2015年全国五年级数学竞赛试题及答案
2015年.世界奥林匹克数学竞赛5年级试题.A卷

2015年.世界奥林匹克数学竞赛5年级试题.A卷第⼗三届世界奥林匹克数学竞赛(中国区)选拔赛五年级试卷⼀.知识题(每⼩题6分,共42分)1.如图所⽰,每个图中点的数量被称为“⾦字塔数”.请问从⼩到⼤第2015个“⾦字塔数”是__________.2.某⼯⼚买来0.7m和0.8m的两种钢条各若⼲根.这些钢条可以通过焊接得到许多不同长度的钢条(钢条不允许切割),那么在3.3m、3.6m、3.7m、3.8m、3.9m这些长度中,________m是不能通过焊接得到的.3.观察下图44的表格,请问表格中所有数的平均数为________.20.1220.1320.1420.1520.1320.1420.1520.1620.1420.1520.1620.1720.1520.1620.1720.184.如上图所⽰的四边形的⾯积是________.5.加拿⼤2014年的⼿机号码是7位数,⼈⼝普查结束后,议会决定在2015年统⼀将全国的⼿机号码升⾄8位数(⼿机号码第1位数字不能为0),以应对因为⼈⼝增长带来的⼿机号码将不够⽤的情况.请问2015年,加拿⼤的⼈⼝数量将突破________万.6.某⼈驾船在河流中匀速逆流⾏驶,8:00时船上的⼀个⽊箱不慎掉⼊⽔中,⼀⼩时后发现情况,马上调头以相同的速度追赶顺流⽽下的⽊箱.请问追上⽊箱的时间为________.7.歌⼿蔡国庆在⼀⾸歌中唱道“⼀年有三百六⼗五个⽇出”,歌⼿陈奕迅有⾸歌叫《⼗年》,请问⼗年可能有______________________________________天.(写出所有可能的天数)⼆.能⼒题(每⼩题6分,共36分)1.“数缺形不直观,形缺数不⼊微”,数形结合思想是数学学习中的⼀个重要的数学思想,请仔细观察下⾯⼏幅图形并回答后⾯的问题:(1.5分46?=分)图D 有问题①由图形________可知勾股定理222a b c +=成⽴;②由图形________可知平⽅差公式()()22a b a b a b -=+-;③由图形________可知完全平⽅公式()2222a b a b ab +=++成⽴;④由图形________可知公式()()224a b a b ab +--=成⽴.2.敏敏在家的后院养了⼀只⼩⽩兔,为了控制院中草的⽣长,敏敏把⼩⽩兔喂养在如下图所⽰的⼀个可移动的圈栏内.已知这个圈栏为长3⽶、宽2⽶的长⽅形.接连四天圈栏分别向东移动1⽶,向南移动2⽶,向西移动1⽶,向北移动2⽶.请问⼩⽩兔可以啃咬的草地⾯积是________平⽅⽶.3.房间⾥有3种⼩动物:⼩⽩⿏、⼩花猫、⼩黄狗,如果猫的数量不超过狗,狗就会欺负猫;如果⿏的数量不超过猫,猫就会欺负⿏;如果猫、狗数量之和不超过⿏,⿏就会偷吃东西,现在房间⾥没有发⽣任何事情,但是再进来任意⼀只,都会打破平衡.那么,原来房间⾥有________只⼩动物.4.⼀个棱长为15的正⽅体⽊块,在它的⼋个顶点处各截去⼀个棱长分别为1、2、3、4、5、6、7、8的⼩正⽅体.则这个⽊块剩下部分的表⾯积可能是________.5.飞马“帕加索斯”是古希腊神话中缪斯⼥神的坐骑,传说被其马蹄踏过的地⽅就会有灵泉涌出,诗⼈引⽤之后可获得灵感.下图展⽰了如何通过“平移”来穿创造“帕加索斯”飞马:步骤1:在正⽅形ABCD中,从点A引⼀条折线⾄点B,如图1;步骤2:把折线AB平移到DC处,如图2;步骤3:在正⽅形ABCD中,从点A引⼀条折线⾄点D,如图3;步骤4:把折线AD平移到BC处,如图4.则图4中“帕加索斯”所围成图形⾯积________正⽅形ABCD的⾯积.(填“>”“<”或“=”)6.安安买了个玩具⼩汽车,⼩汽车的底部有如上图所⽰的两个互相咬合的齿轮,安安在齿轮上各画了⼀条带箭头的直线.开始时两个箭头正好相对.然后安安将⼩轮顺时针⽅向转动,同时⼤轮被带动着逆时针⽅向转动.若⼤轮有41个齿,则⼩轮在转了________圈以后这两个箭头第⼀次重新相遇.三.过程题(每⼩题10分,共30分)1.下图是⼀⽚稻⽥,每个⼩⽅格的边长都是1⽶,其中A、B、C三个圆圈是⽔洼.⼀只⼩鸟飞来觅⾷,它最初停留在0号位,过了⼀会⼉,它跃过⽔洼,飞到关于A点对称的1号位;不久,它⼜飞到关于B点对称的2号位;接着,它飞到关于C点对称的3号位,再飞到关于A点对称的4号位,……,如此继续,⼀直A、B、C对称地飞下去,那么,2019号位和0号位之间的距离是多少⽶?并简单说明你的理由.2.某迷宫的正确路线如下图所⽰,已知迷宫中⽅格的边长都是1⽶,且每⼀段路都按照螺旋形顺次编号为1、2、3、4、…,请问:⑴编号2016的那段路有多长?(5分)⑵长为2016⽶的路段编号是多少?(5分)3.“⼟豪”⾦⽼师要在微信群⾥陆续地发⼤、中、⼩三个“红包”,但⼤伙不知道顺序如何,也不能看出“红包”⼤中⼩,但可以⽐较当前“红包”与上个“红包”的⼤⼩.且“红包”出现时,每⼈必须马上选择“抢”或者“不抢”,否则“红包”将在下个“红包”出现之前被抢完.现在规定每⼈只能抢⼀个“红包”,请问:⑴红包出现的顺序⼀共有多少种不同情况?(5分)⑵采取某种策略能最⼤可能的抢到“⼤红包”,请问这个“最⼤可能”的可能性是多少?(5分)四.⽅法题(12分)朋友租了个店⾯开起了⼿机店,⼀个季度的租⾦是8000元加上若⼲台“⽼⼈机”.他抱怨说去年“⽼⼈机”的价格为每台75元,这笔租⾦相当于每平⽅⽶700元;但是现在“⽼⼈机”的市价已经涨到了每台100元,所以这笔租⾦相当于每平⽅⽶800元.他觉得有点贵了.请问朋友所租的店⾯⾯积是多少平⽅⽶?(⼀种⽅法得4分,两种⽅法得8分,三种及三种以上⽅法得12分)。
五年级上册数学竞赛试卷及答案

五年级上册数学竞赛试卷及答案五年级上册数学竞赛试卷及答案数学竞赛是一项锻炼学生思维能力和解题能力的活动。
在这场数学竞赛中,我们将选取五年级上册的知识点进行考察,帮助学生们巩固和拓展数学知识。
本次竞赛试卷分为三个部分,共计30道题目,难度从简单到困难逐渐递增。
其中,第一部分为基础题,共计10道题目,主要是为了考察学生对基础知识的掌握情况;第二部分为应用题,共计10道题目,主要是为了考察学生运用数学知识解决实际问题的能力;第三部分为拓展题,共计10道题目,主要是为了考察学生的数学思维能力和创新能力。
以下是本次数学竞赛的试卷及答案:一、基础题(每题2分,共计20分)1、计算:3+5= 答案:82、计算:8-6= 答案:23、计算:7×8= 答案:564、计算:40÷5= 答案:85、计算:12÷3= 答案:46、计算:25+3= 答案:287、计算:20-6= 答案:148、计算:15×3= 答案:459、计算:48÷8= 答案:610、计算:36÷9= 答案:4二、应用题(每题5分,共计25分)1、小明有10个苹果,他吃了4个,请问他还剩下多少个苹果?答案:10-4=62、小红有20元钱,她花了8元买了一本书,请问她还剩下多少钱?答案:20-8=123、小李有30个橘子,他送给了朋友10个,请问他还剩下多少个橘子?答案:30-10=204、小华有40个糖果,他分享给了同学们15个,请问他还剩下多少个糖果?答案:40-15=255、小张有50元零花钱,他捐了12元给贫困地区的孩子,请问他还剩下多少钱?答案:50-12=38三、拓展题(每题10分,共计50分)1、小明每天早上都要喝一杯牛奶,已知牛奶的净重为200毫升,请问他每天喝的牛奶重量为多少克?答案:200毫升 = 200克,因此小明每天喝的牛奶重量为200克。
2、小华和小明一起去公园玩耍,已知公园的门票价格为每人10元,他们一共带了80元,请问他们能买到几张公园门票?答案:80元可以买到8张公园门票。
2015年第十三届小学“希望杯”全国数学邀请赛试卷(五年级第1试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(五年级第1试)一、以下每题6分,共120分1.(6分)计算:=.2.(6分)9个13相乘,积的个位数字是.3.(6分)如果自然数a、b、c除以14都余5,则a+b+c除以14,得到的余数是.4.(6分)将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有个.5.(6分)如图,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半.则这个图形的周长是厘米.6.(6分)字母a,b,c,d,e,f,g分别代表1至7中的一个数字,若a+b+c=c+d+e=c+f+g,则c可取的值有个.7.(6分)用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体8个顶点处的小正方体都去掉,则此时的几何体的表面积是平方米.8.(6分)有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后第1位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这个三位数是.(π取3.14)9.(6分)循环小数0.04285.的小数部分的前2015位数字之和是.10.(6分)如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看分别是图形①、②、③则至少需要个小正方体.11.(6分)已知a与b的最大公约数是4,a与c、b与c的最小公倍数都是100,而且a≤b.满足条件的自然数a、b、c共有多少组?12.(6分)从写有1,2,3,4,5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有个.13.(6分)两位数和都是质数,则有个.14.(6分),分别表示两位数和三位数,如果+=1079,则a+b+c+d+e=.15.(6分)已知三位数,并且a(b+c)=33,b(a+c)=40,则这个三位数是.16.(6分)若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体个.17.(6分)某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成;如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是个.18.(6分)某次考试中,11名同学的平均分经四舍五入到小数点后第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是分.19.(6分)有编号为1,2,3,…2015的2015盏亮着的电灯,各有一个拉线开关控制.若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有盏.20.(6分)今年是2015年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同”,则小明现在岁.2015年第十三届小学“希望杯”全国数学邀请赛试卷(五年级第1试)参考答案与试题解析一、以下每题6分,共120分1.(6分)计算:=890.【分析】根据同分母分数相加减的法则:分母不变,只把分子相加减;由此,原式可写成几个同分母分数的差的形式,然后化简每个分数,再相减即可.【解答】解:=﹣﹣=1000﹣100﹣10=890.故答案为:890.【点评】本题解决的关键是仔细观察数字的特点,把原式转化为几个同分母分数的差的形式.2.(6分)9个13相乘,积的个位数字是3.【分析】数的个位数,13的个位数是3,因为1个3是3,3×3=9,3×3×3=27,3×3×3×3=81,3×3×3×3×3=243,…,即个位数依次为3、9、7、1、3、…,即每4个为一周期,9÷4=2…1,所以9个13相乘的积与1个13相乘积的个位数相同,是3;由此解答即可.【解答】解:因为1个3是3,3×3=9,3×3×3=27,3×3×3×3=81,3×3×3×3×3=243,…,即个位数依次为3、9、7、1、3、…,即每4个为一周期,9÷4=2…1,所以9个13相乘的积与1个13相乘积的个位数相同,是3;故答案为:3.【点评】要考查积的尾数特征,找出尾数出现的规律是解答本题的关键.3.(6分)如果自然数a、b、c除以14都余5,则a+b+c除以14,得到的余数是1.【分析】自然数a、b、c除以14都余5,设a=14x+5,b=14y+5,c=14z+5,所以a+b+c=14(x+y+z)+15,再除以14,即可得余数为1.据此解答即可.【解答】解:设a=14x+5,b=14y+5,c=14z+5,所以a+b+c=14(x+y+z)+15[14(x+y+z)+15]÷14=x+y+z+1…1,故答案为:1.【点评】本题考查了带余除法,关键是设出a=14x+5,b=14y+5,c=14z+5,所以a+b+c=14(x+y+z)+15.4.(6分)将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有25个.【分析】根据题意分析可知:如果恰好是一奇一偶的排下去,3、4、5…25、2、1,然后依次和1,2,3,…,25相减,则是:奇数﹣奇数=偶数,偶数﹣偶数=偶数;所以最多25个偶数,据此得解.【解答】解:根据题意分析可知:为了让得到的偶数最多,则按照一奇一偶的排列,如,3、4、5…25、2、1,然后依次和1,2,3,…,25相减,则是:奇数﹣奇数=偶数,偶数﹣偶数=偶数所以最多25个偶数.故答案为:25.【点评】本题主要考查学生对于奇数和偶数的性质的理解和应用,要熟练掌握.另外要学会分情况思考问题的能力.5.(6分)如图,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半.则这个图形的周长是60厘米.【分析】平面图形的周长,就是这个围成这个图形的各条边的长度的和.这个组合图形的外围折线部分向外平移,就成了一个大长方形,其长是16厘米,宽是8+8÷2+8÷2÷2=14(厘米),要求这个组合图形的周长,就相当于求长是16厘米、宽是14厘米的长方形的周长,利用长方形的周长=(长+宽)×2计算即可.【解答】解:[16+(8+8÷2+8÷2÷2)]×2=(16+14)×2=60(厘米)答:这个图形的周长是60厘米.故答案为:60.【点评】考查了巧算周长,解答此题的关键是明确这个图形的周长是由哪几条边长组成的.6.(6分)字母a,b,c,d,e,f,g分别代表1至7中的一个数字,若a+b+c=c+d+e=c+f+g,则c可取的值有3个.【分析】要满足a+b+c=c+d+e=c+f+g,即为a+b=d+e=f+g,而a,b,c,d,e,f,g分别代表1至7中的一个数字,所以,只要确定a,b,d,e,f,g的组合,就可以确定c.【解答】解:a+b+c=c+d+e=c+f+g,即为a+b=d+e=f+g,只能出现3种情况:①1+7=2+6=3+5,此时c=4;②2+7=3+6=4+5,此时c=1;③1+6=2+5=3+4,此时c=7;所以c的可能取值有1、4、7,共3个.【点评】a+b=d+e=f+g,这6个数需要满足“对称”,分情况讨论可以确定它们的组合.7.(6分)用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体8个顶点处的小正方体都去掉,则此时的几何体的表面积是96平方米.【分析】由题意可知:拿走一个小正方体,就减少了三个面,同时又增加了三个面,同理可得,拿走8个顶点上的小正方体,就减少了24个面,同时又增加了24个面,则图形的表面积没有变,据此解答即可.【解答】解:因为拿走一个小正方体,就等于减少了三个面,同时又增加了三个面,则拿走8个顶点上的小正方体,就减少了24个面,同时又增加了24个面,所以说表面积相比没有变,64=4×4×4,表面积是4×4×6=96(平方米).故此时的几何体的表面积是96平方米.故答案为:96.【点评】解答此题的关键是:看计算表面积所用的面有没有变化,从而问题得解.8.(6分)有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后第1位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这个三位数是212.(π取3.14)【分析】百位数字是最小的质数,最小的质数2,那么百位数字是2;十位数字是算式(0.3+π×13)的结果中小数点后第1位数字,而0.3+π×13=41.12,那么十位上是1;个位数字是三位数中能被17整除的最小数的个位数字,三位数中能被17整除的最小数是102,这个三位数的个位数字式是2,所以这个三位数是212,据此解决即可.【解答】解:最小的质数2,那么百位数字是2,0.3+π×13=41.12,那么十位上是1,三位数中能被17整除的最小数是102,那么个位上是2,这个三位数是212.故答案为:212.【点评】本题考查计算及其概念问题,根据已知条件推出各位数字,进而解决问题.9.(6分)循环小数0.04285.的小数部分的前2015位数字之和是9060.【分析】通过观察,0.04285的循环节是142857,说明每6位数一个循环,求出小数部分前2015位的数字里面有多少个6,就有多少个(1+4+2+8+5+7),再根据余数,进一步确定余数是下一个循环的前几个,进而解决问题.【解答】解:循环小数0.04285每6位数一个循环,小数部分第一位是0,后面小数部分的2014位数字共有2014÷6=335(个)…4,余数是4,所以在第336个周期的第4个数是8,即小数部分前2015位数字和是:(1+4+2+8+5+7)×335+1+4+2+8=27×335+15=9045+15=9060;答:和是9060.故答案为:9060.【点评】此题属于周期问题,最后的余数是解决问题的关键,最后的余数是下一个周期的前几个,先探索周期的变化规律,再根据规律和余数解答,求出问题.10.(6分)如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看分别是图形①、②、③则至少需要10个小正方体.【分析】根据给出从上面看到的图形可知:下层最少有8个,最中间不放;根据从前面和左面看到的是,可知上层最少有2个占2个角,右后面的角没有,由此即可解决问题.【解答】解:由题意可知正方体的个数:8+2=10(个)答:一共有10个小正方体组成的.故答案为:10.【点评】此题考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.11.(6分)已知a与b的最大公约数是4,a与c、b与c的最小公倍数都是100,而且a≤b.满足条件的自然数a、b、c共有多少组?【分析】根据a与b的最大公约数是4,可以得出a,b可能的数,再根据a与c、b与c的最小公倍数都是100,得出c的取值的范围,由乘法原理解答即可.【解答】解:根据题意可得,a、b中有一个为4,另一个为4、20或100,故有3种可能:①a=4,b=4,②a=4,b=20;③a=4,b=100;对于a、b的这3组取值,c可取25,50,100;因此,满足以上条件的自然数a、b、c有:3×3=9(组).答:满足条件的自然数a、b、c共有9组.【点评】根据a与b的关系确定a,b可能的数,再根据a与c,b与c的关系求出c可能的数,再根据乘法原理解答即可.12.(6分)从写有1,2,3,4,5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有36个.【分析】根据能被3整除的数的特征:各位上数字之和能被3整除,这个数就能被3整除,所以1,2,3,4,5可把这五个数字三个三个相加,相加的和不能被3整除的三个数,组成的三位数也不会被3整除,据此解答即可.【解答】解:1+2+3=6,1+2+4=7,1+2+5=8,1+3+4=8,1+3+5=9,1+4+5=10,2+3+4=9,2+3+5=10,2+4+5=11,3+4+5=12,其中不能被3整除的数有7、8、10,11,那么由数字1、2、4,1、2、5,2、3、5组成的三位数不是3的倍数,即不能被3整除的数有:124、142、214、241、412、421;125、152、215、251、512、521;134,143,314,341,413,431;145,154,415,451,514,541;235、253、325、352、523、532;245,254,425,452,524,542;共36个.故答案为:36.【点评】此题主要考查的是能被3整除数的特征的应用,先找出不是3的倍数的数字组合,再进一步求解.13.(6分)两位数和都是质数,则有9个.【分析】根据质数的定义“除了1和它本身外,没有别的因数的数为质数”,把两位数中的质数写出来即可.【解答】解:两位数的质数有:11,13,31,17,71,37,73,79,97,共9个.答:有9个.故答案为:9.【点评】此题解答的关键在于理解质数的概念,注意不重不漏.14.(6分),分别表示两位数和三位数,如果+=1079,则a+b+c+d+e= 35.【分析】题目可转化为一个两位数与一个三位数的和等于1079,求这两个数各位上的数字.【解答】解:由题意知,一个两位数与一个三位数的和等于1079∴c=9,a+d=17,b+e=9,∴a+b+c+d+e=35.故答案为:35.【点评】此题属于比较灵活的题目,关键在于读懂题目,转换问题,解决问题.15.(6分)已知三位数,并且a(b+c)=33,b(a+c)=40,则这个三位数是347.【分析】要求这个三位数是多少,可通过求得a、b、c的值解决.因为a×(b+c)=33=3×11,只有一种可能,a=3;两式相减得c×(b﹣a)=7,7=1×7,只有一种可能,c=7,从而推出a值,解决问题.【解答】解:a×(b+c)=33=3×11,只有一种可能,a=3;b(a+c)﹣a(b+c)=40﹣33=7,即c×(b﹣a)=7,又7=1×7,所以c×(b﹣a)=1×7,只有一种可能,c=7;所以3×(b+7)=33b+7=11b=4所以这个三位数是347.故答案为:347.【点评】此题关键通过两式之间的关系推出这个三位数各位上的数值,解决问题.16.(6分)若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体16个.【分析】根据长方体的表面积公式S=﹙长×宽+长×高+宽×高﹚,求出长×宽+长×高+宽×高的和,由此判断出长方体的最小体积,进而求出最少需要棱长为1的小正方体的个数.【解答】解:长×宽+长×高+宽×高=52÷2,长×宽+长×高+宽×高=26,8×2+8×1+2×1=26,此时长方体的体积最小,8×2×1=16,因此最少需要棱长1的小正方体16个.故答案为:16.【点评】本题主要是灵活利用长方体的表面积公式与长方体和正方体的体积公式解答.17.(6分)某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成;如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是215个.【分析】设原计划的工作量是每天生产x个零件,利用原来零件的总数作为相等关系列方程求解.【解答】解:设原计划的工作量是每天生产x个零件,由题意得:(x﹣3)×31+60=(x+3)×25﹣6031x﹣93+60=25x+75﹣606x=48x=8(8﹣3)×31+60=5×31+60=215(个)答:原计划的零件生产定额是215个.故答案为:215.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.(6分)某次考试中,11名同学的平均分经四舍五入到小数点后第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是938分.【分析】首先判断出这11名学生的平均分大于等于85.25和小于85.35之间,这11名同学的总分大于或等于85.25×11=937.75分和小于85.35×11=938.85之间,然后求出这11名同学的总分.【解答】解:用四舍五入取近似值的方法精确到一位小数能得到85.3的数值范围是:(大于等于85.25和小于85.35之间)所以这11名同学的总分大于或等于85.25×11=937.75分和小于85.35×11=938.85之间,∵每个学生的分数都是整数,∴得分总和也是整数,在937.75和838.85之间只有938是整数,∴这11名同学的总得分是938分.故答案为:938.【点评】解答此题的关键是判断出这11名学生的平均分大于等于85.25和小于85.35之间.19.(6分)有编号为1,2,3,…2015的2015盏亮着的电灯,各有一个拉线开关控制.若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有1006盏.【分析】分别找出2、3、5的倍数,2和3的公倍数,2和5的公倍数,3和5以及2、3和5的公倍数,求出拉过三次、二次、一次的个数,一次、三次是被拉灭的灯,求出被拉灭的灯的个数,进而求出亮着的灯的个数,解决问题.【解答】解:在1到2015这2015个数中,2的倍数有:2015÷2≈1007(个)3的倍数有:2015÷3≈671(个)5的倍数有:2015÷5=403(个)2和3的倍数有:2015÷(2×3)≈335(个)2和5的倍数有:2015÷(2×5)≈201(个)3和5的倍数有:2015÷(3×5)=≈134(个)2、3、5的倍数有:2015÷(2×3×5)≈67(个)可知,拉过三次的有:67盏,拉过二次的有:(335﹣67)+(201﹣67)+(134﹣67)=268+134+67=469(盏)拉过一次的有:(1007﹣268﹣134﹣67)+(671﹣268﹣67﹣67)+(403﹣134﹣67﹣67)=538+269+135=942(盏)被拉灭的灯有:942+67=1009(盏)所以,亮着的灯为:2015﹣1009=1006(盏).答:这时,亮着的灯有1006盏.故答案为:1006.【点评】此题运用最小公倍数的知识,求出各种情况灯的数量,根据拉过的次数,求得拉过奇数次的灯的数量,进而解决问题.20.(6分)今年是2015年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同”,则小明现在22或4岁.【分析】根据题意,假设小明是2000年前出生的,设出生日期为19xy,根据题意可得,2015﹣(1900+10x+y)=1+9+x+y,因为x与y都是个位数,然后后用尝试法进行解答即可;假设小明是2000年后出生的,设出生日期为20xy,x要小于2;根据题意可得,2015﹣(2000+10x+y)=2+0+x+y,然后再进一步解答即可.【解答】解:假设小明是2000年前出生的,设出生日期为19xy,根据题意可得:2015﹣(1900+10x+y)=1+9+x+y115﹣10x﹣y=10+x+y11x+2y=105因为x与y是个位数,解得:x=9,y=3也就是小明是1993年出生的,今年是:1+9+9+3=22(岁)假设小明是2000年后出生的,设出生日期为20xy,x要小于2,根据题意可得:2015﹣(2000+10x+y)=2+0+x+y15﹣10x﹣y=2+x+y11x+2y=13因为x与y是个位数,解得:x=1,y=1也就是小明是2011年出生的,今年是:2+0+1+1=4(岁)答:小明今年22岁或4岁.故答案为:22或4.【点评】根据题意,分为两个年龄阶段,也就是2000年前出生,或2000年后出生,根据题意设出出生年份,列出方程,用尝试法进行解答即可.。
2015年五年级数学竞赛试卷及解析

2015年五年级数学竞赛试卷及解析2015年石台县中小学生学科竞赛试卷五年级数学题号一二三四总分得分评分人得分一、填空题。
(每题4分,共56分)1、在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=19922、一个等腰梯形三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。
那么这个等腰梯形的周长是()厘米。
3、明明在计算一个数减去4.6这道计算题时,看错了被减数的小数点,计算出来的结果是8.91,与正确的结果相比少了121.59,原来的被减数是()。
4、欢欢期中考试:语文、数学平均94分,语文、英语平均92.5分,数学、英语平均95.5分,那么她语文、数学、英语三科的平均分是()。
5、测得某一家用电冰箱的冷冻室的温度是零下16℃,冷藏室比冷冻室的温度高 22℃,则冷藏室的温度是()℃。
6、如果把长方体的长、宽、高都扩大4倍,那么它的体积扩大()倍。
7、班长要将一个通知用电话方式传达给班内其他127名同学。
班长他先拨通一位同学的电话,然后他和已接到通知的同学同时再向班内未知的同学传达,当全班同学都接到通知时,班长至少要拨()个电话。
8、已知某数与24的最大公因数为6,最小公倍数为72,这个数是()。
9、广东省大力建造绿道,绿道服务站有自行车和三轮车借用。
在一个服务站的停放棚内有自行车和三轮车共32辆,两种车共有75个轮子。
自行车有()233、(2000-1)+(1999-2)+(1998-3)+……+(1002-999)+ (1001-1000)4、1993×19941994-1994×19931993评分人得分四、解决问题。
(第1题4分,其余每题6分,共22分)1、有16个同学参加羽毛球比赛,每两人都恰好比赛一场,总共要进行多少场比赛?2、晶晶每天早上步行上学,如果每分钟走60米,则要迟到5分钟,如果每分钟走75米,则可提前2分钟到校,求晶晶到校的路程是多少米?453、如图,平行四边形ABCD 的边长AD 长12厘米,直角三角形AGD 的直角边AG 长 10厘米,已知阴影部分的面积比三角形EFG 的面积大12平方厘米,求AE 长多 少厘米?4、把一些图书分给六年级一班的男同学,平均分给每个男同学若干本后,还剩14 本,如果每人分9本,这样最后一个男同学只能得6本,六(1)班的男生有多 少人?AB E G FC D试题解析一、填空题。
2015年世界少年奥林匹克数学竞赛(中国区)海选赛五年级试题a卷

2015年世界少年奥林匹克数学竞赛(中国区)海选赛五年级试题A卷世界少年奥林匹克数学竞赛(∕∕∕∕绝密★启用前9、自1开始,每隔3个数一数,得到数列1,4,7,10,……问第100个数是。
世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛试题∕∕〇∕∕号∕∕证∕赛∕参〇∕ ∕ ∕∕ ∕∕〇∕∕∕∕∕场∕〇赛∕ ∕ ∕ ∕∕∕ 线〇订〇装名姓〇封〇密∕∕∕∕∕∕〇∕∕校∕∕学∕ ∕ ∕ 〇∕ 市∕∕∕∕∕〇∕∕省∕∕∕∕(2015年10月)选手须知:1题2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
答五年级试题(A卷)要(本试卷满分120分,考试时间90分钟)一、填空题。
(每题5分,共计50分)不1、一桶油连桶重120千克,用去一半后,连桶还重65千克。
这桶里原有油千克,空桶重千克。
内4、今天是星期日,从今天算起,第60天是星期。
线5、有一根木料,要锯成4段,每锯开一处,需要4分钟。
全部锯完需要分钟。
6、如图长方形纸片,假如按图中所示剪成四块,这四块纸片可拼成一个正方形.那么所拼成的正方形封的边长是厘米.密7、苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,苹果还剩7个,梨正好全部吃完。
原来有苹果个。
8、在一次登山活动中,小红上山每分钟行50米,然后按原路下山,每分钟行75米。
小红上山和下山平均每分钟行米。
五年级第1页二、计算题。
(每题6分,共计12分)11、(425×5776—425 4225×425)÷125÷8五年级第2页三、解答题。
(第13题6分,第14题8分,第15题10分,第16题10分,第17题12分,第18题12分,共计58分)13、两个数相除,商3余10,被除数、除数、商、余数的和是163,那么被除数是多少?除数是多少?15、小明家和小华家在一条直路上,两人从家中同时出发相向而行,在离小明家500米处第一次相遇。
2015年第十三届小学“希望杯”五年级第二试试题及答案

4. 一次数学竞赛中,某小组 10 个人的平均分是 84 分,其中小明得 93 分,则 其他 9 个人的平均分是____分. 【解析】 10 个人的总分是 84 10 840 (分) , 其他 9 个人的总分是 840 93 747 (分),因此其他 9 个人的平均分是 747 9 83 (分).
小书灯家长社区整理发布 让家长无忧·让学习无忧 1/7
资料下载、家长交流、信息分享权威论坛:
方法二:题目要求最多个质数,应该使一位数的质数尽量多,有 2、3、5、7; 剩下 1、6、8、9,我们会发现 6 和 8 只要放在个位这个数就不是质数,尝试可 以组成 61 和 89 这两个质数,因此最多可以组成 6 个质数.
5. 同时掷 4 个相同的小正方体(小正方体的六个面上分别写有数字 1、 2、 3、 4、 5、6),则朝上一面的 4 个数字的和有____种. 【解析】朝上一面的 4 个数字和最大是 6 6 6 6 24 ,最小是 1 1 1 1 4 , 最小和最大数字和之间的情况都有可能出现,因此朝上一面的 4 个数字和有
小书灯家长社区整理发布 让家长无忧·让学习无忧 2/7
资料下载、家长交流、信息分享权威论坛:
知道这三个彼此互质的自然数分别是 5、7、19,长方体的表面积是
(5 7 7 19 5 19) 2 526 .
7.大于 0 的自然数 n 是 3 的倍数,3n 是 5 的倍数,则 n 的最小值是_____. 【解析】若 3n 是 5 的倍数,那么 n 也是 5 的倍数,由题意可以得到 n 既是 3 的倍数,也是 5 的倍数,所以 n 的最小值是 3 5 15 .
10.如果 2 头牛可以换 42 只羊,3 只羊可以换 26 只兔,2 只兔可以换 3 只鸡, 则 3 头牛可以换______只鸡. 【解析】根据题意有:2 牛=42 羊,3 羊=26 兔,2 兔=3 鸡,所以可得: 3 牛= 42 2 3 羊=63 羊= 26 3 63 兔=546 兔= 546 2 3 鸡=819 鸡.
2015年五年级希望杯100题(完整答案).doc

2015 年希望杯五年级赛前100 题【1-4,简便计算】1)计算: 0.685×5.6+3.4×0.685+0.685。
=0.685 ×( 5.6+3.4+1 )=0.685 × 10=6.852)计算: 2015-2014+2013-2012+ +3-2+1。
=(2015-2014)+(2013-2012)++(3-2)+(1-0)=10083)计算: 21×20.15+350×2.015+4.1× 201.5+0.03×2015。
=21× 20.15+35 × 20.15+41× 20.15+3× 20.15=20.15 × (21+35+41+3)=20.15 × 100=20154)计算: 2015×20142015-2014×20152014。
=2015× (20142014+1)-2014 ×(20152015-1)=2015× 20142014+2015-(2014 × 20152015-2014)=2015+2014=40295) 5 个连续奇数的和是 2015,求其中最大的奇数。
【奇偶数】中间数:2015÷ 5=403最大者: 403+2+2=407答:最大的奇数为407。
6)若将 2015 分解成 5 个自然数的和,则这 5 个自然数的积是“奇数”,“偶数”,还是“奇数或偶数”?5 个奇数的【奇偶数】 5 个自然数之和为 2015,是奇数,所以其中有奇数个奇数。
如果全为话,其积为奇数;如果不全为奇数的话,其积为偶数。
答:这五个自然数的积是奇数或偶数。
7)若 a 是质数, b 是合数,试写出一个合数 (用 a, b 表示 )。
【质数与合数】答: ab 为合数。
8)1, 3, 8,23,229,2015 的和是奇数还是偶数?【奇偶数】其中有 5 个奇数,所以和为奇数。
五年级数学竞赛试卷(附答案)

五年级数学竞赛试卷(附答案)一、拓展提优试题1.观察下表中的数的规律,可知第8行中,从左向右第5个数是.2.(7分)如图,按此规律,图4中的小方块应为个.3.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.4.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.5.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边=平方米.形EFGH6.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.7.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.8.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.9.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.10.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.11.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.12.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).13.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?14.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.15.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.16.观察下面数表中的规律,可知x=.17.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块.18.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分=.(甲和乙)的面积差是5.04,则S△ABC19.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是.20.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.21.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)22.(15分)如图,正六边形ABCDEF 的面积为1222,K 、M 、N 分别AB ,CD ,EF 的中点,那么三角形PQR 的边长是 .23.已知13411a b -=,那么()20132065b a --=______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年全国五年级数学竞赛试题及答案
一、填空题(每1空2分,共30分)
1、自然数中所有三位数和是53851。
2、找规律,填数字。
(1)1,3,2,4,3,(5 ),4;
(2)81,64,(49 ),36,(25 ),16,9,4,1;
(3)0,1,4,15,56( );
(4)0,1,2,4,7,12,20,( );
(5)1,3,6,8,16,18,(36 ),(38 ),76,78;
(6)8,6,16,3,24,2,12,(8 );
4、一列火车全长360米,每秒行15米,全车通过一个小山洞需40秒。
这个山洞的长度是
240米。
5、有一列数,第一个数是105,第二个数是85,从第三个数开始,每个数都是它前面两个数的平均数,则第19个数的整数部分是92。
6、1×1+2×2+3×3+……+1991×1991的和的末位数字是。
7、一个数的6倍加上8等于它的8倍减去6,这个数是7。
二、计算题(第8-第10题每题3分,第11-第15每题5分,共34分)
8、333×334+999×222
=333×334+333×666
=333×(334+666)
=333×1000
=333000
9、20012001×2002-20022002×2001
=20012001-2001
=20010000
10、(1+1.2)+(2+1.2×2)+(3+1.2×3)+ ……+(99+1.2×99)+(100+1.2×100)
=[100+1+(100+1)×1.2]+......+[50+51+(50+51×1.2]
=322.2+……+322.2
=322.2×50
=16110
11、图中三角形ABC的面积是52平方米,AC长为13米,DEC为直角等腰三角形,三角形ABD与三角形ADC的面积相等。
求阴影部分ADE的面积。
见下图:
12、两个自然数的积是492,其中一个大于20,而小于80,这两个数分别是多少?
答:12和41
13、甲,乙两个数最大公约数是5,最小公倍数是120,现甲数为40,乙数是多少?
答:15
14、在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?
答:71
三、应用题(每题7分,共35分)
15、两辆卡车为镇上送树木,第一辆以每小时30千米的速度由村上开往镇上,第二
辆晚开12分钟,以每小时40千米的速度由村上开往镇上,结果两人同时到达,村上到
镇上有多远?
12 ×30=360km 40-30=10km 360~10=36小时
36×40=1440km
答:1440km
16、小华、小丽和小林三人从A地到B地。
早上6时小华和小丽两人一起从A 地出发,小华每小时5公里,小丽每小时4公里,而小林上午8时才从A地出发。
到下午6时,小华和小林同时到达B地,求小林是在什么时候追上小丽的?
5×2=10时 12×5=60公里 60~10=6公里 4×2=8公里
8~(6-4)=4小时 6+4=10时
答:早上10时
17、小王沿着铁路旁的便道步行,一列火车从身后开来,在小王身旁通过的时间是7秒,而火车车长105米,每小时行72公里。
请问小王每秒行多少米?
72~60=1。
2公里 1。
2公里=1200米 1200~60=20米
7×20=140米 (140-105)~7=5米
18、某船的静水速度每小时20公里,河水速度每小时5公里,这船往返于AB两港
共花了8小时,问AB两港相距多少公里?
答:75公里
19、张华买了一批菜油,放在A,B两个桶里,两个桶都未能装满。
如果把A桶油
倒入B桶后,B桶装满,A 桶还多10升;如果把B桶倒入A桶,A 桶还能再加20升才满。
知A桶容量是B桶的2.5倍。
问张华一共买了多少升油?
答:22升油。