2020年整理反比例函数概念.doc

合集下载

知识清单11 反比例函数- 2020年中考数学知识清单大全25讲(附例释)

知识清单11 反比例函数- 2020年中考数学知识清单大全25讲(附例释)

知识清单11:反比例函数1. 反比例函数的概念2. 反比例函数的图像与性质3. 确定反比例函数表达式4. k 值的几何意义5. 反比例函数与一次函数交点问题6. 反比例函数的实际应用1.反比例函数的概念(1)定义:形如y =kx (k ≠0)的函数称为反比例函数,k 叫做比例系数, 自变量的取值范围是非零的一切实数. (2)形式:反比例函数有以下三种基本形式: ①y =kx ;②y=kx -1; ③xy=k.(其中k 为常数,且k ≠0)2.反比例函数的图象和性质3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x 轴和y 轴,但都不会与x 轴和y 轴相交; (3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条 对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例 函数系数k 即可.名师点睛:(1)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.(2)判断点是否在反比例函数图象上的方法: ①把点的横、纵坐标代入看是否满足其解析式; ②把点的横、纵坐标相乘,判断其乘积是否等于k(3)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.(4)例:若(a ,b)在反比例函数ky x=的图象上,则(-a ,-b)在该函数图象上.(5)例:已知反比例函数图象过点(-3,-1),则反比例函数解析式的k=(-3)·(-1)=3,它的解析式是3y x=.(1)意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂 线,垂线与坐标轴所围成的矩形面积为|k |,以该点、一个垂足和原点为顶点的三角形的面积为2k.(2)反比例函数的|k |越大,则图像越远离原点.6.反比例函数与一次函数的综合(1)确定交点坐标:①已知一个交点坐标为(a ,b ),则根据中心对 称性,可得另一个交点坐标为(-a ,-b );②联立两个函数解析式,利 用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代 入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数 的关系,可采用假设法,分k >0和k <0两种情况讨论,看哪个选项 符合要求即可,也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图 象在下方的值小,结合交点坐标,确定出解集的范围. (5)两函数交点个数问题:①若两函数有两个交点,则联立后的一元二次方程△>0; ②若两函数有唯一交点,则联立后的一元二次方程△=0; ③若两函数有没有交点,则联立后的一元二次方程△<0;7.实际应用的一般步骤(1)题意找出自变量与因变量之间的乘积关系; (2)设出函数表达式; (3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.名师点睛:(6)已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x =或3y x=-.(7)涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k 的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S △AOC =S △BOD <S △OPE .(8)k 值几何意义:(9)例:若一次函数6y x =-+向右平移m 个单位后与反比例函数2y x=有唯一交点,则m 的值为_____. 解:令()26x m x-++=,化简得:()2620xm x +-+=因为两函数有唯一交点,则△=0, 即()2680m --=,解得226m =±+.函数的平移规律:上加下减,左加右减,上、下平移直接在解析式后加减,左、右平移在自变量x的地方加减.例题:函数723yx=-+并非y关于x的反比例函数,但可以看成是由y关于x的反比例函数7yx=向左平3个单位和向下平移2个单位得到,图像在平移的过程中,“临界线”也跟着发生了相应的平移,如图所示:临界线:x轴和y轴7yx =。

反比例函数反比例函数的图象与性质

反比例函数反比例函数的图象与性质
匀速运动
在匀速运动中,速度与时间成反比例 关系。通过给定的速度和时间条件, 可以建立反比例函数求解相关问题。
变速运动
在某些变速运动问题中,速度可能与 位移或时间成反比例关系。根据具体 条件建立反比例函数模型,可以求解 变速运动的相关问题。
浓度问题求解
溶液稀释
在溶液稀释过程中,溶质的质量与溶 液的体积成反比例关系。通过给定的 溶质质量和溶液体积条件,可以建立 反比例函数求解相关问题。
题目6
已知一次函数 y = kx + b (k ≠ 0) 与反比例函数 y = m/x (m ≠ 0) 的图象交于 A、B 两点 ,且点 A 的坐标为 (2, 1),则不等式 kx + b > m/x 的解集为 _______.
历年中考真题回顾
题目7
(2019年中考)已知反比例函数 y = k/x (k > 0) 的图象上有 两点 A(x1, y1),B(x2, y2),且 x1 < 0 < x2,则 y1 _______ y2.(填“>”、“<”或“=”)
与一次函数关系比较
相似之处
两者都是线性函数,具有直线型的图象。
不同之处
一次函数的图象是一条直线,而反比例函数的图象是双曲线。此外,一次函数的斜率是常数,而反比 例函数的斜率则随着x的变化而变化。
与二次函数关系比较
相似之处
两者都是非线性函数,具有曲线型的图象。
不同之处
二次函数的图象是一个抛物线,而反比例函数的图象是双曲线。此外,二次函数的对称 轴是y轴或x轴,而反比例函数的对称中心是原点。
06
练习题及解析
基础知识练习题
03
题目1
已知反比例函数 y = k/x (k ≠ 0) 的图象 经过点 (2, -3),则 k 的值为 _______.

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

备战2020年中考数学一轮专项复习——反比例函数综合问题一、反比例函数的概念:知识要点:1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。

注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A )y = xk (k ≠ 0) ; (B )xy = k (k ≠ 0); (C )y=kx -1(k ≠0) 二、反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。

2、位置:(1)当k>0时,双曲线分别位于第一、三象限内;(2)当k<0时, 双曲线分别位于第二、四象限内。

3、增减性:(1)当k>0时,y = xk (k ≠ 0)为减函数,y 随x 的增大而减小; (2)当k<0时,y = xk (k ≠ 0)为增函数,y 随x 的增大而增大。

4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点成中心对称;(2)对于k 取互为相反数的两个反比例函数(如:y =x 6 和y = x 6 )来说,它们是关于x 轴,y 轴成轴对称。

一、选择题:1.下列函数,①y =2x ,②y =x ,③y =x ﹣1,④y =是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个【分析】根据反比例函数的定义,反比例函数的一般式是(k ≠0)判定则可. 【解析】①y =2x 是正比例函数;②y =x 是正比例函数;③y =x ﹣1是反比例函数;④y=不是反比例函数,是反比例关系;所以共有1个.故选:B.2.(2019•济南)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【解析】a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;故选:D.3.如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,根据图象猜想线段MN的长的最小值是()A.B.2C.2 D.1【分析】设N的横坐标是a,则纵坐标是﹣,利用a即可表示出ON的长度,然后根据不等式的性质即可求解.【解析】设N的横坐标是a,则纵坐标是﹣.则OM=ON=≥.则MN的最小值是2.故选:B.4.(2019•阜新)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y 轴上,则△ABC的面积为()A.3 B.2 C.D.1【解析】连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=,∴S△CAB=,故选:C.5.(2019•遵义)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为()A.2 B.3 C.4 D.6【解析】过点A作x轴的垂线,交CB的延长线于点E,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为4,2,∴A(,4),B(,2),∴AE=2,BE=k﹣k=k,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE==1∴k=1,∴k=4.故选:C.6.如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解析】过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.7.(2019•淄博)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y =(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6 C.4D.2【解析】过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…其斜边的中点C1在反比例函数y=,∴C(2,2)即y1=2,∴OD1=D1A1=2,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=,即:y2=,同理:y3=,y 4=,……∴y1+y2+…+y10=2+++……=,故选:A.8.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P 是AC的中点.若△ABP的面积为4,则k的值为().A.16 B.8 C.4 D.24【分析】由△ABP的面积为4,知BP•AP=8.根据反比例函数y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.【解答】解:∵△ABP 的面积为•BP •AP =4,∴BP •AP =8,∵P 是AC 的中点,∴A 点的纵坐标是B 点纵坐标的2倍,又∵点A 、B 都在双曲线y =(x >0)上,∴B 点的横坐标是A 点横坐标的2倍,∴OC =DP =BP ,∴k =OC •AC =BP •2AP =16.故选A.二、填空题:9.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xk y 的图象恰好经过点C ,则k 的值为 .【解析】过点D 作DE ⊥AB 于点E ,则AD=5,∵四边形ABCD 为菱形,∴CD=5∴C (4,4),将C 代入x k y =得:44k =,∴16=k10.(2019遂宁中考 第15题 4分)如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将△OCG 沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数y =经过点B .二次函数y =ax 2+bx +c (a ≠0)的图象经过C (0,3)、G 、A 三点,则该二次函数的解析式为 .(填一般式)【解析】点C (0,3),反比例函数y =经过点B ,则点B (4,3),则OC =3,OA =4,∴AC =5,设OG =PG =x ,则GA =4﹣x ,PA =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2,解得:x =,故点G (,0),将点C 、G 、A 坐标代入二次函数表达式得:,解得:,故答案为:y =x 2﹣x +3. 11.如图,已知点(1,3)在函数y =kx (x >0)的图象上,正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数y =kx(x >0)的图象又经过A ,E 两点,则点E 的横坐标为____.【解析】 把(1,3)代入到y =kx,得k =3, 所以函数解析式为y =3x. 设A (a ,b ),根据图象和题意可知,点E ⎝ ⎛⎭⎪⎫a +b 2,b 2.因为y =3x 的图象经过A ,E ,所以分别把点A 和E 代入到函数解析式中得 ab =3,①b 2⎝ ⎛⎭⎪⎫a +b 2=3,② 由②得ab 2+b 24=3,把①代入得32+b 24=3, 即b 2=6,解得b =±6,因为A 在第一象限,所以b >0,所以b = 6.把b =6代入①求得a =62, 所以点E 的横坐标为a +b 2= 6.故答案为 6. 12.如图,Rt △AOB 中,∠OAB =90°,∠OBA =30°,顶点A 在反比例函数y =图象上,若Rt △AOB 的面积恰好被y 轴平分,则进过点B 的反比例函数的解析式为 .【分析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ),则ab =﹣4.根据两角对应相等的两三角形相似,得出△OAE ∽△ABF ,由相似三角形的对应边成比例,则BD 、OD 都可用含a 、b 的代数式表示,从而求出B 的坐标,进而得出结果.【解析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ).∵顶点A 在反比例函数y =图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.13.如图, △OAP ,△ABQ 是等腰直角三角形,点P ,Q 在反比例函数y =4x (x >0)上,直角顶点A ,B 均在x 轴上,则点Q 的坐标为 .【解析】 ∵△OAP 是等腰直角三角形,∴PA =OA .∴设P 点的坐标是(a ,a ),把(a ,a )代入解析式y =4x,解得a =2(a =-2舍去), ∴P 的坐标是(2,2),∴OA =2,∵△ABQ 是等腰直角三角形,∴BQ =AB ,∴可以设Q 的纵坐标是b ,∴横坐标是b +2,把Q 的坐标代入解析式y =4x, 得b =4b +2,∴b =5-1(b =-5-1舍去),∴点Q 的坐标为(5+1,5-1).14.(2019•毕节市)如图,在平面直角坐标中,一次函数y =﹣4x +4的图象与x 轴、y 轴分别交于A 、B 两点.正方形ABCD 的顶点C 、D 在第一象限,顶点D 在反比例函数y =(k ≠0)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是 .【解析】过点D 作DE ⊥x 轴,过点C 作CF ⊥y 轴,∵AB ⊥AD ,∴∠BAO =∠DAE ,∵AB =AD ,∠BOA =∠DEA ,∴△ABO ≌△DAE (AAS ),∴AE =BO ,DE =OA ,易求A (1,0),B (0,4),∴D (5,1),∵顶点D 在反比例函数y =上,∴k =5,∴y =,易证△CBF ≌△BAO (AAS ),∴CF =4,BF =1,∴C (4,5),∵C 向左移动n 个单位后为(4﹣n ,5),∴5(4﹣n )=5,∴n =3,故答案为3;三、解答题15.如图,一次函数y =kx +2的图象与反比例函数y =m x的图象在第一象限的交点为P .PA 垂直x 轴于点A .PB 垂直y 轴于点B .函数y =kx +2的图象分别交x 轴,y 轴于点C ,D .已知DB =2OD ,△PBD 的面积S △PBD =4.(1)求点D 的坐标;(2)求k ,m 的值;(3)写出当x >0时,使一次函数y =kx +2的值大于反比例函数y =m x的值的x 的取值范围.【解析】(1)在y =kx +2中,令x =0,得y =2,所以点D (0,2).(2)因为OD =2,DB =2OD =4,由S △PBD =4,可得BP =2,而OB =OD +DB =6,所以点P (2,6).将P (2,6)分别代入y =kx +2与y =mx,可得 k =2,m =12.(3) 由图象可知,当x >0时,使一次函数y =kx +2的值大于反比例函数y =mx的值的x 的取值范围是x >2.16.(2019遂宁中考 第23题 10分)如图,一次函数y =x ﹣3的图象与反比例函数y ═(k ≠0)的图象交于点A 与点B (a ,﹣4).(1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【解析】(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═(k≠0)中得:k=4∴反比例函数的表达式为y=;(2)如图:设点P的坐标为(m,)(m>0),则C(m,m﹣3)∴PC=|﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=m×|﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,)或(1,4)或(2,2).17.(2019•河池)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.【解析】(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然PA≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.18.“六一”儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度)如图,它与两面互相垂直的围墙OP,OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任意一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等.比如:A,B,C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI 的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1,S2,S3,并测得S2=6(单位:平方米),OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数解析式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?【解析】(1)∵矩形ADOG 、矩形BEOH 、矩形CFOI 的面积相等,∴弯道为反比例函数图象的一部分.设反比例函数的解析式为y =k x (k ≠0),OG =GH =HI =a ,则AG =k a ,BH =k 2a ,CI =k 3a .所以S 2=k 2a •a -k 3a•a =6,解得k =36.所以S 1=k a •a -k 2a •a =12k =12×36=18,S 3=k 3a •a =13k =13×36=12;(2)由(1)得,弯道的函数解析式为y =36x .∵T(x ,y)是弯道MN 上的任一点,∴y =36x ;(3)∵MP =2,NQ =3,∴GM =362=18,OQ =363=12.∵在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),∴当x =2时,y =18,可以种8棵;当x =4时,y =9,可以种4棵;当x =6时,y =6,可以种2棵;当x =8时,y =4.5,可以种2棵;当x =10时,y =3.6,可以种1棵.故一共可以种8+4+2+2+1=17(棵)花木.19、如图,已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+. (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【解析】(1)∵已知反比例函数k y x =经过点(1,4)A k -+,∴41k k-+=,即4k k -+= ∴2k =∴A(1,2) ∵一次函数y x b =+的图象经过点A(1,2),∴21b =+∴1b =∴反比例函数的表达式为2y x=, 一次函数的表达式为1y x =+。

2020初中数学反比例函数知识点全面梳理,附经典例题+答案

2020初中数学反比例函数知识点全面梳理,附经典例题+答案

2020初中数学反比例函数知识点全面梳理,附经典例题+答

初中数学反比例函数
知识梳理
知识点l. 反比例函数的概念
重点:掌握反比例函数的概念难点:理解反比例函数的概念
(3)自变量x的取值范围是
一切实数.(4)自变量y的取值范围是
一切实数。

知识点2. 反比例函数的图象及性质
重点:掌握反比例函数的图象及性质难点:反比例函数的图象及性质的运用
反比例函数y=k/x的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、
四象限。

它们关于原点对称、反比例函数的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。

画反比例函数的图象时要注意的问题:
(1)画反比例函数图象的方法是描点法;。

考点11 反比例函数(精讲)(原卷版)

考点11 反比例函数(精讲)(原卷版)

考点11.反比例函数(精讲)【命题趋势】反比例函数也是非常重要的函数,年年都会考,总分值为12分左右,预计2024年各地中考一定还会考,反比例函数与一次函数结合出现在解答题中是各地中考必考的一个解答题,反比例函数的图象与性质和平面几何的知识结合、反比例函数中|k|的几何意义等也会是小题考查的重点。

【知识清单】1:反比例函数的概念(☆☆)反比例函数的概念:一般地,函数kyx=(k是常数,k≠0)叫做反比例函数.自变量x和函数值y的取值范围都是不等于0的任意实数.2:反比例函数的图象和性质(☆☆☆)1)反比例函数的图象和性质表达式kyx=(k是常数,k≠0)k k>0k<0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大对称性轴对称图形(对称轴为直线y=x和y=-x),中心对称图形(对称中心为原点)2)待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.3:反比例函数中|k|的几何意义(☆☆☆)1)反比例函数图象中有关图形的面积2)涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.4:反比例函数与一次函数的综合(☆☆☆)1)涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标。

2020年重庆中考数学第10题反比例函数(含答案)-个人用心整理

2020年重庆中考数学第10题反比例函数(含答案)-个人用心整理

反比例函数一、反比例的定义反比例的三种表达式①y=xk(k ≠0) ②y=kx -1(k ≠0) ③xy=k(定值)(k ≠0)例1、 已知函数y=3mx m+4是反比例函数,则m=_________ 二、反比例函数的图像与性质xk y =k >0k <0图象性质当k >0时,函数图象的两个分支分别在第一、三象限,在每一个象限内,y 随x 的增大而减小;当k <0时,函数图象的两个分支分别在第二、四象限,在每一个象限内,y 随x 的增大而增大;y 随x 的增大而减小是错误的例2、已知反比例函数xky -=3函数图象位于第一、三象限,则k .例3、当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A. B. C. D.三、用待定系数法求反比例的解析式例4、.已知:如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4)、点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;四、K的几何意义2.与k相关的面积问题的基本图形例5.如图, Rt AOB 的一条直角边OB 在x OA 中点C ,与另一直角边交于点D ,若9OCDS =,则k 的值为__________.例3.如图,在平面直角坐标系中, Rt ABO ∆的顶点O 与原点重合,顶点B 在x 轴上,90ABO ∠=︒, OA 与反比例函数()0ky k x=≠的图像交于点D ,且2OD AD =,过点D 作x 轴的垂线交x 轴于点C .若ABCD S 四边形=10,则k 的值为___________2019年真题(A 卷)9.(4分)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数y =(k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为( )A .16B .20C .32D .409.(4分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=.若反比例函数y=(k>0,x>0)经过点C,则k的值等于()A.10 B.24 C.48 D.502018年真题(A卷)11.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数kyx=(0k>,x>)的图象上,横坐标分别为1,4,对角线BD x∥轴.若菱形ABCD的面积为452,则k的值为()A. 54B.154C. 4D. 511如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A. B. 3 C. D. 52017年真题(A卷)22.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=k x(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.22.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数(k ≠0)的图象交于A 、B 两点,与x 轴交于点C ,过点A 作AH ⊥x 轴于点H ,点O 是线段CH 的中点,AC =,cos∠ACH =,点B 的坐标为(4,n ) (1)求该反比例函数和一次函数的解析式; (2)求△BCH 的面积.[来源:学+科+网]重庆八中2019级数学初三下入学考试9.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线y =上,过点C 作CE ∥x 轴交双曲线于点E ,连接BE ,则△BCE 的面积为( )A .5B .6C .7D .8k y x4555答案解析2019年真题(A卷)9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.40【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4).利用矩形的性质得出E为BD中点,∠DAB=90°.根据线段中点坐标公式得出E(x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x﹣2)2+42=x2,求出x,得到E点坐标,代入y=,利用待定系数法求出k.【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20.故选:B.2019年B卷9.(4分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=.若反比例函数y=(k>0,x>0)经过点C,则k的值等于()A.10 B.24 C.48 D.50【分析】由菱形的性质和锐角三角函数可求点C(6,8),将点C坐标代入解析式可求k的值.【解答】解:如图,过点C作CE⊥OA于点E,∵菱形OABC的边OA在x轴上,点A(10,0),∴OC=OA=10,∵sin∠COA==.∴CE=8,∴OE==6∴点C坐标(6,8)∵若反比例函数y=(k>0,x>0)经过点C,∴k=6×8=48故选:C.2018年真题(A卷)11.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数kyx=(0k>,x>)的图象上,横坐标分别为1,4,对角线BD x∥轴.若菱形ABCD的面积为452,则k的值为()A. 54B.154C. 4D. 5【答案】D 【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.2018年真题(B卷)11.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A. B. 3 C. D. 5【答案】C【解析】【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【详解】过点D做DF⊥BC于F,由已知,BC=5,∵四边形ABCD是菱形,∴DC=5,∵BE=3DE,∴设DE=x,则BE=3x,∴DF=3x,BF=x,FC=5-x,在Rt△DFC中,DF2+FC2=DC2,∴(3x)2+(5-x)2=52,∴解得x=1,∴DE=1,FD=3,设OB=a,则点D坐标为(1,a+3),点C坐标为(5,a),∵点D、C在双曲线上,∴1×(a+3)=5a,∴a=,∴点C坐标为(5,)∴k=.故选C.2017年真题(A卷)22.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=k x(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.【答案】(1)反比例函数的解析式为y=4x,一次函数的解析式为y=2x+2;(2)4.【解析】试题分析:(1)根据题意可得B的坐标,从而可求得反比例函数的解析式,进行求得点A 的坐标,从而可求得一次函数的解析式;学*科网(2)根据(1)中的函数关系式可以求得点C,点M,点B,点O的坐标,从而可求得四边形MBOC的面积.试题解析:(1)由题意可得,BM=OM,∴BM=OM=2,∴点B的坐标为(﹣2,﹣2),[来源:学科网ZXXK]即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交与点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC的面积是:2222 2222OM OC OM MB⨯⨯⨯⨯+=+=4.考点:反比例函数与一次函数的交点问题. 2017年真题(B卷)22.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=ACH=,点B的坐标为(4,n)(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.【答案】(1),y=﹣2x+4;(2)8.试题解析:(1)∵AH⊥x轴于点H,AC=,cos∠ACH=,∴,解得:HC=4,∵点O是线段CH的中点,∴HO=CO=2,∴AH=8,∴A(﹣2,8),∴反比例函数解析式为:,∴B(4,﹣4),∴设一次函数解析式为:y=kx+b,则:,解得:,∴一次函数解析式为:y=﹣2x+4;(2)由(1)得:△BCH的面积为:×4×4=8.kyx=516yx=-45555545HCAC==22AC HC-16yx=-2844k bk b-+=⎧⎨+=-⎩24kb=-⎧⎨=⎩12考点:反比例函数与一次函数的交点问题;解直角三角形.重庆八中2019级数学初三下入学考试9.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为()A.5 B.6 C.7 D.8【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=﹣x﹣1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.【解答】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE•BM=××4=7;故选:C.。

2020北师大版九年级数学上册 反比例函数知识点总结

2020北师大版九年级数学上册 反比例函数知识点总结

【文库独家】北师大版九年级上册第六章 反比例函数知识点总结知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。

(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。

(完整版)北师大版反比例函数重点知识点总结及例题

(完整版)北师大版反比例函数重点知识点总结及例题

反比例函数知识点及考点:(一)反比例函数的概念:知识要点:1、一般地,形如y = ( k是常数, k = 0 ) 的函数叫做反比例函数。

注意:(1)常数k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A)y = (k ≠0),(B)xy = k(k ≠0)(C)y=kx-1(k≠0)例题讲解:有关反比例函数的解析式(1)下列函数,①②. ③④.⑤⑥;其中是y关于x的反比例函数的有:_________________。

(2)下列函数表达式中,y是关于x的反比例函数的有()①y=;②y=;③y=;④y=;⑤y=;⑥y=;⑦y=;⑧-2xy=1A.2个B.3个C.4个D.5个(3)关于函数y=,以下说法正确的是()A.y是x的反比例函数B.y是x的正比例函数C.y是x-2的反比例函数D.以上都不对(4)函数是反比例函数,则的值是()A.-1B.-2C.2D.2或-2(5)如果是的反比例函数,是的反比例函数,那么是的()A.反比例函数B.正比例函数C.一次函数D.反比例或正比例函数(6)若函数(m是常数)是反比例函数,则m=________,解析式为________.(7)(2013安顺)若y=(a+1)是反比例函数,则a的值是,该反比例函数为(二)反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。

2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。

例题讲解:(1)(2013邵阳)下列四个点中,在反比例函数y=的图象上的是()A.(3,-2)B.(3,2)C.(2,3)D.(-2,-3)(2)反比例函数y=的图象经过点(﹣2,3),则该图象经过象限(3)已知函数是反比例函数,且图像在第二、四象限内,则的值是()A.2B.C.D.(4)反比例函数y=在第一象限的图象如图所示,则k的值可能是()A.1 B.2 C.3 D.4(5)写出一个反比例函数,使它的图象经过第二、四象限.(6)若反比例函数的图象在第二、四象限,则的值是()A、-1或1;B、小于的任意实数;C、-1; D、不能确定3、增减性:(1)当k>0时,_________________,y随x的增大而________;(2)当k<0时,_________________,y随x的增大而______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点一:反比例函数的有关概念
1. 定义:一般地,形如(为常数,)的函数称为反比例
函数。

还可以写成
知识点二:反比例函数的基本性质
1、反比例函数的图像:
反比例函数的图像是双曲线,是轴对称图形(对称轴是或);(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不
与坐标轴相交;
2、作图方法:描点法
①列表(应以O为中心,沿O的两边分别取三对或以上互为
相反的数)
②描点(有小到大的顺序)
③连线(从左到右光滑的曲线)
3、反比例函数的几何意义:
反比例函数()中比例系数的几何意义是:过双曲线()上任意引轴轴的垂线,所得矩形面积为。

4、反比例函数的基本性质
反比例函数
的取值质①、的取值范围是;的取值范围是
②、函数图像分别在第一、三象限,在每个象限内,随着的
增大而减小
③、对称轴为直线
④、若点在反比例函数图像上,则点也一定在此反比例函数
图像上。

①、的取值范围是;的取值范围是
②、函数图像分别在第二、四象限,在每个象限内,随着的增大而增大
③、对称轴为直线
④、若点在反比例函数图像上,则点也一定在此反比例函数图像上。

5、反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出。

相关文档
最新文档