三角形、2.垂径定理. 15.【解析】 【分析】首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 【详解】 列表得: 第一次第二次 黑白白黑 黑,黑 白,黑 白,黑 白 黑,白 白,白 白,白 白黑,白白,白白,白∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是.故答案为:.【点睛】考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.16.x≤1.【解析】【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【详解】依题意得:1﹣x≥0且x﹣3≠0,解得:x≤1.故答案是:x≤1.【点睛】本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.17.4﹣π【解析】【分析】由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角边AC与BC的长,继而求得△ABC的面积,又由扇形的面积公式求得扇形EAD和扇形FBD的面积,继而求得答案.【详解】解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,∴22∴S△ABC=12AC•BC=4,∵点D为AB的中点,∴AD=BD=12AB=2,∴S扇形EAD=S扇形FBD=45360×π×22=12π,∴S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.故答案为:4﹣π.【点睛】此题考查了等腰直角三角形的性质以及扇形的面积.注意S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD.18.﹣2或﹣7【解析】【分析】把无理方程转化为整式方程即可解决问题.【详解】两边平方得到:,,∴(x+11)(2-x)=36,解得x=-2或-7,经检验x=-2或-7都是原方程的解.故答案为-2或-7【点睛】本题考查无理方程,解题的关键是学会把无理方程转化为整式方程.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6≤x≤4.【解析】【分析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;(3)由题意得不等式,即可得到结论.【详解】解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3,x2=2.又∵31-2x≤3,即x≥6,∴x=2(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S=x(31-2x)=-2(x-152)2+2252(6≤x≤4).①当x=152时,S有最大值,S最大=2252;②当x=4时,S有最小值,S最小=4×(31-22)=5.(3)令x(31-2x)=41,得x2-15x+51=1.解得x1=5,x2=1∴x的取值范围是5≤x≤4.20.(1)6;8;B;(2)120人;(3)113分.【解析】【分析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D等级的人数;(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数.【详解】(1)本次抽查的学生有:72420360︒÷=︒(人),2030%62043211 m n=⨯==---=,,数学成绩的中位数所在的等级B,故答案为:6,11,B;(2)2120020⨯=120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:102208435741711134⨯---=(分),即A等级学生的数学成绩的平均分是113分.【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(1)8242-;(2)1.【解析】【分析】(1)根据二次根式的混合运算法则即可;(2)根据特殊角的三角函数值即可计算.【详解】解:(1)原式=3 643212223⎛⎫-- ⎪⎪⎝⎭84324243 =-8=-(2)原式221123=+-⋅⎝⎭ 11=-0=.【点睛】本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则. 22.(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人. 【解析】 【分析】(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解. 【详解】解:(Ⅰ)本次接受随机抽样调查的学生人数为: 48%=50(人), ∵1650×100=31%, ∴图①中m 的值为31. 故答案为50、31;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多, ∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有332+=3, ∴这组数据的中位数是3; 由条形统计图可得142103144165650x ⨯+⨯+⨯+⨯+⨯==3.1,∴这组数据的平均数是3.1. (Ⅲ)1500×18%=410(人).答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)见解析;(2)AC =1.【分析】(1)要证明DB 为⊙O 的切线,只要证明∠OBD =90即可.(2)根据已知及直角三角形的性质可以得到PD =2BD =2DA =2,再利用等角对等边可以得到AC =AP ,这样求得AP 的值就得出了AC 的长. 【详解】(1)证明:连接OD ; ∵PA 为⊙O 切线, ∴∠OAD =90°; 在△OAD 和△OBD 中,0A 0B DA DB DO DO =⎧⎪=⎨⎪=⎩,∴△OAD ≌△OBD , ∴∠OBD =∠OAD =90°, ∴OB ⊥BD ∴DB 为⊙O 的切线 (2)解:在Rt △OAP 中; ∵PB =OB =OA , ∴OP =2OA , ∴∠OPA =10°, ∴∠POA =60°=2∠C , ∴PD =2BD =2DA =2, ∴∠OPA =∠C =10°, ∴AC =AP =1. 【点睛】本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况. 24. (1)200;(2)72°,作图见解析;(3)310. 【解析】(1)用一等奖的人数除以所占的百分比求出总人数;(2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;(3)用获得一等奖和二等奖的人数除以总人数即可得出答案.【详解】解:(1)这次知识竞赛共有学生2010%=200(名);(2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人),补图如下:“二等奖”对应的扇形圆心角度数是:360°×40200=72°;(3)小华获得“一等奖或二等奖”的概率是:2040200+=310.【点睛】本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.25.﹣1【解析】【分析】根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.【详解】原式=﹣1+3﹣1×3=﹣1.【点睛】本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键. 26.详见解析.【解析】试题分析:由三角形的中位线得出OE∥AB,进一步利用平行线的性质和等腰三角形性质,找出△OCE和△ODE相等的线段和角,证得全等得出答案即可.试题解析:证明:∵点E为AC的中点,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD,OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切线.点睛:此题考查切线的判定.证明的关键是得到△OCE≌△ODE.27.原计划每天种树40棵.【解析】【分析】设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可.【详解】设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得1000 x −1000+%x (125)=5,解得:x=40,经检验,x=40是原方程的解. 答:原计划每天种树40棵.。
【4份试卷合集】上海市闸北区2019-2020学年中考数学考前模拟卷
2019-2020学年数学中考模拟试卷一、选择题1.下列计算结果正确的是( ) A .24=±4B .(-3m 2)·(-2m 3)=6m 6C .(-tan60°-3)-1=-36D .(-a+2b)2=a 2-4b 22.如图,在平面直角坐标系中,矩形ABCD 的面积为定值,它的对称中心恰与原点重合,且AB ∥y 轴,CD 交x 轴于点M ,过原点的直线EF 分别交AD 、BC 边于点E 、F ,以EF 为一边作矩形EFGH ,并使EF 的对边GH 所在直线过点M ,若点A 的横坐标逐渐增大,图中矩形EFGH 的面积的大小变化情况是( )A.一直减小B.一直不变C.先减小后增大D.先增大后减小3.某公司招聘考试分笔试和面试,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小红笔试成绩为90分,面试成绩为80分,那么小红的总成绩为( ) A .80分B .85分C .86分D .90分4.如图,一副直角三角板按如图所示放置,若AB ∥DF ,则∠AGD 的度数为( )A .45° B.60° C.65° D.75°5.下列四个图案中,不是中心对称图案的是( )A. B. C. D.6.一元二次方程(x ﹣1)(x+5)=3x+2的根的情况是( ) A.方程没有实数根 B.方程有两个相等的实数根 C.方程有两个不相等的实数根 D.方程的根是1、﹣5和 7.已知函数:①y=2x ;②()2y=-x<0x;③y=3-2x ;④()2y=2x +x x 0≥,其中,y 随x 增大而增大的函数有( ) A .1个B .2个C .3个D .4个8.如图,60AOB ∠=o ,以点O 为圆心,以任意长为半径作弧交OA ,OB 于,C D 两点,分别以,C D为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段6OM =,则M 点到OB 的距离为( )A.3B.3C.6D.339.如图,半径为3的⊙A 的»ED与▱ABCD 的边BC 相切于点C ,交AB 于点E ,则»ED 的长为( )A .94π B .98πC .274π D .278π 10.如图.在直角坐标系中,矩形ABC0的边OA 在x 轴上,边0C 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E .那么点D 的坐标为( )A .412()55-, B .213()55-, C .113()25-, D .312()55-,11.据报道,截至2018年12月,天津轨道交通运营线路共有6条,线网覆盖10个市辖区,运营里程215000米,共设车站154座.将215000用科学计数法表示应为( )A .321510⨯B .421.510⨯C .52.1510⨯D .60.21510⨯12.下列运算正确的是( ) A.222()x y x y +=+ B.632x x x ÷=2(3)3-=D.32361126xy x y ⎛⎫-=- ⎪⎝⎭二、填空题13.如图,在每个小正方形的边长为1的网格中,OAB ∆的顶点,,O A B 均在格点上,点E 在OA 上,且点E 也在格点上.(Ⅰ)OEOB的值为_____________; (Ⅱ)»DE是以点O 为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE 绕点O 逆时针旋转得到OE',旋转角为,连接E A',E B',当23E A E B+''的值最小时,请用无刻度的直尺画出点E',并简要说明点E'的位置是如何找到的(不要求证明)______.14.空气中有一种有害粉尘颗粒,其直径大约为0.000 000 017m,该直径可用科学记数法表示为______________.15.质地均匀的正四面体骰子的四个面上分别写有数字:2,3,4,5.投掷这个正四面体两次,则第一次底面上的数字能够整除第二次底面上的数字的概率是________16.分解因式:3x2-3y2=___________17.已知:如图,在Rt△ABC中,BC=AC=2,点M是AC边上一动点,连接BM,以CM为直径的⊙O交BM于N,则线段AN的最小值为___.18.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____.三、解答题19.如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.20.某学校打算假期组织老师外出旅游,初步统计,参加旅游的人数约在30~60人左右.该校联系了两家报价均为1200元的旅行社,甲旅行社的优惠措施是30人以内(包括30人)全额收费,超出部分每人打六折;乙旅行社的优惠措施是每人打九折,若人数在30人(包括30人)以上,还可免去两个人的费用.(1)该校选择哪一家旅行社合算?(2)若该校最终确定参加旅游的人数为48人,学校可给每位参加旅游的教师补贴200元,则参加旅游的教师每人至少要花多少钱?21.计算:(1)()-21-3.14--124cos303π⎛⎫++︒ ⎪⎝⎭; (2)x 2-4x=-3 22.我市“木兰溪左岸绿道”工程已全部建成并投入使用,10公里的河堤便道铺满了彩色的透水沥青,堤岸旁的各类花草争奇斗艳,与木兰溪河滩上的特色花草相映成趣,吸引着众多市民在此休闲锻炼、散步观光.某小区随机调查了部分居民在一周内前往“木兰溪左岸绿道”锻炼的次数,并制成如图不完整的统计图表:居民前往“木兰溪左岸绿道”锻炼的次数统计表 锻炼次数 0次 1次 2次 3次 4次及以上 人数713a103(1)a = ,b = .(2)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(3)若该小区共有2000名居民,根据调查结果,估计该小区居民在一周内前往木兰溪左岸绿道”锻炼“4次及以上”的人数.23.如图,在方格纸中,每个小正方形的边长都是1,点P 、Q 都在格点上.(1)若点P 的坐标记为(-1,1),反比例函数ky x= 的图像的一条分支经过点Q ,求该反比例函数解析式;(2)在图中画出一个以P 、Q 为其中两个顶点的格点平行四边形,且面积等于(1)中的k 的值. 24.某学校需要购买A 、B 两种品牌的篮球,购买A 种品牌的篮球30个,B 种品牌的篮球20个,共花费5400元,已知购买一个B 种品牌的篮球比购买一个A 钟品牌的篮球多花20元. (1)求购买一个A 种品牌、一个B 种品牌的篮球各需多少元?(2)学校为了响应习“篮球进校园”的号召,决定再次购进A 、B 两种品牌球共45个,正好是上商场对商品的促销活动,A 品牌篮球售价比第一次购买时降低19元,B 品牌篮球按第一次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌篮球的总费用不超过第一次花费的80%,且保证这次购买的B 种品牌篮球不少于15个,则这次学校有几种购买方案? (3)学校在第二次购买活动中至少需要多少资金?25.(1)关于x ,y 的方程组2231x y mx y m +=⎧⎨+=+⎩满足x+y =5,求m 的值.(2)关于x 的一元二次方程x 2﹣(m ﹣1)x ﹣m =0的两个根x 1,x 2满足x 12+x 22=5,求1211+x x 的值.【参考答案】*** 一、选择题13.(Ⅰ)23(Ⅱ)取格点,M N ,连接MN ,交OB 于点F ;连接AF ,交»DE于点'E ,点'E 即为所求. 14.7×10-815.51616.3(x+y )(x ﹣y ) 17 118.﹣2或﹣1或0或1或2. 三、解答题19.(1)见解析;(2)①120°;②45° 【解析】 【分析】(1)由AAS 证明△CPM ≌△AOM ,得出PC=OA ,得出PC=OB ,即可得出结论;(2)①证出OA=OP=PA ,得出△AOP 是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可; ②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可. 【详解】 (1)∵PC ∥AB ,∴∠PCM =∠OAM ,∠CPM =∠AOM . ∵点M 是OP 的中点,∴OM =PM ,在△CPM 和△AOM 中,PCM OAM CPM AOM PM OM ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CPM ≌△AOM (AAS ), ∴PC =OA .∵AB 是半圆O 的直径, ∴OA =OB , ∴PC =OB . 又PC ∥AB ,∴四边形OBCP是平行四边形.(2)①∵四边形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【点睛】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.20.(1)当旅游人数小于46人时,选乙旅行社;人数为46人时,两家旅行社费用一样;人数大于46人时,选甲旅行社;(2)820.【解析】【分析】(1)设x人参加旅游,用x分别表示甲和乙旅行社的费用,两费用相等则列方程求出对应的人数,谁家费用较大列不等式求出对应的人数范围.(2)人数为48人则选甲旅行社花费少,把总费用求出后再减去学校补贴总额200×48元,得到总旅游费用,再除以48记得人均费用.【详解】解:(1)设参加旅游的人数为x人(30<x<60),甲旅行社费用为y1元,乙旅行社费用为y2元,得:y1=1200×30+1200×0.6(x-30)=720x+14400y2=1200×0.9(x-2)=1080x-2160当y1=y2时,720x+14400=1080x-2160解得:x=46当y1>y2时,720x+14400>1080x-2160解得:x<46当y1<y2时,720x+14400<1080x-2160解得:x>46答:当旅游人数小于46人时,选乙旅行社;人数为46人时,两家旅行社费用一样;人数大于46人时,选甲旅行社.(2)由(1)得,人数为48人时选甲旅行社费用更低.∴(720×48+14400-200×48)÷48=820(元)答:参加旅游的教师每人至少要花820元.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,是选择方案的常考题. 21.(1)10;(2)x 1=1,x 2=3. 【解析】 【分析】(1)原式第一项利用零指数幂法则计算,第二项运用负整数指数幂运算法则进行计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果; (2)方程移项后,运用因式分解法求解即可. 【详解】(1)1410=+=原式 (2) ∵x 2-4x=-3 ∴x 2-4x+3=0 ∴(x-1)(x-3)=0 ∴x 1=1,x 2=3 【点睛】此题考查了实数的运算和运用因式分解法解一元二次方程,熟练掌握运算法则是解本题的关键. 22.(1) 17、20;(2) 72°;(3) 120人 【解析】 【分析】(1)根据1次的人数以及所占的百分比求出参与调查的人数,用总人数减去其余的人数可求出a 的值,用3次的人数除以总人数即可求得b 的值; (2)用360度乘以3次所占的比例即可得;(3)用2000乘以”锻炼“4次及以上”所占的比例即可得. 【详解】(1)∵被调查的总人数为13÷26%=50人, ∴a =50﹣(7+13+10+3)=17, b%=1050×100%=20%,即b =20, 故答案为:17、20;(2)扇形统计图中“3次”所对应扇形的圆心角的度数为360°×20%=72°; (3)估计一周内前往木兰溪左岸绿道”锻炼“4次及以上”的人数2000×350=120人. 【点睛】本题考查了扇形统计图,统计表,用样本估计总体,准确识图表是解题的关键. 23.(1)4y x=;(2)详见解析. 【解析】 【分析】(1)建立平面直角坐标第,确定Q 点坐标,即可求出反比例函数解析式; (2)由(1)得k=4,画出面积为4的平行四边形即可. 【详解】(1)如图1,建立平面直角坐标系由题意得Q(2,2),把Q(2,2)代入kyx=得22k=,解得k=4∴该反比例函数解析式为4 yx =(2)如图所示或或【点睛】本题考查了用待定系数法求反比例函数解析式,解此题的关键是根据点P的坐标确定平面直角坐标系,同时还考查了平行四边形的画法.24.(1)购买一个A种品牌的篮球需要100元,购买一个B种品牌的篮球需要120元(2)11(3)至少需要4050元【解析】【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,本题得以解决;(3)根据题意可以得到花费与购买A种品牌的函数关系式,然后根据一次函数的性质即可解答本题.【详解】解:(1)设A种品牌篮球的单价为x元,B种品牌篮球的单价为y元,依题意得:3020540020x yy x+=⎧⎨=+⎩,解得:100120xy=⎧⎨=⎩,答:购买一个A种品牌的篮球需要100元,购买一个B种品牌的篮球需要120元;(2)设第二次购买A种篮球a个,则购买B种篮球(45﹣a)个,依题意得:(10019)1200.9(45)540080% 4515a aa-+⨯-⨯⎧⎨-⎩„…,解得:20≤a≤30.答:这次学校购买篮球有11种方案;(3)设第二次购买45个篮球总共需要w元,W=81a+120×0.9(45﹣a)=﹣27a+4860∵﹣27<0,∴w随a的增大而减小,当a =30时,w 最小=4050 答:至少需要4050元. 【点睛】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想和不等式的性质解答. 25.(1)m =72;(2)12-或32-. 【解析】 【分析】(1)先对方程组进行化简,求出x+y 的值,再把x+y =5代入,即可解答;(2)根据韦达定理用m 表示x 1+x 2和x 1x 2的值,利用完全平方公式的变形得到x 12+x 22的式子,进而得到关于m 的方程. 【详解】解:(1)根据题意把方程组两式相加得: 2x+y+x+2y =m+3m+1 3(x+y )=4m+1 ∴x+y =413m + 又∵x+y =5 ∴413m +=5 解得:m=72(2)∵a =1,b =﹣(m ﹣1),c =﹣m∴△=[﹣(m ﹣1)]2﹣4•(﹣m )=m 2﹣2m+1+4m =m 2+2m+1=(m+1)2≥0 ∴无论m 为何值时,方程一定有实数根. ∵x 1+x 2=-b a=m ﹣1,x 1x 2=ca=﹣m ∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(m ﹣1)2+2m ∵x 12+x 22=5 ∴(m ﹣1)2+2m =5 解得:m =±2 当m =2时,1212121121122x x x x x x +-+===-- 当m =﹣2时,12121211-21322x x x x x x +-+===- ∴1211+x x 的值为12-或32-. 【点睛】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的运算.2019-2020学年数学中考模拟试卷一、选择题1.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.642.如图,已知点A(-6,0),B(2,0),点C在直线323y x=-+上,则使△ABC是直角三角形的点C的个数为()A.1B.2C.3D.43.如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC,△ABC的三边所围成的区域面积记为S1,黑色部分面积记为S2,其余部分面积记为S3,则()A.S1=S2B.S1=S3C.S2=S3D.S1=S2+S34.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:(1)弧①是以O为圆心,任意长为半径所画的弧;(2)弧②是以P为圆心,任意长为半径所画的弧;(3)弧③是以A为圆心,任意长为半径所画的弧;(4)弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.15.若代数式42x-的值与0(1)-互为相反数,则x=()A.1 B.2 C.2-D.46.如图,在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,则sin B 的值为( )A .23B .35C .34D .457.若关于x 的一元一次不等式组()2132x x x m ⎧-<-⎨>⎩的解集是5x >,则实数m 的取值范围是( ) A .5≤mB .5m <C .5m ≥D .5m >8.利用运算律简便计算52×(–999)+49×(–999)+999正确的是 A .–999×(52+49)=–999×101=–100899 B .–999×(52+49–1)=–999×100=–99900 C .–999×(52+49+1)=–999×102=–101898 D .–999×(52+49–99)=–999×2=–19989.从电线杆离地面8米处拉一根长为10m 的缆绳,这条缆绳在地面的固定点距离电线杆底部有( )m . A .2B .4C .6D .810.如图,反比例函数y 1=1x与二次函数y 1=ax 2+bx+c 图象相交于A 、B 、C 三个点,则函数y =ax 2+bx ﹣1x+c 的图象与x 轴交点的个数是( )A .0B .1C .2D .311.如图所示的零件的俯视图是( )A .B .C .D .12.已知△ABC 内接于⊙O ,连接AO 并延长交BC 于点D ,若∠B=62°,∠C=50°,则∠ADB 的度数是( )A .68°B .72°C .78°D .82°二、填空题13.因式分解:222x x -+=______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年数学中考模拟试卷一、选择题1.如图,已知在平面直角坐标系xOy 中,抛物线y=()2133x-3-182与y 轴交于点A ,顶点为B ,直线l :y=-43x+b 经过点A ,与抛物线的对称轴交于点C ,点P 是对称轴上的一个动点,若AP+35PC 的值最小,则点P 的坐标为( )A .(3,1)B .(3,114) C .(3,165) D .(3,125) 2.如图,直线m ∥n ,△ABC 的顶点B ,C 分别在直线n ,m 上,且∠ACB =90°,若∠1=30°,则∠2的度数为( )A .140°B .130°C . 120°D .110° 3.下列计算正确的是( ) A .x 4+x 4=2x 8B .x 3•x 2=x 6C .(x 2y )3=x 6y 3D .(x ﹣y )2=x 2一y 24.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的格点上,AB ,CD 相交于点E ,则sin ∠AEC 的值为( )A B C .12 D 5.32400000用科学记数法表示为( )A .0.324×108B .32.4×106C .3.24×107D .324×1086.已知空气的单位体积质量为31.3410⨯-克/厘米3,将31.3410⨯-用小数表示为( )A.0.000134B.0.0134C.0.00134- D.0.001347.扇子是引风用品,夏令必备之物,中国传统扇文化有深厚的文化底蕴,它与竹文化,道教文化,儒家文化有密切的关系。
如图,AD的长为10cm,贴纸部分BD的长为20cm,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为120°,则贴纸部分的面积为( )A.100πcm2B.4003πcm2C.800πcm2D.8003πcm28.某赛季甲、乙两名篮球运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是()A.甲运动员得分的平均数小于乙运动员得分的平均数 B.甲运动员得分的中位数小于乙运动员得分的中位数C.甲运动员得分的最小值大于乙运动员得分的最小值 D.甲运动员得分的方差大于乙运动员得分的方差9.如图,射线OB、OC在∠AOD的内部,下列说法:①若∠AOC=∠BOD=90°,则与∠BOC互余的角有2个;②若∠AOD+∠BOC=180°,则∠AOC+∠BOD=180°;③若OM、ON分别平分∠AOD,∠BOD,则∠MON=12∠AOB;④若∠AOD=150°、∠BOC=30°,作∠AOP=12∠AOB、∠DOQ=12∠COD,则∠POQ=90°其中正确的有()A.1个B.2个C.3个D.4个10.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.二、填空题11.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧弧MN的长度为__________.12.同时抛掷两枚质地均匀的硬币,出现“一正一反”的概率是 .13.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA =____度.14.如图所示,一动点从半径为2的O 上的0A 点出发,沿着射线0A O 方向运动到O 上的点1A 处,再向左沿着与射线1A O 夹角为60︒的方向运动到O 上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O 上的点3A 处,再向左沿着与射线3A O 夹角为60︒的方向运动到O 上的点4A 处;40A A 间的距离是________;…按此规律运动到点2019A 处,则点2019A 与点0A 间的距离是________.15.如图,把一副三角板按如图放置,∠ACB =∠ADB =90°,∠CAB =30°,∠DAB =45°,点E 是AB 的中点,连结CE ,DE ,DC .若AB =8,则△DEC 的面积为_____.16.方程32023x x +=--的解是_____. 17.某时刻在南京中华门监测点监测到PM 2.5的含量为55微克/米3,即0.000055克/米3,将0.000055用科学记数法表示为_____.18.小明有5根小棒,长度分别为3cm ,4cm ,5cm ,6cm ,7cm ,现从中任选3根小棒,怡好能搭成三角形的概率是______19.在平面直角坐标系xOy 中,点A ,B 的坐标分别为(m ,3),(m+2,3),直线y =3x+b 与线段AB 有公共点,则b 的取值范围为_____.(用含m 的代数式表示)三、解答题20.如图,四边形ABCD 是菱形,对角线AC ⊥x 轴,垂足为A .反比例函数的图象经过点B ,交AC 于点E .已知菱形的边长为,AC =4.(1)若OA =4,求k 的值;(2)连接OD ,若AE =AB ,求OD 的长.21.求方程x 2﹣2x ﹣2=0的根x 1,x 2(x 1>x 2),并求x 12+2x 2的值.22.(1)2430x x -+=;(2)()()2323x x x -=-;23.(1)如图,已知线段a 和MBN ∠,请在给出的图形上用尺规作出ABC ∆,使得:点A 在射线BN 上,点C 在射线BM 上,且AB a =,90ACB ∠=︒;(保留作图痕迹,不写作法)(2)求证:直角三角形斜边上的中线等于斜边的一半.(要求:利用(1)中的Rt ABC ∆,画出斜边AB 上的中线CD ,写出已知、求证和证明过程)24.如图,在平面直角坐标系xOy 中,将直线y =x 向右平移2个单位后与双曲线y =a x (x >0)有唯一公共点A ,交另一双曲线y =k x(x >0)于B . (1)求直线AB 的解析式和a 的值;(2)若x 轴平分△AOB 的面积,求k 的值.25.如图,是大小相等的边长为1的正方形构成的网格,A ,C ,M ,N 均为格点.AN 与CM 交于点P .[1].:MP CP 的值为_________.[2].现只有无刻度的直尺,请在给定的网格中作出一个格点三角形.要求:①三角形中含有与CPN ∠大小相等的角;②可借助该三角形求得CPN∠的三角函数值.请并在横线上简单说明你的作图方法.____________.26.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【参考答案】***一、选择题1.B2.C3.C4.A5.C6.D7.D8.D9.C10.C二、填空题11.2 5π12..13.3614. 2. 15.416.135 x=17.5×10-518.35.19.﹣3﹣3m≤b≤3﹣3m.三、解答题20.(1)11(2)【解析】【分析】(1)利用菱形的性质得出AH的长,再利用勾股定理得出BH的长,得出B点坐标即可得出答案;(2)首先表示出B,E两点坐标进而利用反比例函数图象上的性质求出D点坐标,再利用勾股定理得出DO的长.【详解】解:(1)连接BD交AC于点H,∵四边形ABCD是菱形,AC=4,∴BD ⊥AC ,AH =2,∵对角线AC ⊥x 轴,∴BD ∥x 轴,∴B 、D 的纵坐标均为2,在Rt △ABH 中,AH =2,AB =,∴BH =,∵OA =4,∴B 点的坐标为:(,2),∵点B 在反比例函数的图象上,∴k =11;(2)设A 点的坐标为(m ,0),∵AE =AB =,CE =,∴B ,E 两点的坐标分别为:(m+,2),(m ,).∵点B ,E 都在反比例函数的图象上, ∴(m+)×2=m ,∴m =6,作DF ⊥x 轴,垂足为F ,∴OF =,DF =2,D 点的坐标为(,2),在Rt △OFD 中,OD 2=OF 2+DF 2, ∴.【点睛】此题主要考查了菱形的性质、勾股定理、待定系数法求反比例函数解析式及反比例函数图象的性质,正确得出D 点坐标是解题关键.21.6【解析】【分析】根据方程x 2﹣2x ﹣2=0的根x 1,x 2,得到211220x x --=,即2112 2.x x =+则()1212122222222x x x x x x =++=+++,根据根与系数的关系即可求解.【详解】解:方程x 2﹣2x ﹣2=0的根x 1,x 2,∴211220x x --=,12 2.x x +=∴()112122222222262.22x x x x x x =++=++=⨯+=+ 【点睛】考查一元二次方程解的概念以及根与系数的关系,掌握根与系数的关系是解题的关键.22.(1)121,3x x ==;(2)121,3x x ==【解析】【分析】(1)左边分解因式,再解方程;(2)移项后用可提取公因式,再解方程即可.【详解】解:(1)2430x x -+=原方程可化为:(1)(3)0x x --=所以10x -=或30x -=所以121,3x x ==.(2)()()2323x x x -=-原方程可化为:()()23230x x x -+-=所以()3(32)0x x x -+-=即()3(33)0x x --=所以30x -=或330x -=所以121,3x x ==【点睛】本题考查了分解因式法解一元二次方程,熟练掌握分解因式的方法是解题的关键.23.(1)如图ABC ∆为所作图形;见解析;(2)见解析.【解析】【分析】(1)根据题目作图要求进行作图即可;(2)先根据题意画出图形,再证明.延长CD 至E 使CD=DE ,连接AE 、BE ,因为D 是AB 的中点,所以AD=BD ,因为CD=DE ,所以四边形ACBE 是平行四边形,因为∠ACB=90°,所以四边形ACBE 是矩形,根据矩形的性质可得出结论.【详解】(1)如图ABC ∆为所作图形;(2)已知:如图,CD 为Rt ABC ∆中斜边AB 上的中线,90ACB ∠=︒, 求证:12CD AB =. 证明:延长CD 并截取DE CD =.∵CD 为AB 边中线,∴BD AD =,∴四边形ACBE 为平行四边形.∵90ACB ∠=︒,∴□ACBE 为矩形,∴2AB CE CD ==, ∴12CD AB = 【点睛】此题比较简单,考查的是直角三角形的性质,解答此题的关键是作出辅助线,构造出矩形,利用矩形的性质解答.24.(1)y =x ﹣2,a =﹣1;(2)k =3.【解析】【分析】(1)根据平移的性质求出一次函数的解析式,根据无交点求出a 的值,(2)解方程组12y x y x ⎧=⎪⎨⎪=-⎩可求出A 的坐标是(1,﹣1),由x 轴平分△AOB 的面积,可知B 的纵坐标是1,代入一次函数解析式可求出B 的坐标是(3,1),即可求出答案.【详解】(1)直线y =x 向右平移2个单位后的解析式是y =x ﹣2,即直线AB 的解析式为y =x ﹣2,得:x ﹣2=a x,则x 2﹣2x ﹣a =0, △=4+4a =0,解得:a =﹣1,(2)由(1)可得方程组12y x y x ⎧=⎪⎨⎪=-⎩,解得:11x y =⎧⎨=-⎩, A 的坐标是(1,﹣1),∵x 轴平分△AOB 的面积,∴B 的纵坐标是1,在y =x ﹣2中,令y =1,解得:x =3,则B 的坐标是(3,1),代入y =k x可得:k =3. 【点睛】本题考查了一次函数和反比例函数的交点问题,根的判别式,平移的性质,三角形的面积的应用,及待定系数法求反比例函数解析式,题目是一道比较好的题目,难度适中.25.2:3 取格点D ,连结CD ,DM ,则CDM ∆即为所求.(或者取格点E ,连结AE ,EN ,则AEN ∆即为所求.)【解析】【分析】[1].设AN 与网格的交点为D ,根据DM//BC 证出AMD ~ABN 和PMD ~PCN ,得出比例式,再根据CN=BN 即可得出MP:CP 的值 [2]. .过点N 作NG CM ⊥, 过点P 作PH CN ⊥,垂足分别为G 、H ,根据MP:CP 2:3=求出CP 的长,再根据PCH ~MCB 求出PH 的长,根据等积法求出NG,再用勾股定理得出GC 的长,从而求出PG=GN,得出CPN 45∠=︒,所以在网格中找出等腰直角三角形就符合题意. 【详解】[1].设AN 与网格的交点为D ,∵DM//BC ,∴AMD ~ABN ,PMD ~PCN ,∴MD:BN AM:AB 2:3==,MD:CN MP:CP = ∵CN=BN,∴MP:CP AM:AB 2:3==,故答案为:2:3[2] 过点N 作NG CM ⊥, 过点P 作PH CN ⊥,垂足分别为G 、H,根据勾股定理得:∵MP:CP 2:3=∴CP =∵PH CN ⊥, ∴PH //MB∴PCH ~MCB∴PH:BM 3:5PH:1==,∴3PH 5=, ∵CPN 11S PC NG CN PH 22=⨯=⨯∴NG =,根据勾股定理得:GC =∴PG=PC-GC=5=NG , ∴PNG 是等腰直角三角形,∴CPN 45∠=︒法一:取格点D ,连结CD ,DM ,可得CDM 是等腰直角三角形,则CDM ∆即为所求. 法二:取格点E ,连结AE ,EN ,可得AEN 是等腰直角三角形,则AEN ∆即为所求.【点睛】此题考查了作图-应用与设计作图、相似三角形的判定与性质,三角形的面积公式,勾股定理等知识,解题的关键是利用数形结合的思想解决问题.26.(1)每千克应涨价5元;(2)每千克这种水果涨价7.5元,能使商场获利最多.【解析】【分析】(1)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值;(2)根据题意列出二次函数解析式,然后转化为顶点式,最后求其最值即可.【详解】解:(1)设每千克应涨价x元,由题意列方程得:(5+x)(200﹣10x)=1500解得x=5或x=10,∴为了使顾客得到实惠,那么每千克应涨价5元;(2)设涨价x元时总利润为y,则y=(5+x)(200﹣10x)=﹣10x2+150x+1000=﹣10(x2﹣15x)+1000=﹣10(x﹣7.5)2+1562.5,答:若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【点睛】本题考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好.2020年数学中考模拟试卷一、选择题1.如图,菱形ABCD 的边长是4厘米,∠B=60°,动点P 以1厘米/秒的速度自A 点出发沿AB 方向运动至B 点停止,动点Q 以2厘米/秒的速度自B 点出发沿折线BCD 运动至D 点停止.若点P 、Q 同时出发运动了t 秒,记△BPQ 的面积为S 厘米2,下面图象中能表示S 与t 之间的函数关系的是( )A .B .C .D .2.如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A 处,测得河的北岸边点B 在其北偏东45°方向,然后向西走60米到达C 点,测得点B 在点C 的北偏东60°方向,则这段河的宽度为( )A .米B .+1)米C .(90﹣米D .1)米3.下列说法正确的是( )A.打开电视,它正在播天气预报是不可能事件B.要考察一个班级中学生的视力情况适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为22S =甲,21S =乙,说明甲的射击成绩比乙稳定4.如图,▱ABCD 中,∠B =70°,BC =6,以AD 为直径的⊙O 交CD 于点E ,则DE 的长为( )A .13π B .23π C .76π D .43π 5.今年春节,我区某主题公园共接待游客77800人次,将77800用科学记数法表示为( )A.B.C.D.6.如图,在矩形ABCD 中,E 是AD 上一点,沿CE 折叠△CDE ,点D 恰好落在AC 的中点F 处,若CD =ACE 的面积为( )A .1B C .2D .7.如图,点A 是双曲线y=kx上一点,过A 作AB ∥x 轴,交直线y=-x 于点B ,点D 是x 轴上一点,连接BD 交双曲线于点C ,连接AD ,若BC :CD=3:2,△ABD 的面积为114,tan ∠ABD=95,则k 的值为( )A .-34B .-3C .-2D .348.下列说法正确的是( )A .对角线互相垂直的四边形是平行四边形B .对角线相等且互相平分的四边形是矩形C .对角线相等且互相垂直的四边形是菱形D .对角线互相垂直的平行四边形是正方形 9.下列运算中正确的是( ) A.5510a a a +=B.76a a a ÷=C.326a a a ⋅=D.()236a a -=-10.如图,矩形ABCD 中,AB =5,BC =12,点E 在边AD 上,点G 在边BC 上,点F 、H 在对角线BD 上,若四边形EFGH 是正方形,则AE 的长是( )A .5B .11924C .13024D .16924二、填空题11.如图,菱形ABCD 的边长为12cm ,∠A =60°,点P 从点A 出发沿线路AB→BD 做匀速运动,点Q 从点D 同时出发沿线路DC→CB→BA 做匀速运动.已知点P ,Q 运动的速度分别为2cm/秒和2.5cm/秒,经过12秒后,P 、Q 分别到达M 、N 两点时,点P 、Q 再分别从M 、N 同时沿原路返回,点P 的速度不变,点Q 的速度改为vcm/秒,经过3秒后,P 、Q 分别到达E 、F 两点,若△BEF 与△AMN 相似,则v 的值为____.12.今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为_____.13.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为_______。