英文文献科技类原文及翻译1

合集下载

基于单片机的交通灯控制系统单片机毕业论文外文文献翻译及原文

基于单片机的交通灯控制系统单片机毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译文献、资料中文题目:基于单片机的交通灯控制系统文献、资料英文题目:Structure and functionof the MCS-51 series文献、资料来源:文献、资料发表(出版)日期:院(部):专业:通信工程班级:姓名:学号:指导教师:翻译日期: 2017.02.14毕业设计文献资料翻译(原文及译文)原文名称:Structure and function of the MCS-51 series课题名称:基于单片机的交通灯控制系统Structure and function of the MCS-51 seriesStructure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this lineof one-chip computer the chips have, such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system are all the same.8051 daily representatives-51 serial one-chip computers.A one-chip computer system is made up of several following parts:(1) One microprocessor of 8 (CPU). ( 2) At slice data memory RAM (128B/256B),it use not depositing not can reading /data that write, such as result not middle of operation, final result and data wanted to show, etc.(3) Procedure memory ROM/EPROM (4KB/8KB ), is used to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031, 8032.(4) Four 8 run side by side I/O interface P0 four P3, each mouth can use as introduction , may use as exporting too. (5) Two timer / counter, each timer / counter may set up and count in the way, used to count to the external incident, can set up into a timing way too, and can according to count or result of timing realize the control of the computer. (6) Five cut off cutting off the control system of the source. (7) One all duplex serial I/O mouth of UART (universal asynchronous receiver/transmitter (UART) ), is it realize one-chip computer or one-chip computer and serial communication of computer to use for. (8) Stretch oscillator and clock produce circuit, quartz crystal finely tune electric capacity need outer. Allow oscillation frequency as 12 megahertz now at most. Every the above-mentioned part was joined through the inside data bus .Amongthem, CPU is a core of the one-chip computer, it is the control of the computer and command centre, made up of such parts as arithmetic unit and controller , etc.. The arithmetic unit can carry on 8 persons of arithmetic operation and unit ALU of logic operation while including one, the 1 storing device temporaries of 8, storing device 2 temporarily, 8's accumulation device ACC, register B and procedure state register PSW, etc. Person who accumulate ACC count by 2 input ends entered of checking etc. temporarily as one operation often, come from person who store 1 operation is it is it make operation to go on to count temporarily , operation result and loop back ACC with another one. In addition, ACC is often regarded as the transfer station of data transmission on 8051 inside. The same as general microprocessor, it is the busiest register. Help remembering that agreeing with a express in the order. The controller includes the procedure counter, the order is deposited, the order deciphering, the oscillator and timing circuit, etc. The procedure counter is made up of counter of 8 for two, amounts to 16. It is a byte address counter of the procedure in fact, the content is the next IA that will carried out in PC. The content which changes it can change the direction that the procedure carries out. Shake the circuit in 8051 one-chip computers, only need outer quartz crystal and frequency to finely tune the electric capacity, its frequency range is its 12MHZ of 1.2MHZ. This pulse signal, as 8051 basic beats of working, namely the minimum unit of time. 8051 is the same as other computers, the work in harmony under thecontrol of the basic beat, just like an orchestra according to the beat play that is commanded.There are ROM (procedure memory , can only read ) and RAM in 8051 slices (data memory, can is it can write ) two to read, they have each independent memory address space, dispose way to be the same with general memory of computer. Procedure 8051 memory and 8751 slice procedure memory capacity 4KB, address begin from 0000H, used for preserving the procedure and form constant. Data 8051- 8751 8031 of memory data memory 128B, address false 00FH, using for middle result to deposit operation, the data are stored temporarily and the data are buffered. In RAM of this 128B, there is unit of 32 bytes that can be appointed as the job register, this and general microprocessor is different, 8051 slice RAM and job register rank one formation the same to arrange the location. It is not very the same that the memory of MCS-51 series one-chip computer and general computer disposes the way in addition. General computer for first address space, ROM and RAM can arrange in different space within the range of this address at will, namely the addresses of ROM and RAM, with distributing different address space in a formation. While visiting the memory, corresponding and only an address Memory unit, can ROM, it can be RAM too, and by visiting the order similarly. This kind of memory structure is called the structure of Princeton. 8051 memories are divided into procedure memory space and data memory space on the physics structure, there are four memoryspaces in all: The procedure stores in one and data memory space outside data memory and one in procedure memory space and one outside one, the structure forms of this kind of procedure device and data memory separated form data memory, called Harvard structure. But use the angle from users, 8051 memory address space is divided into three kinds: (1) In the slice, arrange blocks of FFFFH, 0000H of location, in unison outside the slice (use 16 addresses). (2) The data memory address space outside one of 64KB, the address is arranged from 0000H 64KB FFFFH (with 16 addresses) too to the location. (3) Data memory address space of 256B (use 8 addresses). Three above-mentioned memory space addresses overlap, for distinguishing and designing the order symbol of different data transmission in the instruction system of 8051: CPU visit slice, ROM order spend MOVC , visit block RAM order uses MOVX outside the slice, RAM order uses MOV to visit in slice.8051 one-chip computer have four 8 walk abreast I/O ports, call P0, P1, P2 and P3. Each port is 8 accurate two-way mouths, accounts for 32 pins altogether. Every one I/O line can be used as introduction and exported independently. Each port includes a latch (namely special function register), one exports the driver and a introduction buffer. Make data can latch when outputting, data can buffer when making introduction, but four function of pass away these self-same. Expand among the system of memory outside having slice, four ports these may serve as accurate two-way mouth of I/O in common use. Expand among the system ofmemory outside having slice, P2 mouth see high 8 address off; P0 mouth is a two-way bus, send the introduction of 8 low addresses and data / export in timesharingThe circuit of 8051 one-chip computers and four I/O ports is very ingenious in design. Familiar with I/O port logical circuit, not only help to use port correctly and rationally, and will inspire to designing the peripheral logical circuit of one-chip computer to some extent. Load ability and interface of port have certain requirement, because output grade, P0 of mouth and P1 end output, P3 of mouth grade different at structure, so, the load ability and interface of its door demand to have nothing in common with each other. P0 mouth is different from other mouth, its output grade draws the resistance supremely. When using it as the mouth in common use, output grade is it leak circuit to turn on, is it urge NMOS draw the resistance on taking to be outer with it while inputting to go out to fail. When being used as introduction, should write"1" to a latch first. Every one with P0 mouth can drive 8 Model LS TTL load to export. P1 mouth is an accurate two-way mouth too, used as I/O in common use. Different from P0 mouth output of circuit its, draw load resistance link with power on inside have. In fact, the resistance is that two effects are in charge of FET and together: One FET is in charge of load, its resistance is regular. Another one can is it lead to work with close at two state, make its President resistance value change approximate 0 or group value heavy two situation very. When it is 0 that the resistanceis approximate, can draw the pin to the high level fast; when resistance value is very large, P1 mouth high electricity at ordinary times, can is it draw electric current load to offer outwards, draw electric current load to offer outwards, draw the resistance on needn't answer and thinking. Here when the port is used as introduction, must write into 1 to the corresponding latch first too, make FET end relatively about 20,000 ohms because of load resistance in scene and because 40,000 ohms, will not exert an influence on the data that are input. The structure of P2 some mouth is similar to P0 mouth, there are MUX switches. Is it similar to mouth partly to urge, but mouth large a conversion controls some than P1.P3 mouth one multi-functional port, mouth getting many than P1 it have "3 doors and 4 buffers". Two parts there, make her besides accurate two-way function with P1 mouth just, can also use the second function of every pin, "and" door 3 functions one switch in fact, it determines to be to output data of latch to output second signal of function. Act as W=At 1 o'clock, output Q end signal; act as Q=At 1 o'clock, can output W line signal. At the time of programming, it is that the first function is still the second function but needn't have software that set up P3 mouth in advance .It hardware not inside is the automatic to have two function outputted when CPU carries on SFR and seeks the location to visit to P3 mouth/at not lasting lining, there are inside hardware latch Qs=1. The operation principle of P3 mouth is similar to P1 mouth.Output grade, P3 of mouth, P1 of P1, connect with inside have loadresistance of drawing, every one of they can drive 4 Model LS TTL load to output. As while inputting the mouth, any TTL or NMOS circuit can drive P1 of 8051 one-chip computers as P3 mouth in a normal way. Because draw resistance on output grade of them have, can open a way collector too or drain-source resistance is it urge to open a way, do not need to have the resistance of drawing outer. Mouths are all accurate two-way mouths too. When the conduct is input, must write the corresponding port latch with 1 first. As to 80C51 one-chip computer, port can only offer milliampere of output electric currents, is it output mouth go when urging one ordinary basing of transistor to regard as, should contact a resistance among the port and transistor base, in order to the electricity while restraining the high level from exporting P1~P3 Being restored to the throne is the operation of initializing of an one-chip computer. Its main function is to turn PC into 0000H initially, make the one-chip computer begin to hold the conduct procedure from unit 0000H. Except that the ones that enter the system are initialized normally, as because procedure operate it make mistakes or operate there aren't mistake, in order to extricate oneself from a predicament , need to be pressed and restored to the throne the key restarting too. It is an input end which is restored to the throne the signal in 8051 China RST pin. Restore to the throne signal high level effective, should sustain 24 shake cycle (namely 2 machine cycles) the above its effective times. If 6 of frequency of utilization brilliant to shake, restore to the throne signal durationshould exceed 4 delicate to finish restoring to the throne and operating. Produce the logic picture of circuit which is restored to the throne the signal: restore to the throne the circuit and include two parts outside in the chip entirely. Outside that circuit produce to restore to the throne signal (RST) hand over to Schmitt's trigger, restore to the throne circuit sample to output , Schmitt of trigger constantly in each S5P2 , machine of cycle in having one more , then just got and restored to the throne and operated the necessary signal inside. Restore to the throne resistance of circuit generally, electric capacity parameter suitable for 6 brilliant to shake, can is it restore to the throne signal high level duration greater than 2 machine cycles to guarantee. Being restored to the throne in the circuit is simple, its function is very important. Pieces of one-chip computer system could normal running, should first check it can restore to the throne not succeeding. Checking and can pop one's head and monitor the pin with the oscilloscope tentatively, push and is restored to the throne the key, the wave form that observes and has enough range is exported (instantaneous), can also through is it restore to the throne circuit group holding value carry on the experiment to change.MCS-51系列单片机的功能和结构MSC-51系列单片机具有一个单芯片电脑的结构和功能,它是英特尔公司的系列产品的名称。

科技文献中英文对照翻译

科技文献中英文对照翻译

Sensing Human Activity:GPS Tracking感应人类活动:GPS跟踪Stefan van der Spek1,*,Jeroen van Schaick1,Peter de Bois1,2and Remco de Haan1Abstract:The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools,but also as instruments used to capture travelled routes:assensors that measure activity on a city scale or the regional scale.TU Delft developed aprocess and database architecture for collecting data on pedestrian movement in threeEuropean city centres,Norwich,Rouen and Koblenz,and in another experiment forcollecting activity data of13families in Almere(The Netherlands)for one week.Thequestion posed in this paper is:what is the value of GPS as‘sensor technology’measuringactivities of people?The conclusion is that GPS offers a widely useable instrument tocollect invaluable spatial-temporal data on different scales and in different settings addingnew layers of knowledge to urban studies,but the use of GPS-technology and deploymentof GPS-devices still offers significant challenges for future research.摘要:增强GPS技术支持使用GPS设备不仅作为导航和定位工具,但也为仪器用来捕捉旅行路线:作为传感器,测量活动在一个城市或区域范围内规模。

机械手设计英文参考文献原文翻译

机械手设计英文参考文献原文翻译

翻译人:王墨墨山东科技大学文献题目:Automated Calibration of Robot Coordinatesfor Reconfigurable Assembly Systems翻译正文如下:针对可重构装配系统的机器人协调性的自动校准T.艾利,Y.米达,H.菊地,M.雪松日本东京大学,机械研究院,精密工程部摘要为了实现流水工作线更高的可重构性,以必要设备如机器人的快速插入插出为研究目的。

当一种新的设备被装配到流水工作线时,应使其具备校准系统。

该研究使用两台电荷耦合摄像机,基于直接线性变换法,致力于研究一种相对位置/相对方位的自动化校准系统。

摄像机被随机放置,然后对每一个机械手执行一组动作。

通过摄像机检测机械手动作,就能捕捉到两台机器人的相对位置。

最佳的结果精度为均方根值0.16毫米。

关键词:装配,校准,机器人1 介绍21世纪新的制造系统需要具备新的生产能力,如可重用性,可拓展性,敏捷性以及可重构性[1]。

系统配置的低成本转变,能够使系统应对可预见的以及不可预见的市场波动。

关于组装系统,许多研究者提出了分散的方法来实现可重构性[2][3]。

他们中的大多数都是基于主体的系统,主体逐一协同以建立一种新的配置。

然而,协同只是目的的一部分。

在现实生产系统中,例如工作空间这类物理问题应当被有效解决。

为了实现更高的可重构性,一些研究人员不顾昂贵的造价,开发出了特殊的均匀单元[4][5][6]。

作者为装配单元提出了一种自律分散型机器人系统,包含多样化的传统设备[7][8]。

该系统可以从一个系统添加/删除装配设备,亦或是添加/删除装配设备到另一个系统;它通过协同作用,合理地解决了工作空间的冲突问题。

我们可以把该功能称为“插入与生产”。

在重构过程中,校准的装配机器人是非常重要的。

这是因为,需要用它们来测量相关主体的特征,以便在物理主体之间建立良好的协作关系。

这一调整必须要达到表1中所列到的多种标准要求。

外文文献翻译译稿和原文

外文文献翻译译稿和原文

外文文献翻译译稿1卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,通过对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。

在很多工程应用(如雷达、计算机视觉)中都可以找到它的身影。

同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要课题。

例如,对于雷达来说,人们感兴趣的是其能够跟踪目标。

但目标的位置、速度、加速度的测量值往往在任何时候都有噪声。

卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。

这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑)。

命名[编辑]这种滤波方法以它的发明者鲁道夫.E.卡尔曼(Rudolph E. Kalman)命名,但是根据文献可知实际上Peter Swerling在更早之前就提出了一种类似的算法。

斯坦利。

施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。

卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑便使用了这种滤波器。

关于这种滤波器的论文由Swerling(1958)、Kalman (1960)与Kalman and Bucy(1961)发表。

目前,卡尔曼滤波已经有很多不同的实现。

卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器。

除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton开发的平方根滤波器的变种。

也许最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。

以下的讨论需要线性代数以及概率论的一般知识。

卡尔曼滤波建立在线性代数和隐马尔可夫模型(hidden Markov model)上。

其基本动态系统可以用一个马尔可夫链表示,该马尔可夫链建立在一个被高斯噪声(即正态分布的噪声)干扰的线性算子上的。

系统的状态可以用一个元素为实数的向量表示。

科技英语翻译

科技英语翻译
English Translation for Science and Technology


日常英语
People get natural rubber from rubber trees as a white, milky liquid, which is called latex. They mix it with acid, and dry it, and then they send it to countries all over the world. As the rubber industry grew, people needed more and more rubber. They started rubber plantations in countries with hot, wet weather conditions, but these still could not give enough raw rubber to meet the needs of growing industry.

意译:把忠实于原文的内容放在第一位,把通顺的译文形 式放在第二位,不拘泥于原文的形式。

如果译文和原文相同的形式不能表达和原文相同的内容, 一般意译。 Translate liberally if necessary.


试译下列各句,注意根据词类确定划线词的词义: Aluminium is light and strong so that it is widely used in aircraft industry. Like charges repel, while unlike charges attract. It is the atoms that make up iron, water, oxygen and the like. A magnetic field is built up round the coil.

中英文文献以及翻译(化工类)

中英文文献以及翻译(化工类)

Foreign material:Chemical Industry1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).Since 1940 the chemical industry has grown at a remarkable rate, although this has slowed significantly in recent years. The lion’s share of this growth has been in the organic chemicals sector due to the development and growth of the petrochemicals area since 1950s. The explosives growth in petrochemicals in the 1960s and 1970s was largely due to the enormous increase in demand for synthetic polymers such as polyethylene, polypropylene, nylon, polyesters and epoxy resins.The chemical industry today is a very diverse sector of manufacturing industry, within which it plays a central role. It makes thousands of different chemicals whichthe general public only usually encounter as end or consumer products. These products are purchased because they have the required properties which make them suitable for some particular application, e.g. a non-stick coating for pans or a weedkiller. Thus chemicals are ultimately sold for the effects that they produce.2. Definition of the Chemical IndustryAt the turn of the century there would have been little difficulty in defining what constituted the chemical industry since only a very limited range of products was manufactured and these were clearly chemicals, e.g., alkali, sulphuric acid. At present, however, many intermediates to products produced, from raw materials like crude oil through (in some cases) many intermediates to products which may be used directly as consumer goods, or readily converted into them. The difficulty cones in deciding at which point in this sequence the particular operation ceases to be part of the chemical industry’s sphere of activities. To consider a specific example to illustrate this dilemma, emulsion paints may contain poly (vinyl chloride) / poly (vinyl acetate). Clearly, synthesis of vinyl chloride (or acetate) and its polymerization are chemical activities. However, if formulation and mixing of the paint, including the polymer, is carried out by a branch of the multinational chemical company which manufactured the ingredients, is this still part of the chemical industry of does it mow belong in the decorating industry?It is therefore apparent that, because of its diversity of operations and close links in many areas with other industries, there is no simple definition of the chemical industry. Instead each official body which collects and publishes statistics on manufacturing industry will have its definition as to which operations are classified as the chemical industry. It is important to bear this in mind when comparing statistical information which is derived from several sources.3. The Need for Chemical IndustryThe chemical industry is concerned with converting raw materials, such as crude oil, firstly into chemical intermediates and then into a tremendous variety of other chemicals. These are then used to produce consumer products, which make our livesmore comfortable or, in some cases such as pharmaceutical produces, help to maintain our well-being or even life itself. At each stage of these operations value is added to the produce and provided this added exceeds the raw material plus processing costs then a profit will be made on the operation. It is the aim of chemical industry to achieve this.It may seem strange in textbook this one to pose the question “do we need a chemical industry?” However trying to answer this question will provide(ⅰ) an indication of the range of the chemical industry’s activities, (ⅱ) its influence on our lives in everyday terms, and (ⅲ) how great is society’s need for a chemical industry. Our approach in answering the question will be to consider the industry’s co ntribution to meeting and satisfying our major needs. What are these? Clearly food (and drink) and health are paramount. Other which we shall consider in their turn are clothing and (briefly) shelter, leisure and transport.(1)Food. The chemical industry makes a major contribution to food production in at least three ways. Firstly, by making available large quantities of artificial fertilizers which are used to replace the elements (mainly nitrogen, phosphorus and potassium) which are removed as nutrients by the growing crops during modern intensive farming. Secondly, by manufacturing crop protection chemicals, i.e., pesticides, which markedly reduce the proportion of the crops consumed by pests. Thirdly, by producing veterinary products which protect livestock from disease or cure their infections.(2)Health. We are all aware of the major contribution which the pharmaceutical sector of the industry has made to help keep us all healthy, e.g. by curing bacterial infections with antibiotics, and even extending life itself, e.g. ß–blockers to lower blood pressure.(3)Clothing. The improvement in properties of modern synthetic fibers over the traditional clothing materials (e.g. cotton and wool) has been quite remarkable. Thus shirts, dresses and suits made from polyesters like Terylene and polyamides like Nylon are crease-resistant, machine-washable, and drip-dry or non-iron. They are also cheaper than natural materials.Parallel developments in the discovery of modern synthetic dyes and the technology to “bond” th em to the fiber has resulted in a tremendous increase in the variety of colors available to the fashion designer. Indeed they now span almost every color and hue of the visible spectrum. Indeed if a suitable shade is not available, structural modification of an existing dye to achieve this canreadily be carried out, provided there is a satisfactory market for the product.Other major advances in this sphere have been in color-fastness, i.e., resistance to the dye being washed out when the garment is cleaned.(4)Shelter, leisure and transport. In terms of shelter the contribution of modern synthetic polymers has been substantial. Plastics are tending to replace traditional building materials like wood because they are lighter, maintenance-free (i.e. they are resistant to weathering and do not need painting). Other polymers, e.g. urea-formaldehyde and polyurethanes, are important insulating materials f or reducing heat losses and hence reducing energy usage.Plastics and polymers have made a considerable impact on leisure activities with applications ranging from all-weather artificial surfaces for athletic tracks, football pitches and tennis courts to nylon strings for racquets and items like golf balls and footballs made entirely from synthetic materials.Like wise the chemical industry’s contribution to transport over the years has led to major improvements. Thus development of improved additives like anti-oxidants and viscosity index improves for engine oil has enabled routine servicing intervals to increase from 3000 to 6000 to 12000 miles. Research and development work has also resulted in improved lubricating oils and greases, and better brake fluids. Yet again the contribution of polymers and plastics has been very striking with the proportion of the total automobile derived from these materials—dashboard, steering wheel, seat padding and covering etc.—now exceeding 40%.So it is quite apparent even from a brief look at the chemical industry’s contribution to meeting our major needs that life in the world would be very different without the products of the industry. Indeed the level of a country’s development may be judged by the production level and sophistication of its chemical industry4. Research and Development (R&D) in Chemical IndustriesOne of the main reasons for the rapid growth of the chemical industry in the developed world has been its great commitment to, and investment in research and development (R&D). A typical figure is 5% of sales income, with this figure being almost doubled for the most research intensive sector, pharmaceuticals. It is important to emphasize that we are quoting percentages here not of profits but of sales income, i.e. the total money received, which has to pay for raw materials, overheads, staff salaries, etc. as well. In the past this tremendous investment has paid off well, leading to many useful and valuable products being introduced to the market. Examplesinclude synthetic polymers like nylons and polyesters, and drugs and pesticides. Although the number of new products introduced to the market has declined significantly in recent years, and in times of recession the research department is usually one of the first to suffer cutbacks, the commitment to R&D remains at a very high level.The chemical industry is a very high technology industry which takes full advantage of the latest advances in electronics and engineering. Computers are very widely used for all sorts of applications, from automatic control of chemical plants, to molecular modeling of structures of new compounds, to the control of analytical instruments in the laboratory.Individual manufacturing plants have capacities ranging from just a few tones per year in the fine chemicals area to the real giants in the fertilizer and petrochemical sectors which range up to 500,000 tonnes. The latter requires enormous capital investment, since a single plant of this size can now cost $520 million! This, coupled with the widespread use of automatic control equipment, helps to explain why the chemical industry is capital-rather than labor-intensive.The major chemical companies are truly multinational and operate their sales and marketing activities in most of the countries of the world, and they also have manufacturing units in a number of countries. This international outlook for operations, or globalization, is a growing trend within the chemical industry, with companies expanding their activities either by erecting manufacturing units in other countries or by taking over companies which are already operating there.化学工业1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。

英文文献原文及对应翻译

英文文献原文及对应翻译

Adsorption char acter istics of copper , lead, zinc and cadmium ions by tourmaline(环境科学学报英文版) 电气石对铜、铅、锌、镉离子的吸附特性JIANG Kan1,*, SUN Tie-heng1,2 , SUN Li-na2, LI Hai-bo2(1. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China. jiangkan522@; 2. Key Laboratory of Environmental Engineering of Shenyang University, Shenyang 110041, China)摘要:本文研究了电气石对Cu2+、Pb2+、Zn2+和Cd2+的吸附特性,建立了吸附平衡方程。

研究四种金属离子的吸附等温线以及朗缪尔方程。

结果表明电气石能有效地去除水溶液中的重金属且具有选择性:Pb2+> Cu2+> Cd2+> Zn2+。

电气石对金属离子吸附量随着介质中金属离子的初始浓度的增加而增加。

电气石也可以增加金属溶液的pH值;发现电气石对Cu2+、Pb2+、Zn2+和Cd2+的最大吸附量为78.86、154.08、67.25和66.67mg/g;温度在25-55℃对电气石的吸附量影响很小。

此外研究了Cu2+、Pb2+、Zn2+和Cd2+的竞争吸附。

同时观察到电气石对单一金属离子的吸附能力为Pb>Cu>Zn>Cd,在两种金属系统中抑制支配地位是Pb>Cu,Pb>Zn,Pb>Cd,Cu>Zn,Cu>Cd,和Cd>Zn。

关键字:吸附;重金属含量;朗缪尔等温线;电气石介绍重金属是来自不同行业排出的废水,如电镀,金属表面处理,纺织,蓄电池,矿山,陶瓷,玻璃。

英文科技文献翻译

英文科技文献翻译

英文文献翻译二〇一二年五月三十日Integrated wiring systemModern science and technology progress has made rapid development of computer and network technology, provides a more powerful computer processing capacity and network communication ability. The computer and network communication technology can greatly improve the modern enterprise production management efficiency, reduce the operation cost, and makes the modern enterprise can obtain more effectively and timely decision market information, provide more quickly, more satisfactory service to customers, in the competition. The computer and network communication technology has become a key factor in the success of the company.Integrated cabling system in order to meet the development needs is specially designed a set of cabling system. For modern buildings, such as the body, it adopted a series of nerve of high quality standard, modular combinations of material, the voice, data and image and control signal system using uniform transmission media, through comprehensive, integrated unified planning design in a set of standard cabling system in modern architecture, the three subsystems will connect organically, and system integration for the modern architecture provides a physical medium. Structured cabling system can directly related to the success of the modernization of the building, choose a high quality of integrated wiring system is of vital importance.Computer and communication networks are dependent on wiring system as the physical basis of network connections and information transmission channel. The traditional single application on a particular special layout techniques, lack of flexibility and development of, can not meet the rapid development of modern business needs of network applications. The new generation of structured cabling systems provide the user the required data, voice, fax, video and other information service connections, which allows voice and data communications equipment, switching equipment, information management systems and equipment control system , security system connected to each other, but also to make these devices with external communication networks. It includes the building to the external network or phone line connection Bureau,with the work area of voice or data terminals associated with all the cables and wiring components. Cabling system composed by different series of components, including: transmission media, line management of hardware, connectors, sockets, plugs, adapters, transmission electronic circuits, electrical protection equipment and support. Compared with the previous wiring, cabling system features can be summarized as:Practicality: after the implementation of cabling systems will be able to adapt to the modern and future communication technology development and implementation of voice, data, unified communications, signal transmission.Flexibility: wiring system can satisfy the requirements of various applications, information points to any connection of different types of terminal equipment, such as telephone, computer, printer, computer terminal, electric machine, various sensors and image monitoring equipment.Modularity: integrated cabling system in fixed in buildings, the level of all cable connectors are basic type of the standard, all voice, data and interconnection of building automation, network and image, with convenient use, equipment, change, management and expansion.Scalability: integrated wiring system is for future expansion, more use, easy to expand into new equipment.Economy: the integrated wiring system enables managers, and at the same time, reduce the modular structure, work because of the difficulty of future changes greatly reduced the cost or moving system.General: to meet the standard of international communication and computer network topology structure, can adapt different transmission speed communication can adapt to the requirement, can support and accommodate various computer network operation.1 workspace subsystemPurpose is to realize the workspace terminal equipment and level of connections between subsystems, the terminal devices connected to the information socket connection cables. Workspace used computer, networkequipment is distributed (on), telephone, or may alarm detector, camera, monitors, acoustics, etc.2 Horizontal subsystemPurpose is to realize information socket and management subsystem (jumper wire connection between frame), will lead to the management subsystem of user workspace, and to provide users with one accord with international standard pronunciation, satisfy the requirements and the high-speed data transmission information points. The subsystem of information from a job, decorate the socket to the inside of the administrative levels of the cable distribution frames. In the system of transmission medium of UTP (4) shielding twisted-pair cable, it can support the most modern communication equipment. If you need some broadband application, you can use fiber. Information ISDN8 for export by core RJ45 jack (standard), each information socket outlets can be flexibly according to actual application requirements and optional change purposes.3 the management subsystemThis sub-system connected by a cross, composed of interconnect patch panel. Management point of connection means to connect to other subsystems. Cross-connect and interconnect allows communication lines locate or relocate to different parts of the building to make it easier to manage communication lines, so that when the mobile terminal device easily plug. Interconnection distribution frame connections under different hardware sub-floor distribution frame (box) IDF and MDF (box) MDF, IDF can be installed on each floor of the trunk connection between, MDF is usually installed in the equipment room.4 vertical lines subsystemPurpose is to achieve the computer equipment, pabx (PBX), with the management subsystem of control center is building a connection between the main cable, routing. This is usually between two units subsystem, especially in the central point in the public system provides more line facilities. By building the system all vertical lines and more logarithmic cable support hardware, toprovide total distribution frames and main equipment room wiring between floors between the main distribution frames routing. Common medium is multi-cores cable and optical fiber cable twisted-pair.5.Equipment room subsystemThis subsystem is mainly from the devices in the cable, connectors and related hardware support, the role of the computer, PBX, cameras, monitors and other weak and connected to the interconnection of equipment up on the main distribution frame. Equipment includes computer systems, network hub (Hub), network switches (Switch), program-controlled switchboards (PBX), audio output devices, CCTV control devices and alarm control center, etc.6 Buildings subsystem (Campus):The subsystem will be extended to cable a building complex of other buildings of the communications equipment and devices, is part of a structured cabling system to support the provision of buildings in the hardware required for communication between. It consists of cables, fiber optic cable and into the Building Department, over-current over-voltage protection equipment and other related electrical hardware, commonly used medium is optical fiber. Compared with the traditional routing, integrated wiring construction as a modern information transmission system, its main advantages are: Traditional wiring specification due to lack of a unified, user must choose a variety of different application types of cables, connectors and wiring, resulting in duplication of cable laying waste, lack of flexibility and can not support the development needs of the user application re-wiring; integrated wiring system integration requirements of modern architecture transmission of voice, data, video and other information, using international standardized information interface and performance specifications, to support multi-vendor equipment and protocols to meet the rapid development of modern enterprise information application needs.Integrated wiring system, the user can according to actual needs or changing office environment, flexible and convenient way to achieve change and restructuring routes, adjusting the mode of building the network required to fully meet user business needs.Structured cabling system is the star topology wiring methods and standard interfaces, which greatly improves over all network reliability and manageability, significantly reduce system management and maintenance costs. The modular system design to provide a good system scalability and future-oriented application development support, fully guaranteed the user's investment in cabling, providing customers a long-term benefits.Cabling System can solve the traditional wiring methods exist many problems, provides long-term benefits of advanced and reliable solutions. With the rapid development of modern information technology, integrated wiring system will be indispensable to modern intelligent building infrastructure.综合布线系统现代科技的进步使计算机及网络技术飞速发展,提供越来越强大的计算机处理能力和网络通信能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

英文文献科技类原文及翻译1On the deployment of V oIP in Ethernet networks:methodology and case studyAbstractDeploying IP telephony or voice over IP (V oIP) is a major and challenging task for data network researchers and designers. This paper outlines guidelines and a step-by-step methodology on how V oIP can be deployed successfully. The methodology can be used to assess the support and readiness of an existing network. Prior to the purchase and deployment of V oIP equipment, the methodology predicts the number of V oIP calls that can be sustained by an existing network while satisfying QoS requirements of all network services and leaving adequate capacity for future growth. As a case study, we apply the methodology steps on a typical network of a small enterprise. We utilize both analysis and simulation to investigate throughput and delay bounds. Our analysis is based on queuing theory, and OPNET is used for simulation. Results obtained from analysis and simulation are in line and give a close match. In addition, the paper discusses many design and engineering issues. These issues include characteristics of V oIP traffic and QoS requirements, V oIP flow and call distribution, defining future growth capacity, and measurement and impact of background traffic. Keywords: Network Design,Network Management,V oIP,Performance Evaluation,Analysis,Simulation,OPNET1 IntroductionThese days a massive deployment of V oIP is taking place over data networks. Most of these networks are Ethernet based and running IP protocol. Many network managers are finding it very attractive and cost effective to merge and unify voice and data networks into one. It is easier to run, manage, and maintain. However, one has to keep in mind that IP networks are best-effort networks that were designed for non-real time applications. On the other hand, V oIP requires timely packet delivery with low latency, jitter, packet loss, andsufficient bandwidth. To achieve this goal, an efficient deployment of V oIP must ensure these real-time traffic requirements can be guaranteed over new or existing IP networks. When deploying a new network service such as V oIP over existing network, many network architects, managers, planners, designers, and engineers are faced with common strategic, and sometimes challenging, questions. What are the QoS requirements for V oIP? How will the new V oIP load impact the QoS for currently running network services and applications? Will my existing network support V oIP and satisfy the standardized QoS requirements? If so, how many V oIP calls can the network support before upgrading prematurely any part of the existing network hardware? These challenging questions have led to the development of some commercial tools for testing the performance of multimedia applications in data networks. A list of the available commercial tools that support V oIP is listed in [1,2]. For the most part, these tools use two common approaches in assessing the deployment of V oIP into the existing network. One approach is based on first performing network measurements and then predicting the network readiness for supporting V oIP. The prediction of the network readiness is based on assessing the health of network elements. The second approach is based on injecting real V oIP traffic into existing network and measuring the resulting delay, jitter, and loss. Other than the cost associated with the commercial tools, none of the commercial tools offer a comprehensive approach for successful V oIP deployment. I n particular, none gives any prediction for the total number of calls that can be supported by the network taking into account important design and engineering factors. These factors include V oIP flow and call distribution, future growth capacity, performance thresholds, impact of V oIP on existing network services and applications, and impact background traffic on V oIP. This paper attempts to address those important factors and layout a comprehensive methodology for a successful deployment of any multimedia application such as V oIP and video conferencing. However, the paper focuses on V oIP as the new service of interest to be deployed. The paper also contains many useful engineering and design guidelines, and discusses many practical issues pertaining to the deployment of V oIP. These issues include characteristics of V oIP traffic and QoS requirements, V oIP flow and call distribution, defining future growth capacity, and measurement and impact of background traffic. As a case study, we illustrate how ourapproach and guidelines can be applied to a typical network of a small enterprise. The rest of the paper is organized as follows. Section 2 presents a typical network topology of a small enterprise to be used as a case study for deploying V oIP. Section 3 outlines practical eight-step methodology to deploy successfully V oIP in data networks. Each step is described in considerable detail. Section 4 describes important design and engineering decisions to be made based on the analytic and simulation studies. Section 5 concludes the study and identifies future work.2 Existing network3 Step-by-step methodologyFig. 2 shows a flowchart of a methodology of eight steps for a successful V oIP deployment. The first four steps are independent and can be performed in parallel. Before embarking on the analysis and simulation study, in Steps 6 and 7, Step 5 must be carried out which requires any early and necessary redimensioning or modifications to the existing network. As shown, both Steps 6 and 7 can be done in parallel. The final step is pilot deployment.3.1. VoIP traffic characteristics, requirements, and assumptionsFor introducing a new network service such as V oIP, one has to characterize first the nature of its traffic, QoS requirements, and any additional components or devices. For simplicity, we assume a point-to-point conversation for all V oIP calls with no call conferencing. For deploying V oIP, a gatekeeper or Call Manager node has to be added to the network [3,4,5]. The gatekeeper node handles signaling for establishing, terminating, and authorizing connections of all V oIP calls. Also a V oIP gateway is required to handle external calls. A V oIP gateway is responsible for converting V oIP calls to/from the Public Switched Telephone Network (PSTN). As an engineering and design issue, the placement of these nodes in the network becomes crucial. We will tackle this issue in design step 5. Otherhardware requirements include a V oIP client terminal, which can be a separate V oIP device, i.e. IP phones, or a typical PC or workstation that is V oIP-enabled. A V oIP-enabled workstation runs V oIP software such as IP Soft Phones .Fig. 3 identifies the end-to-end V oIP components from sender to receiver [9]. The first component is the encoder which periodically samples the original voice signal and assigns a fixed number of bits to each sample, creating a constant bit rate stream. The traditional sample-based encoder G.711 uses Pulse Code Modulation (PCM) to generate 8-bit samples every 0.125 ms, leading to a data rate of 64 kbps . The packetizer follows the encoder and encapsulates a certain number of speech samples into packets and adds the RTP, UDP, IP, and Ethernet headers. The voice packets travel through the data network. An important component at the receiving end, is the playback buffer whose purpose is to absorb variations or jitter in delay and provide a smooth playout. Then packets are delivered to the depacketizer and eventually to the decoder which reconstructs the original voice signal. We will follow the widely adopted recommendations of H.323, G.711, and G.714 standards for V oIP QoS requirements.Table 1 compares some commonly used ITU-T standard codecs and the amount ofone-way delay that they impose. To account for upper limits and to meet desirable quality requirement according to ITU recommendation P.800, we will adopt G.711u codec standards for the required delay and bandwidth. G.711u yields around 4.4 MOS rating. MOS, Mean Opinion Score, is a commonly used V oIP performance metric given in a scale of 1–5, with 5 is the best. However, with little compromise to quality, it is possible to implement different ITU-T codecs that yield much less required bandwidth per call and relatively a bit higher, but acceptable, end-to-end delay. This can be accomplished by applying compression, silence suppression, packet loss concealment, queue management techniques, and encapsulating more than one voice packet into a single Ethernet frame.3.1.1. End-to-end delay for a single voice packetFig. 3 illustrates the sources of delay for a typical voice packet. The end-to-end delay is sometimes referred to by M2E or Mouth-to-Ear delay. G.714 imposes a maximum total one-way packet delay of 150 ms end-to-end for V oIP applications . In [22], a delay of up to 200 ms was considered to be acceptable. We can break this delay down into at least three different contributing components, which are as follows (i) encoding, compression, and packetization delay at the sender (ii) propagation, transmission and queuing delay in the network and (iii) buffering, decompression, depacketization, decoding, and playback delay at the receiver.3.1.2. Bandwidth for a single callThe required bandwidth for a single call, one direction, is 64 kbps. G.711 codec samples 20 ms of voice per packet. Therefore, 50 such packets need to be transmitted per second. Each packet contains 160 voice samples in order to give 8000 samples per second. Each packet is sent in one Ethernet frame. With every packet of size 160 bytes, headers of additional protocol layers are added. These headers include RTP+UDP+IP+Ethernet with preamble of sizes 12+8+20+26, respectively. Therefore, a total of 226 bytes, or 1808 bits, needs to be transmitted 50 times per second, or 90.4 kbps, in one direction. For both directions, the required bandwidth for a single call is 100 pps or 180.8 kbps assuming a symmetric flow.3.1.3. Other assumptionsThroughout our analysis and work, we assume voice calls are symmetric and no voice conferencing is implemented. We also ignore the signaling traffic generated by the gatekeeper. We base our analysis and design on the worst-case scenario for V oIP call traffic. The signaling traffic involving the gatekeeper is mostly generated prior to the establishment of the voice call and when the call is finished. This traffic is relatively small compared to the actual voice call traffic. In general, the gatekeeper generates no or very limited signaling traffic throughout the duration of the V oIP call for an already established on-going call. In this paper, we will implement no QoS mechanisms that can enhance the quality of packet delivery in IP networks.A myriad of QoS standards are available and can be enabled for network elements. QoS standards may i nclude IEEE 802.1p/Q, the IETF’s RSVP, and DiffServ.Analysis of implementation cost, complexity, management, and benefit must be weighed carefully before adopting such QoS standards. These standards can be recommended when the cost for upgrading some network elements is high and the network resources are scarce and heavily loaded.3.2. VoIP traffic flow and call distributionKnowing the current telephone call usage or volume of the enterprise is an important step for a successful V oIP deployment. Before embarking on further analysis or planning phases for a V oIP deployment, collecting statistics about of the present call volume and profiles is essential. Sources of such information are organization’s PBX, telephone records and bills. Key characteristics of existing calls can include the number of calls, number of concurrent calls, time, duration, etc. It is important to determine the locations of the call endpoints, i.e. the sources and destinations, as well as their corresponding path or flow. This will aid in identifying the call distribution and the calls made internally or externally. Call distribution must include percentage of calls within and outside of a floor, building, department, or organization. As a good capacity planning measure, it is recommended to base the V oIP call distribution on the busy hour traffic of phone calls for the busiest day of a week or a month. This will ensure support of the calls at all times with high QoS for all V oIP calls.When such current statistics are combined with the projected extra calls, we can predict the worst-case V oIP traffic load to be introduced to the existing network.Fig. 4 describes the call distribution for the enterprise under study based on the worst busy hour and the projected future growth of V oIP calls. In the figure, the call distribution is described as a probability tree. It is also possible to describe it as a probability matrix. Some important observations can be made about the voice traffic flow for inter-floor and external calls. For all these type of calls, the voice traffic has to be always routed through the router. This is so because Switchs 1 and 2 are layer 2 switches with VLANs configuration. One can observe that the traffic flow for inter-floor calls between Floors 1 and 2 imposes twice the load on Switch 1, as the traffic has to pass through the switch to the router and back to the switch again. Similarly, Switch 2 experiences twice the load for external calls from/to Floor 3.3.3. Define performance thresholds and growth capacityIn this step, we define the network performance thresholds or operational points for a number of important key network elements. These thresholds are to be considered when deploying the new service. The benefit is twofold. First, the requirements of the new service to be deployed are satisfied. Second, adding the new service leaves the network healthy and susceptible to future growth. Two important performance criteria are to be taken into account.First is the maximum tolerable end-to-end delay; and second is the utilization bounds or thresholds of network resources. The maximum tolerable end-to-end delay is determined by the most sensitive application to run on the network. In our case, it is 150 ms end-to-end for V oIP. It is imperative to note that if the network has certain delay sensitive applications, the delay for these applications should be monitored, when introducing V oIP traffic, such that they do not exceed their required maximum values. As for the utilization bounds for network resources, such bounds or thresholds are determined by factors such as current utilization, future plans, and foreseen growth of the network. Proper resource and capacity planning is crucial. Savvy network engineers must deploy new services with scalability in mind, and ascertain that the network will yield acceptable performance under heavy and peak loads, with no packet loss. V oIP requires almost no packet loss. In literature, 0.1–5% packet loss was generally asserted. However, in [24] the required V oIP packet loss was conservatively suggested to be less than 105 . A more practical packet loss, based on experimentation, of below 1% was required in [22]. Hence, it is extremely important not to utilize fully the network resources. As rule-of-thumb guideline for switched fast full-duplex Ethernet, the average utilization limit of links should be 190%, and for switched shared fast Ethernet, the average limit of links should be 85% [25]. The projected growth in users, network services, business, etc. must be all taken into consideration to extrapolate the required growth capacity or the future growth factor. In our study, we will ascertain that 25% of the available network capacity is reserved for future growth and expansion. For simplicity, we will apply this evenly to all network resources of the router, switches, and switched-Ethernet links. However, keep in mind this percentage in practice can be variable for each network resource and may depend on the current utilization and the required growth capacity. In our methodology, the reservation of this utilization of network resources is done upfront, before deploying the new service, and only the left-over capacity is used for investigating the network support of the new service to be deployed.3.4. Perform network measurementsIn order to characterize the existing network traffic load, utilization, and flow, networkmeasurements have to be performed. This is a crucial step as it can potentially affect results to be used in analytical study and simulation. There are a number of tools available commercially and noncommercially to perform network measurements. Popular open-source measurement tools include MRTG, STG, SNMPUtil, and GetIF [26]. A few examples of popular commercially measurement tools include HP OpenView, Cisco Netflow, Lucent VitalSuite, Patrol DashBoard, Omegon NetAlly, Avaya ExamiNet, NetIQ Vivinet Assessor, etc. Network measurements must be performed for network elements such as routers, switches, and links. Numerous types of measurements and statistics can be obtained using measurement tools. As a minimum, traffic rates in bits per second (bps) and packets per second (pps) must be measured for links directly connected to routers and switches. To get adequate assessment, network measurements have to be taken over a long period of time, at least 24-h period. Sometimes it is desirable to take measurements over several days or a week. One has to consider the worst-case scenario for network load or utilization in order to ensure good QoS at all times including peak hours. The peak hour is different from one network to another and it depends totally on the nature of business and the services provided by the network.Table 2 shows a summary of peak-hour utilization for traffic of links in both directions connected to the router and the two switches of the network topology of Fig. 1. These measured results will be used in our analysis and simulation study.外文文献译文以太网网络电话传送调度:方法论与案例分析摘要对网络数据研究者与设计师来说,IP电话或者语音IP电话调度是一项重大而艰巨的任务。

相关文档
最新文档