相似三角形的判定导学案
相似三角形的判定导学案

27.2.1 相似三角形的判定(一)学习目标1.掌握“两角对应相等,两个三角形相似”的判定方法.2.能够运用三角形相似的条件解决简单的问题.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似”难点:三角形相似的判定方法3的运用.一、复习回顾(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.(3)如(2)题图,△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?二、新课学习1、三角形相似的判定方法3如果一个三角形的两个角与另一个三角形两个角对应相等,那么这两个三角形相似.2、例题讲解例1已知:如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F ,若AB=4,AD=5,AE=6,求DF 的长.分析:要求的是线段DF 的长,观察图形,我们发现AB 、AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF 的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.3、课堂练习1 、填一填(1)如图3,点D 在AB 上,当∠=∠时,△ACD ∽△ABC 。
(2)如图4,已知点E 在AC 上,若点D 在AB 上,则满足条件,就可以使△ADE 与原△ABC 相似。
2.已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .3. 如图,△ABC 中, DE ∥BC ,EF ∥AB ,试说明△ADE ∽△EFC .ABD图 3 ● A BC E图 44.下列说法是否正确,并说明理由.(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形.三、拓展延伸1 、图1中DE ∥FG ∥BC ,找出图中所有的相似三角形。
相似三角形导学案

3.4.1 相似三角形的判定学习目标:1、了解相似三角形的判定方法:用平行法判定三角形相似;2、会用平行法判定两个三角形相似。
学习重点:用平行法判定两个三角形相似学习难点:平行法判定三角形相似定理的推导学习过程:一、问题导入:1、同学们,还记得什么是相似图形吗?相似的图形具有怎样的特征呢?2、在实际生活中你见过的哪些三角形是相似的?怎样判定两个三角形相似呢?二、出示目标:三、自主研读:学生自学教材77页至78页四、合作探究:如图,在△ABC中,D为AB任意一点,过点D作BC的平行线DE,交AC于点E。
(1)△ADE与△ABC的三个角分别相等吗?(2)分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?(3)△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?从而我们可以得出相似三角形的判定方法:平行于的直线与相交,截得的三角形与原三角形。
五、展示提升:1、如图,点D为△ABC的边AB的中点,过点D作DE∥BC,交AC于点E,延长DE至点F,使DE=EF,求证:△CFE∽△ABC.2、如图,在ABCD中AE=EB,AF=2,求FC的长。
3、书本78页第一个练习题4、书本79页第二个练习题六、达标检测:1、在ABCD中,AE=,连接BE交AC于点F,AC=12,则AF=_____。
2、如图,已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B落在AD的F处,若四边形EFDC~四边形ABCD,则AD=_____。
3、已知Rt△ABC~Rt△BDC,且AB=3,AC=4,求CD的长。
4、矩形草坪的长为50m,宽为20m,沿草坪四周修等宽的小路,能否使小路内外边缘的两个矩形相似,说明理由。
相似三角形的判定定理1学习目标:1、了解相似三角形的判定定理1:两角分别相等的两个三角形相似;2、会用相似三角形的判定定理1判定两个三角形相似。
学习重点:运用相似三角形的判定定理1证明两个三角形相似学习难点:理角相似三角形判定定理1的推导过程学习过程:一、问题导入:观察你与老师的一个三角板(含30°,60°角的),这两个三角板的外围的三角形的三个内角有什么关系?它们所在的三角形相似吗?二、出示目标:三、自主研读:学生自学教材79页至80页四、合作探究:''',使∠A′=∠A,∠B′=∠B.任意画△ABC和△A B C(1)∠C=∠C′吗?(2)分别度量这两个三角形的边长,它们是否对应成比例?(3)把你的结果与同学交流,你们的结论相同吗?由此你有什么收获?如何证明上题中两个三角形相似呢?证明:由此我们可以得出相似三角形的判定定理1:此定理用数学式子表示为:五、展示提升:1、在△ABC中,∠C=900,从点D分别作边AB,BC的垂线,垂足分别为点E、F,DF与AB交于点H,求证:△DEH~△BCA。
相似三角形的判定(1)导学案ywm

3.3.1相似三角形的判定(一)【学习目标】(1) 会用符号“∽”表示相似三角形如△ABC ∽ △A′B′C′; (2) 知道当△ABC 与△A′B′C′的相似比为k 时,△A′B′C′与△ABC 的相似比为1k .(3) 掌握两边对应成比例,夹角相等的两个三角形相似的判定方法。
【学习重点】理解掌握三边对应成比例的两个三角形相似的判定方法及应用.【学习难点】 运用三边对应成比例的两个三角形相似判定三角形相似. 一、知识回顾平行于三角形一边与其它两边(或其延长线)相交,所截得的对应线段_________。
1、如图:MN//BC,则: ①AM AN =______=______. ②AM AB =______=______. 2、如图,DE//BC ,则: ①ADAB =______=______. ②BDAB=______. 3、把一个△ABC 放大后得到△A′B′C′,那么△ABC 与△A′B′C′有什么关系?①放大后AB 边对应______,BC 边对应______,AC 边对应ABCM NC BA A′B′C′______,∠A 对应______,∠B 对应______,∠C 对应______. ②对应边有什么关系?对应角有什么关系? 二 合作探究阅读教材P “说一说”,思考下列问题:1、什么叫作相似三角形?如何表示相似三角形? 在△ABC 与△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且AB A ′B ′=BC B ′C ′=AC A ′C ′=k .我们就说△ABC 与△A′B′C′相似,记作:△ABC ∽△A′B′C′,对应边的比AB A ′B ′=BC B ′C ′=ACA ′C ′=k 叫△ABC 与△A′B′C′的相似比.【注意】①△A′B′C′与△ABC②两个相似三角形的相似比具有顺序性。
根据相似三角形的定义,不难得到相似三角形性质:△ABC ∽△A′B′C′══>⎩⎨⎧∠A=_____、∠B=_____、∠C=____.AB A ′B ′=BC B ′C ′=AC A ′C ′2、【问题】如果k=1,这两个三角形有怎样的关系?3、【问题】已知:如图,DE//BC.求证:△AD E ∽△ABC.∵D E ∥BC∴∠B=∠ADE, ∠C=∠AEDAD AB =AE AC =DEBC;又:∠A=∠A∴△ADE ∽△ABC (相似三角形定义) 【归纳总结】相似三角形判定预备定理:平行于三角形一边的直线截其他两边(或两边延长线),所得的三角形与原三角形_________.∵D E ∥BC ∴△ABC ∽△ADE【注意】平行截相似的三种基本图形。
相似三角形的性质 导学案(含答案)

4.7相似三角形的性质 导学案 第1课时 相似三角形的性质定理(一)1、预习目标 1.三角形中除三条边外的主要线段有角平分线、高、中线.2.相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比. 2、课堂精讲精练【例1】如图,某同学拿着一把12 cm 长的尺子,站在距电线杆30 m 的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60 cm ,则电线杆的高度是(D)A .2.4 mB .24 mC .0.6 mD .6 m【跟踪训练1】若△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,已知BD ∶B ′D ′=5∶2,AC =10 cm ,则A ′C ′=4_cm .【跟踪训练2】已知△ABC ∽△DEF ,且相似比为4∶3,若△ABC 中∠A 的平分线AM =8,则△DEF 中∠D 的平分线DN =6.【例2】如图,△ABC 是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM AD =HGBC ;(2)求矩形EFGH 的周长.解:(1)证明:∵四边形EFGH 为矩形,∴EF ∥GH.∴∠AHG =∠ABC ,∠AGH =∠ACB.∴△AHG ∽△ABC. ∵AD ⊥BC ,∴AM ⊥HG. ∴AM AD =HG BC. (2)设HE =x cm ,则MD =x cm ,HG =2x cm.∵AD =30 cm ,∴AM =(30-x)cm. ∵AM AD =HG BC ,∴30-x 30=2x 40. 解得x =12.∴矩形EFGH 的周长为2(x +2x)=72 cm.【跟踪训练3】如图,已知正方形DEFG 的顶点D ,E 在△ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.如果BC =4,△ABC 的面积是6,那么这个正方形的边长是127.3、课堂巩固训练1.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,AD 与A ′D ′分别是△ABC 与△A ′B ′C ′的角平分线,则AD ∶A ′D ′等于(A)A .3∶4B .4∶3C .9∶16D .16∶92.如图,在边长为2的正方形ABCD 中,E 为AB 的中点,BM ⊥CE ,则Rt △BEM 与Rt △BCM 斜边上的高的比为(C)A .1∶3B .2∶3C .1∶2D .3∶53.如图,在梯形ABCD 中,AD ∥BC ,两腰BA 与CD 的延长线交于点P ,PF ⊥BC 于点F ,交AD 于点E.若AD =2,BC =5,EF =3,则PF =5.4.如图,在△ABC 中,BC =12,AD 是BC 边上的高,AD =8,P ,N 分别是AB ,AC 边上的点,Q ,M 是BC 上的点,连接PQ ,PN ,MN ,PN 交AD 于点E.若四边形PQMN 是矩形,且PQ ∶PN =1∶2,求PQ ,PN 的长.解:设PQ =y ,则PN =2y. ∵四边形PQMN 是矩形,∴PN ∥QM.∴∠APN =∠B ,∠ANP =∠C. ∴△APN ∽△ABC. ∴PN BC =AE AD ,即2y 12=8-y 8. 解得y =247.∴PQ =247,PN =487.第2课时 相似三角形的性质定理(二)1、预习目标1.相似三角形的周长比等于相似比,面积比等于相似比的平方.2.上述性质可推广到相似多边形,即相似多边形的周长比等于相似比,面积比等于相似比的平方. 2、课堂精讲精练【例1】如图,点D ,E 分别为△ABC 边AB ,AC 上的一点,且DE ∥BC ,S △ADE =4,S 四边形DBCE =5,则△ADE 与△ABC 的相似比为(D)A .5∶9B .4∶9C .16∶81D .2∶3【跟踪训练1】如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半.若BC =3,则△ABC 移动的距离是(D)A.32B.33C.62D.3-62【跟踪训练2】如图,在▱ABCD 中,E 为CD 的中点,AE 与BD 相交于点F.若△DEF 的面积为2,则▱ABCD 的面积为24.【例2】如图,在Rt △ABC 中,∠ACB =90°,点M 是斜边AB 的中点,MD ∥BC ,且MD =CM ,DE ⊥AB 于点E ,连接AD ,BD.(1)求证:△MED ∽△BCA ;(2)当S △BDM =13S △ABC 时,求S △BED ∶S △MED 的值.解:(1)证明:∵MD ∥BC , ∴∠DME =∠CBA. ∵∠DEM =∠ACB =90°, ∴△MED ∽△BCA.(2)∵∠ACB =90°,点M 是斜边AB 的中点,∴MB =12AB.∵MC =MD ,∴MD =12AB.∵△MED ∽△BCA ,∴S △MED S △ABC =(DM AB )2=14.∵S △BDM =13S △ABC ,∴S △MED S △BDM =34.又∵S △MED +S △BED =S △BDM , ∴S △BED ∶S △MED =1∶3.【跟踪训练3】如图所示,在▱ABCD 中,点E 是CD 的延长线上一点,且DE =12CD ,BE 与AD交于点F.(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.解:(1)证明:∵四边形ABCD 为平行四边形, ∴∠A =∠C ,AB ∥CD ,AD ∥BC ,AB =CD. ∴∠ABF =∠E. ∴△ABF ∽△CEB. (2)∵AD ∥BC ,∴△DEF ∽△CEB.∴S △DEF S △CEB =(DE CE )2.∵DE =12CD ,AB =CD ,∴DE CE =13,DE AB =12.∴S △DEF S △ABF =14,S △DEF S △CEB =19. ∴S △ABF =8,S △CEB =18.∴S ▱ABCD =S △ABF +S △CEB -S △DEF =8+18-2=24.3、课堂巩固训练1.如图,△ABC 中,DE ∥BC ,若AD ∶DB =1∶2,△ADE 的周长是6,则△ABC 的周长是(C)A .6B .12C .18D .242.已知△ABC 与△DEF 相似且周长的比为2∶3,则△ABC 与△DEF 的面积比为(D)A .2∶3B .16∶81C .9∶4D .4∶93.如图,E为▱ABCD的边AB延长线上的一点,且BE∶AB=2∶3,△BEF的面积为4,则▱ABCD 的面积为(A)A.30 B.27 C.14 D.324.如果两个相似三角形的周长比为1∶2,那么它们某一组对应边上的高之比为1∶2.5.如图,在梯形ABCD中,AD∥BC,两腰的延长线相交于点P.若S△PAD∶S梯形ABCD=1∶2,且BC=26,求AD的长.解:∵S△PAD∶S梯形ABCD=1∶2,∴S△PAD∶S△PBC=1∶3.∵AD∥BC,∴△PAD∽△PBC.∴ADBC=33.∴AD=2 2.。
相似三角形的判定导学案

相似三角形的判定导学案一、导学1.导入课题:问题1:我们学过哪些判定两个三角形全等的方法?问题2:类比上面这些方法,猜一猜判定两个三角形相似的方法有哪些? 由此导入课题(板书课题).2.学习目标:(1)能用符号表示两个三角形相似,能确定它们的相似比,对应边和对应角.(2)能叙述平行线分线段成比例定理及其推论,并能结合图形写出正确的比例式.(3)能用平行线分线段成比例定理的推论证明三角形相似判定的引理.3.学习重点,难点重点:平行线分成段成比例定理及其推论.难点:正确理解定理中的“对应成段”.二、分层次学习 第一层次学习1.自学指导(1)自学内容:P29页到P30页思考上面部分.(2)自学时间:8分钟.(3)自学方法:学生分小组采用度量的方法和己学知识探究平行线分线段成比例定理.(4)自学参考提纲:①三个角 ,三条边 的两个三角形相似.在△ABC 和△A ′B ′C ′中, 如果∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′,A C CA C B BC B A AB ''=''=''=k, 那么△ABC 和△AA ′B ′C ′与△ABC 的相似比为.○a 如下左图,量一量,算一算,BC AB 与EF DE 的值相等吗?AB BC 与DE EF 呢?AC AB 与DF DE 呢?AC BC 与DF EF 呢? ○b 由上一步可得:∵1l∥2l ∥3l ,∴BC AB __EF DE ,AB BC __DE EF ,AC AB __DF DE ,AC BC __DFEF . ○c 平行线分线段成比例定理:_____________________________. ○d 指下出左图中的所有对应线段(如AB 与DE):_____________________.④把平行线分线段成比例定理应用到三角形中,会出现图(1)和图(2)两个基本图形:在这两个图形中,把DE 看成平行于△ABC 的边BC 的直线,截其他两边(如图1)或其他两边的延长线(如图2),于是可得推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段______.即∵DE ∥BC,∴DB AD = ,AD AB = , BD AB = . 2.自学:结合自学指导进行自学.3.助学:(1)师助生:①明了学情:能否正确理解“对应线段”,尤其是在推论的两个图形中.②差异指导:根据学情,指导学生结合图形理解“对应线段”.(2)生助生:小组交流研讨.A D EBC ED A B C 图(1) 图(2)图(3) 4.强化:(1)分清平行线分线段成比例定理条件与结论,弄清哪些是“对应线段”.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等(强调“对应”).第二层次学习1.自学指导(1)自学内容:p30页思考到31页.(2)自学时间:6分钟.(3)自学参考提纲:①已知DE ∥BC,运用定义证明△ADE∽△ABC (如图3,作EF ∥AB).证三个角___:∠A 公共,由DE∥BC 可得∠ADE=___,∠AED=___.证三条边___:由__∥__可得AB AD =___,由__∥__可得BCBF =__. 由__∥__,__∥__可得四边形BFED 是___,所以BF=__.故DE BC =__=__.所以△ADE∽△ABC②如图(4), DE ∥BC 分别交BA 、CA 的延长线于点 D 、点E ,那么△ADE 与△ABC 相似吗?能否给予证明?③如图,△ABC 中,DE ∥BC ,EF ∥AB ,求证△ADE∽△EFC.④图中DE ∥FG ∥BC ,找出图中所有的相似三角形.2.自学:结合对照自学指导进行自学.3.助学(1)师助生:①明了学情:看学生能否添加辅助线将图(4)转化为图(3)的情形.②差异指导:根据学情指导学生弄清引理的证明思路和方法.(2)生助生:小组交流研讨.4.强化(1)三角形相似的判定引理及其两个基本图形图(3)和图(4).(2)点两名学生板演第③、④题,并点评.三、评价1.学生学习的自我评价:这节课你有什么收获?还有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生的学习参与程度、思维状况、小组协作等方面的课堂表现去评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).E D AB C 图(4) B A E F D G C。
整理相似三角形判定导学案

相似三角形的判定导学案一、学习目标1、经历两个三角形相似条件的探索过程,初步掌握“两角对应相等的两个三角形相似”的判定条件。
2.掌握“两角对应相等,两个三角形相似”的判定方法.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1.重点:三角形相似的判定方法——“两角对应相等,两个三角形相似”2.难点:三角形相似的判定方法的运用.三、教具准备1、学生每人制作△ABC纸片,使∠BAC=60°2、学生每人制作△ABC纸片,使∠BAC=60°,∠ABC==45°四、教学过程(一)复习导入1、是相似三角形2、相似三角形的判定方法方法一:方法二:(二)动手操作探索新知1拿出每人制作∠BAC=60°的△ABC,组内比较交流,你们所画三角形相似吗?结论:2拿出每人制作的∠BAC=60°,∠ABC=45°的△ABC,组内比较交流,你们所画三角形相似吗?结论:(三)严谨思维,推理论证思考:如果两个三角形有两组角对应相等,它们一定相似吗?请同学们试着证明。
已知,如图在∆ABC和∆A'B'C'中,∠A=∠A',∠B=∠B';求证:△ABC∽△A’B’C’证明:在A’B上截取A’D=AB,过点D作DE∥B’C’交A’C’于点E ∴△A’DE∽()∴∠A’DE=∠B'又∵∠B=∠B'∴∠A’DE=________ 在∆ABC和∆A'DE ∴△ABC≌△A’DE ( ) ∴△ABC∽△A’B’C’(四)【归纳】三角形相似的判定方法简称用数学符号表示:∵∴(五)新知运用如图,△ABC 中, DE ∥BC,EF ∥AB,试说明△ADE ∽△EFC .(六)课内练习1、如图,在矩形ABCD 中,DE ⊥AC ,垂足为E ,求证:△ADE ∽△ACD4.如图,在□ABCD 中,EF ∥AB ,DE:EA=2:3,EF=4,求CD 的长(七)课堂总结1、谈收获2、找对应角的方法(八)当堂检测1 、我会填如图,点D 在AB 上,当∠ =∠ 时, △ACD ∽△ABC 。
九年级数学 相似三角形的判定(教案、导学案)

27.2相似三角形27.2.1 相似三角形的判定第3课时相似三角形的判定(3)【知识与技能】1.掌握“两角对应相等的两个三角形相似”的判定方法以及直角三角形中特有的判定相似的方法.2.能运用相似三角形的判定方法解决具体问题.【过程与方法】在观察、动手探究等活动中,掌握判定三角形相似的方法,体会转化思想.【情感态度】经历从实验探究到归纳证明的过程,发展学生的探究、交流能力和推理能力.【教学重点】掌握相似三角形的判定定理3及直角三角形中特有的相似判定方法. 【教学难点】探究两个判定定理的过程及其证明方法.一、情境导入,初步认识观察展示教师用的大三角板(45°和45°) 及学生用小三角尺(45°和45°),请学生们观察这样的两个三角形相似吗?对应相等,这样的两个三角形相似吗?【教学说明】教师简要回顾学过的相似三角形的判定方法1,2后,提出“还有没有其它的 方法来判定两个三角形相似呢?”,进而展示所准备好的三角尺,让学生获得感性认识,顺理成章地提出思考,激发学生求知欲望.二、思考探究,获取新知问题1 作△ABC 和△A ′B ′C ′,使∠A=∠A ′,∠B=∠B ′,分别度量这两个三角形的边长,计算C A AC C B BC B A AB '''''',,的值,你有什么发现? 由此你能作出一个怎样的猜想?【教学说明】让全班同学动手画图,并按要求独立完成探索过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,则会得到它们 的比值相等,从而初步了解“有两个角对应相等的两个三角形相似”的结论.教师巡视,对出现偏差的结论应予以帮助,查找问题,尽量让他们也能获得正确结论.问题2 如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′,则△ABC ~△A ′B ′C ′吗?说说你的理由.【教学说明】教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.对应相等,那么这两个三角形相似.试一试如图,点D是AB边上一点,且∠ACD=∠B,试问:图中是否存在能够相似的二角形?如果存在,请指出来,并说明理由. 【教学说明】现学现用,巩固所学新知识.问题3对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的”,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?【教学说明】教师应先与学生一道交流,找出两个直角三角形的已知条件有哪些(用图形和符号语言来表述),从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而获得结论.然后让学生独立完成,或相互交流获得论证过程.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似.三、典例精析,掌握新知例1教材P35例2.例2如图,Rt△ABC中,CD是斜边AB边上的高线.求证:(1)△ABC~△CBD;(2)CD2=AD•DB.【教学说明】例1可让学生自主探究,独立完成,再相互交流.例2则需师生共同探讨,利用直角三角形及高线定义找出图中能够相等 的角,从而获得相似的三角形有哪些,进而可解决问题.但它的证明过程仍可由学生自己完成,教师再挑选两至三份作业予以展示,共同评析,达到掌握本节知识的目的.四、运用新知,深化理解1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.2.如图,AD 、BE 是AABC 的高线,它们相交于点 F.求证:AF • DF=BF • EF.3. 如图,△ABC 中,CD 是边AB 上的高,且BD CD CD AD ,试求∠ACB 的大小.【教学说明】1,3两题分别应用本节的两种三角形相似的判定方法来获得结论,是对本节知识较好的理解与掌握的体现,而第2题则是用一般三角形相似的判定方法来解决直角三角形中的相似问题,具有代表性.这些练习可根据实际情况选做,要求学生自主完成或相互交 流来得到结论.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.【教学说明】釆用师生互动方式进行,教师设问,学生抢答,进行必要的知识梳理.1.布置作业:从P42〜44习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时应强调学生自主探究的原则,让学生通过观察、实验、动手探究等方式掌握判定三角形相似的方法.整堂课应注重转化思想的运用,本课时难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.27.2.1相似三角形的判定第3课时相似三角形的判定(3)——相似三角形的判定3和直角三角形相似的判定一、新课导入1.课题导入情景:拿一个含30°角的三角尺,让学生判断其内、外轮廓构成的两个含30°角的直角三角形是否相似.问题1:你是怎么判定的?能用前面学习的判定定理判定它们相似吗?问题2:我们由三角形全等的SSS和SAS的判定方法类似地得到了三角形相似的判定定理,那么能否同样地由三角形全等的ASA或AAS类比得到相应的三角形相似的判定方法呢?(板书课题)2.学习目标(1)知道两角分别相等的两个三角形相似;知道斜边、直角边成比例的两个直角三角形相似.(2)能证明结论“斜边、直角边成比例的两个直角三角形相似”.(3)能灵活选择适当的方法证明两个三角形相似.3.学习重、难点重点:相似三角形的判定方法3以及直角三角形相似的判定方法.难点:定理的证明.二、分层学习1.自学指导(1)自学内容:教材P35.(2)自学时间:8分钟.(3)自学方法:仿照上课时探究1,2完成探究提纲.(4)探究提纲:①探究:与同伴合作,一人先画△ABC,另一人再画△A′B′C′,使得∠A=∠A′,∠B=∠B′.a.操作判断:分别测量这两个三角形的边长,计算,,AB AC BC A B A C B C ''''''的值,你有什么发现?∠C=∠C′ 吗?由此你得到一个什么样的猜想?b.交流比较:把你的结果跟你周围的同学比较,你们的结论相同吗?c.归纳猜想:两角分别相等的两个三角形相似.d.推理证明:已知△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC ∽△A′B′C′.证明:在A′B′上截取A′D=AB,过D 作DE ∥B′C′交A′C′于点E.∵DE ∥B′C′,∴△A′DE ∽△A′B′C′.又∵∠A=∠A′,∠B=∠B′,DE ∥B′C′,AB=A′D,∴∠A′DE=∠B′=∠B.∴△ABC ≌△A′DE.∴△ABC ∽△A′B′C′.e.推理格式:∵∠A=∠A′,∠B=∠B′,∴△ABC ∽△A′B′C′.②教材P35例2:如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB,垂足为D,求AD 的长.a.AB,AC,AE,AD 分别是哪两个三角形的边?这两个三角形相似吗?b.怎样证明这两个三角形相似?由此可以得到关于AB,AC,AE,AD 的一个怎样的比例式?c.写出你的解答过程.AB,AC 是△ABC 的边,AE,AD 是△AED 的边,这两个三角形相似.∵ED ⊥AB,∴∠EDA=90°,又∵∠C=90°,∠A=∠A,∴△AED ∽△ABC.∴AD AE AC AB =.∴AD=·AC AE AB=4. ③如图,若∠B=∠AED ,则△ADE ∽△ACB 吗?为什么?△ADE ∽△ACB.理由:∵∠B=∠AED,∠A=∠A,∴△ADE∽△ACB.④底角相等的两个等腰三角形相似吗?顶角相等的两个等腰三角形相似吗?证明你的结论.(相似,证明略)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生对三角形相似的判定定理3的掌握情况.②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨.4.强化:∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′.1.自学指导(1)自学内容:教材P36.(2)自学时间: 6分钟.(3)自学方法:注意怎样根据已知条件选择合适的定理.(4)自学参考提纲:①由已知∠C=∠C′=90°,AB ACA B A C='''',能根据定理“两边成比例且夹角相等的两个三角形相似”证明两个三角形相似吗?为什么?(不能,∠C和∠C′并非对应两边的夹角)②选择定理“三边成比例的两个三角形相似”证明两个三角形相似,还差什么条件?AB BC A B B C=''''③能否像前面三个判定定理的证明一样,构造一个与已知的一个三角形全等而与已知的另一个三角形相似的中间三角形的方法来证明呢?④如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:a.△ACD∽△ABC;b.△CBD∽△ABC.证明:∵CD⊥AB,∴∠ADC=∠CDB=90°.∴∠ADC=∠ACB=∠CDB.a.在△ACD和△ABC中,∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC.b.在△CBD和△ABC中,∵∠B=∠B,∠CDB=∠ACB,∴△CBD∽△ABC.⑤如果Rt△ABC的两条直角边分别为3和4,那么以3k和4k(k>0)为直角边的直角三角形一定与Rt△ABC相似吗?为什么?(相似,理由:两边成比例且夹角相等的两个三角形相似)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:直角三角形相似判定定理的归纳与证明.②差异指导:根据学情进行指导.(2)生助生:生生互动交流、研讨.4.强化(1)直角三角形相似的判定方法.(2)点学生口答后,点3位学生板演,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?有哪些收获和不足?2.教师对学生的评价:(1)表现性评价:从学习态度、参与程度、思维状况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时应以学生自主探究为原则,让学生通过观察、实验、动手操作等方式探究并掌握判定三角形相似的方法.在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力.整堂课应注重转化思想的运用,难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.一、基础巩固(70分)1.(10分)如图,当∠ADE=∠C(答案不唯一)时,△ABC∽△AED(填写一个条件).第1题图第2题图2.(10分)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC ∽△EPD,则点P所在的格点为(C)A.P1B.P2C.P3D.P43.(10分)如图,△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于点D,求证:△ABC∽△BDC.证明:∵AB=AC,∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠DBC.在△ABC和△BDC中,∠A=∠DBC,∠C=∠C.∴△ABC∽△BDC.4. (10分)如图,AD是Rt△ABC的斜边上的高.若AB=4 cm,BC=10 cm,求BD 的长.解:∵AD⊥BC,∠BAC=90°,∴∠ADB=∠CAB.∴△ABD∽△CBA,∴BD BA AB CB=,即4410BD=,BD=1.6(cm).5.(30分)从下面这些三角形中,选出相似的三角形.①、⑤、⑥相似,③、④、⑧相似,②和⑦相似.二、综合应用(20分)6.(20分)如图,△ABC中,D在线段BC上,∠BAC=∠ADC,AC=8,BC=16.(1)求证:△ABC∽△DAC;(2)求CD的长.(1)证明:∵∠BAC=∠ADC,∠C=∠C,∴△ABC∽△DAC.(2)解:∵△ABC∽△DAC,∴CD ACCA BC=,即8816CD=,∴CD=4.三、拓展延伸(10分)7.(10分)如图,M是Rt△ABC的斜边BC上异于B、C的一个定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)A.1条B.2条C.3条D.4条。
相似三角形的判定(3)导学案

年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1227.2.1 相似三角形的判定(3)学习目标:1.记住“三边成比例的两个三角形相似”的判定方法,以及“两边成比例且夹角相等的两个三角形相似”的判定方法.2.能够运用三角形相似的条件解决简单的问题.重点 : 记住两种判定方法,会运用两种判定方法判定两个三角形相似.难点 : 1. 三角形相似的条件归纳、证明;2. 会准确的运用两个三角形相似的条件来判定三角形是否相似.预学案【回顾】1.两个三角形全等有哪些判定方法?2.我们学习过哪些判定三角形相似的方法?3.全等三角形与相似三角形有怎样的关系?4.如果要判定△ABC 与△A ′B ′C ′相似,是不是一定需要一一验证所有的对应角和对应边的关系?(自主学习)1. 三边________的两个三角形相似.如下图,如果AB A ′B ′=BC B ′C ′=AC A ′C ′,则△ABC ________△A ′B ′C ′.2. 两边___________且夹角________的两个三角形相似. 如下图,如果''''C A AC B A AB ,△A =△A ′ 则△ABC △A ′B ′C ′探究案【探究一】探究三边成比例的两个三角形相似.在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?猜测:如果两个三角形的三边 , 那么这两个三角形相似.已知:求证:证明:归纳: 三角形相似的判定定理 :三边 的两个三角形相似.符号语言:△ ,△△ABC △ △DEF .【探究二】:探究两边成比例且夹角相等的两个三角形相似.类似判定三角形全等的SAS 方法,能不能通过两边和夹角判定两个三角形相似呢?事实上,我们有利用两边和夹角判定两个三角形相似的定理:△''''C A AC B A AB ,△A =△A ′ △△ABC △△A ′B ′C ′归纳:两边___________且夹角________的两个三角形相似.怎样证明这个定理呢?它的证明思路与证明前面定理的思路类似,先用同样的方法作一个与△A ′B ′C ′_______的三角形,再用相似三角形____________和已知条件证明所作三角形与△ABC __________.【探究三】 根据下列条件,判断△ABC 和△A ′B ′C ′是否相似,并说明理由.(1) AB =4 cm , BC =6 cm , AC =8 cm ,A ′B ′ =12 cm ,B ′C ′=18 cm ,A ′C ′=24 cm .(2)△A =120°, AB =7 cm ,AC =14 cm ,△A '=120°,A ′B ′ =3 cm ,A ′C ′=6 cm .检测案1. 如图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为 ( )2.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值 ( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个3.如图,△ABC 与 △ADE 都是等腰三角形,AD=AE ,AB=AC ,△DAB=△CAE. 求证:△ABC △△ADE.4.如图,△ABC 中,点 D ,E ,F 分别是 AB ,BC ,CA 的中点,求证:△ABC ∽△EF D .A .B .C .D . 第1题 A C B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.已知直角三角形 ABC,CD⊥AB。
C
问:1.图中有几个 Rt△?
2.有几对△相似?
3 求证:CD2 = AD×BD
AC2 =AD×AB
BC2 = BD×AB
ADB来自射影定理:1.直角三角形斜边上的高是两条直角边在斜边上的射影的比例中项; 2.每条直角边都是它在斜边上的射影和斜边的比例中项。
学习必备
欢迎下载
九年级数学自主学习导学案
班级____________
科目 设计人
数学
课题
田小宁
姓名____________
相似三角形判定定理的证明
审核人
赵淑芳
授课时间 序号
教学目标 了解相似三角形判定定理的证明过程,发展推理能力。
教学重点 相似三角形判定定理的证明过程 教学难点 相似三角形判定定理的证明过程
________(平行于三角形一边的直线与其他两边相交,截得的对应线 段成比例)。
过点 D 作 AC 的平行线,交 BC 于点 F,则 __________(平行于三角形一边的直线与其他两边相交,截得的对应线
段成比例)。 ∴____________ ∵DE∥BC,DF∥AC ∴四边形 DFCE 是平行四边形。 ∴DE=CF ∴____________ ∴____________
教学内容及过程
一.旧知回顾
1.相似三角形的定义、性质、相似比。
2.平行线分线段成比例定理及推论: 3.相似三角形的判定定理。
二.探究新知
(一)自主学习 定理 1 两角分别相等的两个三角形相似。 温馨提示:证明文字命题的步骤,引导学生进行画图,写出已知,求证,并写出证
明过程 第一步:学生根据文字命题画图,
四.课堂检测
习题 4.9 1,2,3,4 五.畅谈收获
通过本节课的学习,您学会了哪些知识和方法?哪里还有困惑?
1 2.已知:如图,在四边形 ABCD 中,∠B=∠ACD,AB=6,BC=4,AC=5,CD= 7 ,
求 AD 的长.
2
学习必备
欢迎下载
学习必备
欢迎下载
而∠ADE=∠B, ∠DAE=∠BAC, ∠AED=∠C, ∴____________ ∵∠A=∠A’, ∠ADE=∠B’, AD=A’B’, ∴△____≌△____ ∴△ABC∽△A’B’C’. 现在,我们已经有两种判定三角形相似的方法,用这两种判定三角形相似的方法 可以证明其他判定定理。 下面我们可以类比前面的证明方法,来继续证明定理 2 和 3。
第二步:根据图形和文字命题写出已知,求证。 已知:如图,在△ABC 和△A’B’C’中,∠A=∠A’,∠B=∠B’。 求证: △ABC∽△A’B’C’。 第三步:写出证明过程。(分析现在能说明两个三角形相似的方法只有相似三角形 的定义,我们可以利用这一线索进行探索,已知两角对应相等,根据三角形内角和定理 可以推出第三个角也相等,从而可得三角对应相等,下一步,我们只要再证明三边对应 成比例即可。根据平行线分线段成比例的推论,我们可以在△ABC 内部或外部构造平行 线,从而构造出与△A′B′C′全等的三角形。) 证明:在△ABC 的边 AB(或延长线)上截取 AD=A′B′,过点 D 作 BC 的平行线,交 AC 于点 E,则∠ADE=∠B,∠AED=∠C,
(二)小组合作交流完成定理 2 的证明
定理 2 两边成比例且夹角相等的两个三角形相似。 (三)独立完成定理 3 的证明 定理 3 三边成比例的两个三角形相似 小结:相似三角形的判定定理的选择:1.已知有一角相等,可选判定定理 1 和 2;
2.已知有两边对应成比例,可选判定定理 2 和 3。
三.学以致用