欠阻尼二阶系统的单位阶跃响应为一条衰减振荡曲线
机电控制工程基础形考册答案

机电控制工程基础作业1、一、简答题1、对控制系统的基本要求通常有哪些?稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性。
2.人工控制的恒温箱,人工调节过程包括哪些内容?1).观测恒温箱内的温度(被控制量)与要求的温度(给定值)进行比较,得到温度2).的大小和方向根据偏差大小和方向调节调压器,控制加热电阻丝的电流以调节温度回复到要求值。
人工控制过程的实质:检测偏差再纠正偏差3.对于一般的控制系统,当给定量或扰动量突然增加时,输出量的暂态过程可能有哪些?单调过程衰减振荡过程持续振荡过程发散振荡过程4.开环控制系统有哪两个主要特点?开环控制是一种最简单的控制方式,其特点是,在控制器与被控对象之间只有正向控制作用而没有反馈控制作用,即系统的输出量对控制量没有影响。
5.闭环控制系统的主要特点是什么?闭环控制的特点是,在控制器与被控对象之间,不仅存在着正向作用,而且存在着反馈作用,即系统的输出量对控制量有直接影响。
6.什么叫做反馈控制系统系统输出全部或部分地返回到输入端,此类系统称为反馈控制系统(或闭环控制系统)。
7.控制系统按其结构可分为哪3类?控制系统按其结构可分为开环控制系统、闭环控制系统和复合控制系统。
8.举例说明什么是随动系统。
这种系统的控制作用是时间的未知函数,即给定量的变化规律是事先不能确定的,而输出量能够准确、迅速的复现给定量(即输入量)的变化,这样的系统称之为随动系统。
随动系统应用极广,如雷达自动跟踪系统,火炮自动瞄准系统,各种电信号笔记录仪等等。
9、自动控制技术具有什么优点?⑴极大地提高了劳动生产率;⑵提高了产品的质量;⑶减轻了人们的劳动强度,使人们从繁重的劳动中解放出来,去从事更有效的劳动;⑷由于近代科学技术的发展,许多生产过程依靠人们的脑力和体力直接操作是难以实现的,还有许多生产过程则因人的生理所限而不能由人工操作,如原子能生产,深水作业以及火箭或导弹的制导等等。
在这种情况下,自动控制更加显示出其巨大的作用10.对于一般的控制系统,当给定量或扰动量突然增加某一给定值时,输出量的暂态过程可能有几种情况?单调过程衰减振荡过程持续振荡过程发散振荡过程11、什么是数学模型?描述系统在运动过程中各变量之间相互关系的数学表达式叫做系统的数学模型。
二阶系统的时域分析二阶系统的数学模型

t
n
1
n2 e 1 2
entsinnt
sidnt
dtn101
2
2
e n t
cos d t
h' (t)
1
2n2 edstipnntsindntpd(tn
0 n
01,
1,2e2,nt
si)n
d
t
二阶系统的时域分析
欠阻尼二阶系统阶跃响应的性能指标
2.峰值时间tp tp为输出响应达到第一个峰值所对应的时间所
过阻尼二阶系统调节时间特性
二阶系统的时域分析
临界阻尼二阶系统的暂态响应
当ζ=1时,临界阻尼二阶系统T1=T2,
1 T1
1 T2
n
则临界阻尼二阶系统的单位阶跃响应为
c(s)
s
n2
n 2
1 s
1 s
s
n
n 2
s
1 n
h(t ) 1 (1 nt )ent 过阻尼二阶系统的响应较缓慢,实际应用 的控制系统一般不采用过阻尼系统。
结论
无阻尼系统属于临界稳定系统,不属于稳定 系统
临界阻尼和过阻尼系统虽无超调量,但反应 迟钝
欠阻尼系统虽有超调量,但反应迅速
因此控制系统就是性能指标之间的均衡,一 般设计成欠阻尼系统。
阻尼比一般取0.4~0.8,此时系统反应迅速, 而且超调量也不大
二阶系统的时域分析
阻尼比ζ是二阶系统的一个重要参量,由值ζ的大小 可以间接判断一个二阶系统的暂态品质。在过阻尼 (ζ>1)情况下,暂态特性为单调变化曲线,没有 超调和振荡,但调节时间较长,系统反应迟缓。当 ζ≤0 ,输出量作等幅振荡或发散振荡,系统不能稳 定工作。
不易求出ts,但 可得出ωnts与 ζ的关系曲线
机电控制四次网上作业汇总

选择题(共 10 道试题,共30分。
)峰值h(t p)超出终值h(∞)的百分比叫超调量。
已知系统闭环传递函数为:φ(s)=1/0.25s2+0.707s+1则系统的ts(5%)是(或者则系统的ωn为2)(或者:则系统的超调σ%为0.043)(或者:则系统的阻尼比ξ为0.707)阶跃响应从终值的10%上升到终值的90%所需的时间叫上升时间。
在欠阻尼的情况下,二阶系统的单位阶跃响应为振幅按指数规律衰减的简谐振荡6. 阶跃响应到达并保持在终值h(∞)+ -5%误差带内所需的最短时间;有时也用终值的+ -2%误差带来定义叫调节时间。
阶跃响应第一次达到终值h(∞)的50%所需的时间叫延迟时间。
一阶微分环节波德图渐近线斜率为20dB/dec二阶系统的临界阻尼比是 1 ?以下属于一阶系统的阶跃响应特点的是没有超调量?下列开环传递函数所表示的系统,属于最小相位系统的有s+2/(s+3)(s+2)下列开环传递函数所表示的系统,属于最小相位系统的是s+1/(2s+1)(3s+1)劳斯稳定判据能判断什么系统的稳定性?线性定常系统20db/dec,通过ω=1点的直线。
单位阶跃函数的拉普拉斯变换结果是( 1/S )。
单位斜坡函数的拉氏变换结果是(1/S2)。
以下控制系统按结构分类正确的是开环控制系统、闭环控制系统和复合控制系统阶跃响应越过稳态值h(∞)达到第一个峰值所需的时间叫峰值时间。
某二阶系统的特征根为两个互不相等的实数,则该系统的单位阶跃响应曲线有什么特点?单调上升当时间t满足什么条件时(系统的时间常数为T),一阶系统的阶跃响应值与稳态值之间的误差为5%~2%。
3T< t<4T临界阻尼条件下二阶系统的输出为单调上升曲线。
阶跃响应到达并保持在终值%误差带内所需的最短时间;有时也用终值的%误差带来定义叫调节时间。
当时间t满足什么条件时(系统的时间常数为T),一阶系统的阶跃响应值与稳态值之间的误差为5%~2%。
二阶系统的单位阶跃响应欠阻尼状态曲线

二阶系统的单位阶跃响应欠阻尼状态曲线一、引言在控制理论中,二阶系统的单位阶跃响应欠阻尼状态曲线是一个重要的概念。
它反映了一个系统在欠阻尼状态下对输入信号的响应情况,是探讨系统稳定性、振荡特性和动态响应的重要工具。
本文将从二阶系统的定义开始,逐步深入探讨其单位阶跃响应欠阻尼状态曲线的特点和意义。
二、二阶系统的定义二阶系统是指具有两个自由度的动态系统,它可以用微分方程描述其动态特性。
在控制理论和工程实践中,二阶系统的表现形式多种多样,例如振动系统、电气系统、机械系统等等。
在对二阶系统进行分析时,常常需要了解它的单位阶跃响应欠阻尼状态曲线,以便全面理解系统的动态特性。
三、单位阶跃响应欠阻尼状态曲线的特点对于一个欠阻尼的二阶系统,其单位阶跃响应曲线常常呈现出以下特点:1. 振荡幅度大:由于缺乏阻尼,系统在受到单位阶跃输入后会出现明显的振荡,振荡幅度通常较大。
2. 振荡频率高:欠阻尼状态下,系统的自然频率对振荡频率的影响比较明显,常常表现为振荡频率较高。
3. 衰减缓慢:缺乏阻尼导致单位阶跃响应的振荡幅度衰减较慢,系统的响应时间较长。
以上特点使得欠阻尼的二阶系统在实际控制和工程应用中需要特别注意,因为它的振荡特性可能对系统的稳定性和性能产生重要影响。
四、单位阶跃响应欠阻尼状态曲线的意义通过对欠阻尼的二阶系统单位阶跃响应曲线的分析,我们可以深刻理解系统的振荡特性和动态响应特点。
这对于控制系统的设计和优化具有重要意义。
在实际工程中,我们常常需要针对欠阻尼的系统进行补偿和控制,以确保系统的稳定性和性能。
了解单位阶跃响应欠阻尼状态曲线的意义是至关重要的。
五、个人观点和理解作为文章撰稿人,我个人认为深入理解二阶系统的单位阶跃响应欠阻尼状态曲线对于控制理论和工程应用都具有重要意义。
通过对系统振荡特性和动态响应的深入分析,我们可以更好地设计控制算法和优化系统性能。
在工程实践中,对于欠阻尼系统的控制和补偿也需要特别注意,以确保系统的稳定性和可靠性。
机械控制工程基础习题集_234

13.不同属性的物理系统可以有形式相同的(A)
A.传递函数 B.反函数 C.正弦函数
D.余弦函数
14.比例环节能立即地响应(B)
A.输出量的变化 B.输入量的变化 C.误差量的变化 D.反馈量的变化
15.满足叠加原理的系统是(C)
1
A.定常系统 B.非定常系统 C.线性系统 D.非线性系统
16.弹簧-质量-阻尼系统的阻尼力与两相对运动构件的(B)
10.惯性环节:输出量 x0 和输入量 xi 的动力学关系为一阶微分方程Txo x0 Kxi 形式的
环节。
11.振动环节:输出量 x0 和输入量 xi 的动力学关系为二阶微分方程 T 2xo 2Txo x0 Kxi
形式的环节。 四、简答题 1 若力为输入、位移为输出时,写出如图所示机械系统的弹簧、粘性阻尼以及质量的传 递函数。
A.自身内部结构参数有关 B.输入信号有关 C.输出信号有关 D.干扰信号有关
23.闭环控制系统的开环传递函数是(C)
A.输出信号的拉氏变换与输入信号的拉氏变换之比
B.输入信号的拉氏变换与输出信号的拉氏变换之比
C.反馈信号的拉氏变换与误差信号的拉氏变换之比
D.误差信号的拉氏变换与反馈信号的拉氏变换之比
B G2 (s)
3.简述同一闭环控制系统的闭环传递函数与开环传递函数之间的特性关系。
答:1)闭环特征方程为开环传递函数有理分式的分母多项式与分子多项式之和; 2)闭环特征多项式和开环特征多项式具有相同的阶次;
3)闭环传递函数和开环传递函数具有相同的零点,但不存在公共极点。
4.说明同一闭环系统的闭环传递函数和开环传递函数具有相同的零点。
9.满足叠加原理的系统是(线性)系统。
2
山东建筑大学电气工程及其自动化专业2020-2021第二学期自动控制原理

山东建筑大学电气工程及其自动化专业2020-2021第二学期自动控制原理一、单选题1.下面哪种控制属于自动控制() [单选题]A.自行车速度控制B.收音机音量控制C.汽车驾驶控制D.空调器的温度控制(正确答案)2.下列不是对自动控制系统性能的基本要求的是() [单选题]A.稳定性B.复现性(正确答案)C.快速性D.准确性3.下列常用来描述静态特性的数学模型是() [单选题]A.微分方程B.代数方程(正确答案)C.差分方程D.传递函数4.指数函数.其拉氏变换为() [单选题]A. 1B.(正确答案)C.D5.典型的二阶振荡环节的传递函数为()。
[单选题]A.(正确答案)B.C.D.6.下列不属于动态性能指标的是() [单选题]A稳态误差(正确答案)B上升时间C峰值时间D最大超调量7.不属于控制系统设计过程步骤的是() [单选题]A根据需要制定技术指标B根据技术指标设计若干解决方案C根据理论分析选择解决方案(正确答案)D对所选择方案做细节设计8.系统的闭环传递函数为,则系统的极点为()。
[单选题]A.B.(正确答案)C.D.9.根轨迹的分支与()数目相等。
[单选题]A开环极点(正确答案)B闭环极点C开环零点D闭环零点10.某环节传递函数,则其频率特征的奈奎斯特图终点坐标为()。
[单选题] A.B.C.D.(正确答案)11.下面哪种控制属于人工控制() [单选题]A导弹飞行控制B 汽轮机的转速控制C 人造卫星控制D汽车驾驶控制(正确答案)12.自动控制系统不稳定的过渡过程是()。
[单选题]A.发散振荡过程(正确答案)B.衰减振荡过程C.单调过程D.以上都不是13.下列不是用来描述动态方程的数学模型是() [单选题]A差分方程B传递函数(正确答案)C状态方程D代数方程14.最大超调量的大小直接描述了系统的() [单选题]A快速性B准确性C相对稳定性(正确答案)D鲁棒性15.一阶系统的放大系数K越大,则其()。
控制工程期末试题 (3)

第3章补充习题一、填空题1.系统分析是指对系统的___稳定性____、____误差_____和___动态特性______三方面的性能指标进行分析。
2.控制系统分析的目的是确定系统的___稳定性____、___误差______和___动态特性______。
3.在控制系统分析时,人们经常选用的典型信号有__阶跃信号___、__速度信号___、___加速度信号___、__脉冲信号___和__正弦信号_____。
4.如果系统的实际输入信号具有突变的性质,可以选用___单位阶跃____信号作为输入信号进行试验。
5.如果系统的实际输入信号具有随时间逐渐变化的性质,可以选用_______信号作为输入信号进行试验。
6.凡能够用一阶微分方程描述的系统称为___一阶系统________。
7.一阶系统的典型环节也称为____惯性环节___________。
8.系统在单位阶跃信号作用下的输出称为__单位阶跃响应_____________。
9.一阶惯性环节的单位阶跃响应的时域数学表达式是___________。
10.一阶惯性环节一定是稳定的和___无__振荡的。
11.一阶惯性环节的时间常数可以用实验测出的单位阶跃响应曲线达到__0.632__高度点时所对应的时间来确定。
12.一阶惯性环节的时间常数越小,系统的惯性_越小_______。
13.一阶惯性环节的时间常数越小,系统的响应___快_____。
14.一阶惯性环节的阶跃响应在半对数坐标纸上是__t 1-x0(t)______。
15.一阶惯性环节的单位速度响应的时域数学表达式是___________。
16.系统在单位速度信号作用下的输出称为____单位速度响应___________。
17.一阶惯性环节在单位速度信号作用下的稳态误差是____T_______。
18. 系统在单位脉冲信号作用下的输出称为_____单位脉冲响应_________。
19.一阶惯性环节的单位脉冲响应的时域数学表达式是___________。
自动控制理论时域分析2--二阶系统

4.调整时间 t s(又称过渡过程时间) :响应曲线达到并 保持与稳态值之差在预定的差值△内(又叫误差带 )所 需要的时间。一般△取±2%或±5%。
二、二阶系统的动态响应性能指标 (1)峰值时间 t P
因为
c (t ) 1 e nt 1
2
sin( d t )
t n p d
dc ( t ) dt
d p
0
ttp
e sin( t ) e cos( t ) 0
t n p n d p
整理得:
tg ( ) dtp
12
p t p 0, ,2 ,3
n
0 Re
s1
s2
0
Re
s2
s1
0
Re
0
Re
s2
(a) 0 1 (b) 1 (c) 1 (d) 0
特征根为:共扼复数 特征根为:
相等实数
不等实数
共扼虚数
1.欠阻尼情况 :
( 0 1 )
2
s n 1 1 , 2 n
s j 1 , 2 n d
c ( t) 1 cos t n
c (t )
( 0)
(t 0)
2
1
0
t
这是一条等幅振荡曲线。
( 0)
c (t )
1
c (t ) r (t )
2
1
1
c (t )
0
t
0
t
( 0 1 )
1
r (t )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
) 可知,此时系统有两个
相等的实根 s1,2 n
对单位阶跃输入,系统输出的拉氏变换可写为
2 n n 1 1 c( s ) 2 s(s 2 2 n s n ) s (s n ) 2 s n
c (t ) r (t )
1
一条单调上 升的指数曲 线
将上式拉氏反变换,得过阻尼情况时的时域响应:
c( t ) 1 e e ) 2 2 1 T1 T2 ( 1
T1 t T2 t
也是一条单调上 升的指数曲线
r (t )
式中
T1 ( 2 1) n T2 ( 2 1) n
0
c (t )
t
c(t )
响应曲线:
c(t ) 1 ent (1 nt )
0
t
3.过阻尼情况(
1
)
2
此时系统有两个不相等的负实根
s1,2 n n 1
对单位阶跃输入,输出拉氏变换式写成部分分式为
2 2 1 [ 2( 2 2 1 1 ] 1 1 [ 2( 1 1 )] c( s ) 2 s s n n 1 s n n 2 1
对上式进行拉氏反变换,可得单位阶跃响应:
c(t ) 1 e
t n
(cosd t
1 2
sin d t ) 1
1 1 2
e nt ( 1 2 cosd t sin d t )
1
e nt 1
2
sin( d t )
s1,2 n n
Im
2
1
Im
Im
[s]
[s]
n
s1
0 Re
s2
s1 s2 s1
0 Re 0
[s]
0
Re
Re
s2
(a)
0 1
(b)
1
(c) 1
(d)
0
特征根为:共扼复数 特征根为:
相等实数
不等实数
共扼虚数
1.欠阻尼情况 :
(0 1)
2
sin( d t )
n t p
dc(t ) 0 dt t t p
cos( d t p ) 0
n e
nt p
sin( d t p ) d e
整理得:
tg( d t p )
1 2
p t p 0, ,2 ,3
--无阻尼自然振荡频率; --阻尼比 2 2 二阶系统的特征方程为: s 2 n s n 系统的两个特征根(闭环极点)为
n
0
s1, 2 n n
2
1
特征根的性质取决于 的大小,下面分四种情况讨论。
特征根的[s]平面的分布情况见图
Im [s]
s1
n 1 2
式中:
arct an
1 2
欠阻尼二阶系统的单位阶跃响应为一条衰减振荡曲线,包含 在一对包络线 1 e 之内。振荡频率为 d 。
n t
1 2
一条幅值按 指数衰减的 阻尼振荡曲 线
越小,系统振荡越厉害,一般取0.5——0.8之间。
2.临界阻尼情况( 1 由 s 1
MP c(t P ) c() 100% c()
4.调整时间 t s(又称过渡过程时间) :响应曲线达到并 保持与稳态值之差在预定的差值△内(又叫误差带 )所 需要的时间。一般△取±2%或±5%。
二、二阶系统的动态响应性能指标 (1)峰值时间 t P
因为
c (t ) 1 e nt 1
3.2
二阶系统的瞬态响应
一个可以用二阶微分方程来描述的系统称为二 阶系统。从物理上讲,二阶系统包含有二个独立的 储能元件,经常用到的储能元件有电感、电容等。 一、二阶系统标准形式
R( s)
K K (Ts 1) s sJs F
C (s)
C ( s) K G( s) 2 R( s ) Js Fs K
s2
K J F K s J J
R( s)
K K (Ts 1) s sJs F
C (s)
K C ( s) J G( s) F K R( s) s2 s J J
令:
K 2 n J
F 2 n J
则 二阶系统标准式:
2 n G( s) 2 2 s 2 n s n
响应速度比临界阻尼缓慢
4.无阻尼情况
( 0 )
s1,2 n n 2 1
此时系统有一对共扼虚根
s1, 2 j)
( 0 )
(t 0 )
2
1
0
t
这是一条等幅振荡曲线。
( 0 )
c (t )
1
c (t ) r (t )
2
1
1
c(t )
0
t
0
t
(0 1)
1
r (t )
c (t )
0
t
重点
控制系统的动态特性
一.动态性能指标
通常以系统单位阶跃输入时的响应来定义时域性能指标。 1.上升时间 t r :阶跃响应曲线首次从零值上升到其稳态值所需 的时间。(若无超调量,取稳态值10-90%) 2.峰值时间 t p :阶跃响应曲线第一次出现峰值的时间。 3.超调量 M P :阶跃响应超过稳态值的最大值与稳态值之比 的百分数。下式中,c(t P ) 为输出响应的最大值; c() 为稳态值。
t P 为输出响应达到第一个峰值所需的时间,应取 d t P
2
s1,2 n n 1
s1, 2 n jd
d n 1 2
cos
则二阶系统具有一对共轭复根: 式中: d ——称为阻尼振荡频率
输入为单位阶跃信号,则系统输出量的拉氏变换为
2 s n n 1 n C ( s) 2 2 2 s(s 2 2 n s n ) s ( s n ) 2 d (s n ) 2 d