满堂支架设计计算实例详解复习进程
连续箱梁满堂支架施工方案与计算实例详解

满堂支架专项施工方案编制人:审核人:批准人:编制时间:一、编制依据(1)根据海南xx英州镇xxx游艇码头桥梁工程相关施工图纸要求,甲、乙双方签订的施工合同、协议,结合施工现场实际编制本工程实施方案。
(2)根据本工程设计特点、功能要求。
(3)根据国家及地方现行有关的建设法规、施工质量验收规范、标准及安全生产、文明施工规范、标准。
(4)《公路桥涵施工技术规范》(5)《钢结构工程施工质量验收规范》(GB50205-2001)(6)《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001、2002年版) (7)《建筑施工安全检查标准》(JGJ59-99)(8)根据施工现场实际情况及周边环境情况。
(9)根据我司的施工管理、施工组织、施工技术水平、施工技术经验、方法及机械设备情况。
二、概述1、工程概况一号桥位于海南xx县xxx大涌河及其出海口段,交角为90°,跨径为27.5-45-27.5m,全长107.08m。
该桥桥梁上部结构:单箱双室现浇预应力混前言凝土变截面连续箱梁。
箱梁跨中高度为1.5m,墩顶高2.7m,梁底按弧线变化。
主桥箱梁除在墩顶处设置厚度为2.5m的横梁及边跨端部设厚度为1.5m的横梁外,其余部位均不设横隔板。
箱梁顶板宽16m,底板宽11m,两侧翼缘板各宽2.5m,单箱双室截面。
顶板厚度为0.28m;底板厚度由跨中的0.25m 按弧线变化至0.4m;腹板厚度由0.45m变化到0.6m。
为改善箱梁根部截面受力,在中横梁两端附近的顶、底板局部加腋加厚。
2、桥梁地貌及地址概况1)地形、地貌桥址区位于海成一级阶地大地貌单元中的河流沉积入海口,地面标高0.90~6.10m,高差约5.20m。
河槽较平缓,河沟底与岸边高差约6.0m。
周围均为海成砂堤。
2)地层岩性通过野外钻探、原位测试,室内岩土测试,将埋深23.20m以上浅地基岩土自上而下划分为5个工程地质层,现简述如下:①冲填土(Q4al):河岸处揭露(QK1、QK2孔揭露)。
满堂支架的计算算例(1)

满堂支架的计算算例一、概述1、工程概况安庆长江公路大桥E标工程南岸堤外引桥为双幅分离式桥梁,单幅一联6跨(6×40m=240m)为单箱单室预应力混凝土斜腹板等截面连续梁,梁高2.5m,箱梁顶板跨12.75m,底板宽5.384m,箱梁顶、底板厚均为0.25m ,腹板厚0.5m,两侧翼缘板悬臂长度均为2.85m,全桥仅在桥墩支点截面处设置端,中横梁。
桥面横坡在-3%~2%变化,桥面横坡由梁底垫石变高度使梁体整体旋转而形成,箱梁横断面与梁高均保持不变;桥面纵破为2.75%。
桥面横坡见下表:桥面横坡一览表墩号桥面横坡梁底轴线与桥轴线距离(cm)左幅(%)右幅(%)左幅右幅YR11 0.116 0.020 662.20 657.15YR12 -1.217 0.020 665.65 657.15YR13 -2.551 -2.551 669.00 655.60YR14 -3.000 -3.000 670.15 654.35YR15 -3.000 -3.000 670.15 654.35YR16 -3.000 -3.000 670.15 654.35YR17 -3.000 -3.000 670.15 654.35箱梁采用单向预应力体系,纵向预应力钢束设置采用фj15.24钢绞线,Rby=1860Mpa,波纹管制孔。
每跨单侧腹板内设置6束16孔钢束,在接缝处采用钢束联结器接长;顶板设置12束7孔钢束,钢束长为14米,一端为P锚,一端为张拉锚,钢束跨越桥墩顶分布置,每侧各长7米;底板设置4束7孔钢束,一端为P锚,一端为张拉锚,每束钢束跨越施工接缝分布在两跨内。
2、施工方法简介南堤外引桥位于缓和曲线段,桥位区多为农田、耕地及居民拆迁区,陆地施工条件相对较好。
施工时,先将桥位地基处理后,采用扣件式满堂脚手架单幅逐跨现浇施工工艺进行施工,施工时,翼缘模板及外侧模采用定制钢模板(按首跨长配置一套模板),内模采用胶合板(按首跨长配置一套模板),底模采用玻璃钢竹胶板(按一个标准跨和一个首跨长度配置)。
满堂支架设计计算实例详解

满堂支架设计计算(一)(0#台—1#墩)出京线目录一、设计依据 (1)二、地基容许承载力 (1)三、箱梁砼自重荷载分布 (1)四、模板、支架、枕木等自重及施工荷载 (2)五、支架受力计算1、立杆稳定计算 (5)2、立杆扣件式钢管强度计算 (6)3、纵横向水平钢管承载力 (6)4、地基承载力的检算 (6)5、底模、分配梁计算 (7)6、预拱度计算 (12)一、设计依据1.《京承高速公路—陡子峪大桥工程施工图》2.《公路钢筋砼及预应力砼桥涵设计规范》JTJ023-853.《公路桥涵施工技术规范》JTJ041-20004.《扣件式钢管脚手架安全技术规范》JGJ130-20015.《公路桥涵钢结构及木结构设计规范》JTJ025-866.《简明施工计算手册》二、地基容许承载力根据本桥实际施工地质柱状图,地表覆盖层主要以亚粘素填土为主,地基承载力较好。
为了保证地基承载力不小于12t/㎡,需要进行地基处理。
地基表皮层进行土层换填,换填如下:开挖标高见图纸,底层填0.5m中砂,经过三次浇水、分层碾压(平板震动器)夯实,地基面应平整,夯实后铺设5cm石子,继续压实,并进行承载力检测。
整平地基时应注意做好排水设施系统,防止雨水浸泡地基,导致地基承载力下降、基础发生沉降。
钢管支架和模板铺设好后,按120%设计荷载进行预压,避免不均匀沉降。
三、箱梁砼自重荷载分布根据设计图纸,箱梁单重为819t。
墩顶实心段砼由设于墩顶的底模直接传递给墩身,此部分不予检算。
对于空心段箱梁,根据《0#台-1#墩出京线30米跨箱梁满堂支架施工总体布置图》,综合考虑箱梁横截面面积和钢管支架立杆纵向间距,空心段箱梁腹板等厚段下方,纵桥向间距最大的立杆受力最不利。
根据立杆纵桥向布置,受力最不利立杆纵向间距取为d=(0.9+1.2)/2=1.05m。
本计算书主要检算该范围箱梁和支架受力。
钢管支架立杆纵向间距为30cm、60cm、90cm、120cm四种形式,横向间距为120cm+3×60cm+3×90cm+60cm+3×90cm+3×60cm+120cm。
满堂式碗扣支架支架设计计算

满堂式碗扣支架支架设计计算杭州湾跨海大桥XI合同段中G70~G76墩的上部结构为预应力混凝土连续箱梁,该区段连续箱梁结构设计有两种形式,一为等高段,一为变高段,G70~G70为变高段连续箱梁。
为此,依据设计图纸、杭州湾跨海大桥专用施工技术规范、水文、地质情况,并充分结合现场的实际施工状况,为便于该区段连续箱梁的施工,保证箱梁施工的质量、进度、安全,我部采用满堂式碗扣支架组织该区段连续箱梁预应力混凝土逐段现浇施工。
一、满堂式碗扣件支架方案介绍满堂式碗扣支架体系由支架基础(厚50cm宕渣、10cm级配碎石面层)、Φ48×3mm碗扣立杆、横杆、斜撑杆、可调节顶托、10cm×15cm底垫木、10cm×15cm或10cm×10cm木方做横向分配梁、10cm×10cm木方纵向分配梁;模板系统由侧模、底模、芯模、端模等组成。
10cm×15cm木方分配梁沿横桥向布置,直接铺设在支架顶部的可调节顶托上,箱梁底模板采用定型大块竹胶模板,后背10cm×10cm木方,然后直接铺装在10cm×15cm、10cm×10cm 木方分配梁上进行连接固定;侧模、翼缘板模板为整体定型钢模板。
(主线桥30m跨等高连续梁一孔满堂支架结构示意图见附图XL-1、2、3所示)。
根据箱梁施工技术要求、荷载重量、荷载分布状况、地基承载力情况等技术指标,通过计算确定,每孔支架立杆布置:纵桥向为:3*60cm+30*90cm +2*60cm,共计36排。
横桥向立杆间距为:120cm+3*90cm+3*60cm +6*90cm +3*60cm +3*90 cm+120cm,即腹板区为60cm,两侧翼缘板(外侧)为120cm,其余为90cm,共21排;支架立杆步距为120cm,在横梁和腹板部位的支架立杆步距加密为60cm,支架在桥纵向每360cm间距设置剪刀撑;支架两端的纵、横杆系通过垫木牢固支撑在桥墩上;立杆顶部安装可调节顶托,立杆底部支立在底托上,底托安置在支架基础上的10cm×15cm木垫板上。
满堂支架施工方案_计算讲解

(1)立杆长细比计算:钢管断面示意图见下图。 回转半径计算:i = 0.35 d D =0.35×(48+41)÷2=15.575mm
2
长细比λ计算:λ= =77<[λ]=150 (2)由长细比可查得,轴心受压构件的纵向弯曲系数 =0.707
(3)立杆钢管的截面积:
Am=
=489mm2
目录
工程概况
某大桥现浇箱梁为单箱单室结构,梁顶宽为10m,腹 板宽为5.1m,梁高1.8m。
箱梁每跨30m,三跨为一联,采用现浇法施工。箱梁 每跨混凝土为203m2,标准断面面积为6.21m2,变截 面面积为8.05m2。
目录
工程概况
荷载首先作用在板底模板上,按照“底模→纵梁(底模方木) →横梁→立杆→基础”的传力顺序,分别进行强度、刚度和 稳定性验算。
(2)、跨中最大弯矩M= =41.814×0.92/8=4.23KN•m
目录
横梁强度计算
(3)横梁弯拉应力:计算简图见下图。
σ= M/W =4.23×103/72.7×10-6=58.2MPa<[σ]=210Mpa 横梁弯拉应力满足要求。 3、横梁挠度计算: f= 5ql4 =(5×41.69×103×0.94)/(384×2.1×1011×436×10-8)
(6) 方木:取标准值7.5KN/m3 ,分项系数1.2,设计值为F6=9 KN/m3。
目录
底模强度计算
箱梁底模采用高强度竹胶板,板厚t=18mm
1、模板力学性能
(1)弹性模量E=0.1×105MPa。 (2)截面惯性矩:I=bh3/12=100×1.83/12=48.6cm4 (3)截面抵抗矩:W=bh2/6=100×1.82/6=54cm3 (4)截面积:A=bh=100×1.8=180cm2
实例分析满堂支架设计施工要点

实例分析满堂支架设计施工要点一、概述近年来,在我国工程建设中频繁发生各类支架倒塌事故,造成了严重的人员伤亡及巨大的经济损失,个别施工企业甚至因此而破产,对社会构成了很坏的影响。
笔者在青岛蓝色硅谷城际轨道交通工程负责车辆段施工,主要为房建及现浇梁工程,满堂支架必然会大范围使用,尤其要高度重视支架安全。
下面就满堂支架的设计施工要点和典型事故做简要分析。
二、支架设计和施工要点1、满堂支架的计算以青岛大田路车辆段综合楼为例,验算100mm厚板、600*1200mm梁、300*700mm梁的脚手架承载计算,立杆为纵距la,立杆横距为lb,步距h=1.8m,模板为15mm的镜面板。
钢管计算参数为:立杆截面积A=397mm2,立杆回转半径按照壁厚3.5mm 为i=16mm,截面惯性矩I=1.02*106mm4,弹性模量E=2.06*105N/mm2,截面模量W=4245mm3,钢管抗压强度设计值:[f]=205N/mm2。
荷载计算参数:模板与木块自重:0.35KN/m2;混凝土与钢筋自重:25KN/m3,倾倒混凝土荷载:1.0KN/m2,施工均布荷载标准值:1.0 KN/m2。
(1)板底支撑钢管计算:立杆纵距la=0.9m,横距lb=0.9m,横向支撑钢管按照均布荷载作用下的连续梁计算。
q900 900 900支撐钢管计算简图(mm)0.7810.625支撑钢管计算弯矩图(KN.m)荷载的计算:①钢筋混凝土板自重q11=25*0.1*0.9=2.25KN/m②模板的自重线荷载q12=0.35*0.9=0.315KN/m③活荷载标准值q2=2*0.9=1.8KN/m考虑系数后静荷载q1=1.2*5.625+1.2*0.315=7.128KN/m活荷载q2=1.4*1.8=2.52KN/m组合荷载q=q1+q2=9.648KN/m(2)抗弯强度计算最大弯矩M=0.1q12=0.1*9.648*0.9*0.9=0.781KN.m最大剪力Q=0.6*9.648*0.9=5.209KN最大支座力N=1.1*9.648*0.9=9.551KN抗弯计算强度f=M/W=183N/mm2<205N/mm2,满足要求支撑钢管的最大挠度v=0.677*ql4/100EI=2.04mm<10mm,满足要求。
满堂支撑架计算实例教学提纲
满堂支撑架计算实例满堂支撑架计算实例某现浇楼板层高21.8m,现浇钢筋混凝土板厚300mm,现浇板宽度12m,立杆间距采用0.9m×0.9m,步距1.5m。
试对架体进行计算。
一、计算荷载:1.模板自重(G1k):采用胶合板做模板,故模板自重查《建筑施工模板安全技术规范》JGJ162-2008,以下简称《规范》第4.1.1,取标准值为0.6KN/m22.混凝土自重(G2k):《规范》第4.1.1取标准值为0.3×24=7.2KN/m23. 钢筋自重(G3k):《规范》第4.1.1,取标准值为 0.3×1.3KN/m3=0.39KN/m24.施工人员及设备荷载(Q1k):《规范》第4.1.2,取标准值为 1KN/m2二、支架构造由于层高高、板厚。
故采用满堂支撑架,立杆间距为0.9×0.9m,纵横向水平杆步距为1.5米,剪刀撑设置加强型。
三.立杆稳定计算1.荷载取值《规范》JGJ162-2008第4.3.2规定,应取G1k+ G2k+ G3k+ Q1k2.立杆的轴向力设计值N规范JGJ130-2011之第5.4.4规定不组合风荷载时: 1.2 1.4GK QK N N N =+∑∑组合风荷载时: 1.20.9 1.4GK QK N N N =+⨯∑∑1k 2k 3k ()0.90.9(0.67.20.39)0.818.998GK NG G G KN =++⨯⨯=++⨯=∑ 1k 0.90.910.810.81QKN Q KN =⨯⨯=⨯=∑ 所以不组合风荷载时 1.2 6.553 1.40.818.998N KN =⨯+⨯=组合风荷载时: 1.2 6.5530.9 1.40.818.885N KN =⨯+⨯⨯=3 风荷载产生的立杆段弯矩设计值M w脚手架中具有当挡风作用的主要是立杆、大横杆、剪刀撑,影响挡风系数φ大小是这些杆件的数量,其挡风系数一般按以下经验公式求出φ=A n /A w =1.2×(l a +l n +0.325l a l n )d /l a l nA n —杆件的挡风面积 A w —杆件的迎风面积l a — 立杆纵距 l n —立杆步距 d — 杆件的直径φ=(1.5+1.5+0.325×1.5×1.5)×0.0483/1.5×1.5=0.080查规范JGJ130-2011第4.2.6条脚手架风载体型系数μs=μstw ,查建筑结构荷载规范GB50009表7.3.1第32项和36项得 μstw =μst (1-ηn )/(1-η)μst =μs φ=1.4φ=1.4×0.08=0.112查GB50009表7.3.1第32知η=1.0 μs=μstw =0查GB50009 μz =1.25w k =μz ·μs ·w o =1.25×0×0.3=0M w =0.9×1.4w k l a h 2=0kNm4 立杆稳定性计算部位按规范JGJ130-2011第5.4.6条确定为顶段和底段顶段N=8.998KNl0=kμ1(h+2a) k=1.291h=1.5 a=0.3 μ1=1.288l0=kμ1(h+2a)= 1.291×1.288×(1.5+2×0.3)=3492mmλ= l0/i=3492/15.9=219.6查规范JGJ130-2011表A.0.6,φ=0.15N/φA=8.998×103/(0.15×506)=118.6N/mm2 <[f]=205 N/mm2底段N=8.998+0.1534×(21.8-0.3)=12.296KN(0.1534是查规范JGJ130-2011附表A.0.3所得)l0=kμ2h k=1.291 μ2=1.755l0=kμ2h=1.291×1.755×1500=3398.6mmλ= l0/i=3398.6/15.9=213.7 φ=0.159N/φA=12.296×103/(0.159×506)=152.8N/mm2 <[f]=205 N/mm2满足要求。
满堂支架计算
刚度满足要求。
底板砼仅厚32cm,底板下木枋布置间距为25cm,其强度验算同上,能满足要求。
强度满足要求;
由矩形简支梁挠度计算公式得:E = 0.1×105 Mpa; I = bh3/12 = 2812.5 cm4
copyright 路桥gcs
f max = 5q1L4 / 384EI
= 5×48.402×103×10-3×0.34 ×1012 / (384×2812.5×104×0.1×105)
(腹板外模与底板底模采用厚度5mm大面钢板制作,内模采用1.5×0.3m组合钢模板)
腹板内外模模板重量为:2.9175×14×0.005×7.85×103+(108.56+252.99+150.02+209.75)/100/0.3×14/1.5×14.91= 4949.13 Kg
设备及人工荷载:P3 = (10×60+8×25+1000)×9.8×10-3/ (14×0.5) =2.52 kN /m2 内容来自lq工程师
4.2 顶托横梁10×15cm(15cm面竖放)木枋验算
腹板处脚手管立杆纵向间距为0.9m,横向间距为0.9m、0.6m(腹板加强后间距为0.3m)两种,为简化计算,按简支梁受力进行验算,实际为多跨连续梁受力,取计算跨径为0.3m,仅验算底模腹板对应位置即可:
q1=P计×0.3= 161.34 × 0.3 = 48.402 kN/m
简述满堂脚手架的设计计算步骤
简述满堂脚手架的设计计算步骤满堂脚手架呀,这可是建筑施工里很重要的一部分呢!那它的设计计算步骤就像是搭积木一样,得一块一块稳稳地放好。
首先呢,要确定施工荷载。
就好比你要知道这个脚手架上会放多重的东西,是几袋水泥呢,还是一些轻巧的工具。
这可不能马虎,得算得准准的,不然脚手架可撑不住就麻烦啦!然后就是计算立杆的稳定性。
这立杆就像是脚手架的脊梁骨,得足够结实才行。
要考虑它能不能承受住上面的重量,会不会摇摇晃晃的。
接下来就是横杆的计算啦。
横杆就像是给脚手架穿上了一道道的腰带,把立杆们都紧紧地连在一起,让整个架子更稳固。
还有脚手板的计算呢!脚手板得能让工人稳稳地站在上面干活呀,不能太薄太脆弱了。
再就是连墙件的设计啦。
这连墙件就像是把脚手架和建筑物紧紧拉住的绳子,可不能松松垮垮的。
这些步骤一个都不能少,就像做饭一样,少了一味调料可能味道就不对啦。
你想想,如果立杆不稳定,那架子会不会突然就歪了?如果脚手板不结实,工人站上去会不会心里发慌?所以呀,每个步骤都得仔仔细细地去算。
这满堂脚手架的设计计算,其实就和我们过日子一样,得方方面面都考虑到。
你不能只想着今天吃什么好的,还得想想明天的柴米油盐呢!只有把这些都安排好了,我们的生活才能稳稳当当的,建筑施工也是一样呀。
只有把满堂脚手架的设计计算都做好了,才能保证施工的安全和顺利进行。
咱可不能小瞧了这满堂脚手架的设计计算,它可关系到好多人的安全呢!要是没做好,那后果可不堪设想。
所以呀,那些搞设计计算的人可得瞪大眼睛,算得清清楚楚的,不能有一丝马虎。
你说这满堂脚手架是不是很重要呀?这设计计算步骤是不是得好好掌握呀?这就像是走钢丝,得小心翼翼地一步一步来,才能安全到达彼岸呢!。
满堂支架设计及计算实例
满堂支架设计及计算实例摘要:满堂支架作为建筑、桥梁结构施工的支撑手段,其运用范围越来越广,也越来越受施工单位的青睐。
满堂支架设计关系到施工安全和混凝土结构施工质量。
本文就支架法浇筑箱梁的满堂支架设计和计算进行实例分析和总结。
关键词:满堂支架设计荷载计算实例1、满堂支架设计在支架法浇筑箱梁混凝土施工中,满堂支架的强度、刚度、稳定性和沉降量决定着箱梁浇筑的质量和线型。
支架设计应按照混凝土结构体型进行布置,支架布置完成后必须进行预压实验,以保证支架及地基变形稳定,混凝土结构线型满足设计要求。
2、满堂支架计算的内容满堂支架计算的内容主要包括荷载、模板、支架、基础和地基。
荷载主要包括模板自重、支架自重、设计混凝土或钢筋混凝土重量、施工人员和运输工具重量、倾倒混凝土时产生的冲击荷载、振捣混凝土时产生的荷载。
模板一般选用竹胶合板或组合钢模板,一般当现浇箱梁跨数多,工期不冲突时,优先选用组合钢模板;当现浇梁工程量较少,可优先选用竹胶合模板。
对模板进行强度和刚度的验算。
3、满堂支架计算实例3.1工程概况大汶河特大桥跨370~371#桥墩非标梁采用碗扣式支架现浇施工。
370#~371#墩之间跨长30.1m,桥梁宽12.0m。
箱梁截面类型均为单箱单室等高度,梁端顶板、底板及腹板局部向内侧加厚。
370#~371#墩施工区地质情况为:第一层为粉质粘土,层厚3.0m左右,地基承载力为200kpa左右;第二层为粗砂层,地基承载力为370kPa。
3.2结构荷载分析由于箱梁梁端顶板、底板及腹板局部向内侧加厚,纵向分布的不均匀性,支架设计时杆件布置也沿着纵向变化,根据支架的变化验算时检算梁端4.5m范围断面部分、跨中断面部分。
由于箱梁横向不均匀分布,根据箱梁横断面的形状,为了使支架受力比较合理,跨中部分对称中线的一半横向分为中间部分(宽2米)、腹板部分(宽2米)和翼行板部分(宽2米),各部分的宽度内模式简化为按照均匀荷载进行计算;梁端4.5m范围对称中线的一半横向分为中间部分(宽1.873米)、腹板部分(宽2.357米)和翼行板部分(宽1.8米),各部分的宽度内模式简化为按照均匀荷载进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
满堂支架设计计算(一)(0#台—1#墩)出京线目录一、设计依据 (1)二、地基容许承载力 (1)三、箱梁砼自重荷载分布 (1)四、模板、支架、枕木等自重及施工荷载 (2)五、支架受力计算1、立杆稳定计算 (5)2、立杆扣件式钢管强度计算 (6)3、纵横向水平钢管承载力 (6)4、地基承载力的检算 (6)5、底模、分配梁计算 (7)6、预拱度计算 (12)一、设计依据1.《京承高速公路—陡子峪大桥工程施工图》2.《公路钢筋砼及预应力砼桥涵设计规范》JTJ023-853.《公路桥涵施工技术规范》JTJ041-20004.《扣件式钢管脚手架安全技术规范》JGJ130-20015.《公路桥涵钢结构及木结构设计规范》JTJ025-866.《简明施工计算手册》二、地基容许承载力根据本桥实际施工地质柱状图,地表覆盖层主要以亚粘素填土为主,地基承载力较好。
为了保证地基承载力不小于12t/㎡,需要进行地基处理。
地基表皮层进行土层换填,换填如下:开挖标高见图纸,底层填0.5m中砂,经过三次浇水、分层碾压(平板震动器)夯实,地基面应平整,夯实后铺设5cm石子,继续压实,并进行承载力检测。
整平地基时应注意做好排水设施系统,防止雨水浸泡地基,导致地基承载力下降、基础发生沉降。
钢管支架和模板铺设好后,按120%设计荷载进行预压,避免不均匀沉降。
三、箱梁砼自重荷载分布根据设计图纸,箱梁单重为819t。
墩顶实心段砼由设于墩顶的底模直接传递给墩身,此部分不予检算。
对于空心段箱梁,根据《0#台-1#墩出京线30米跨箱梁满堂支架施工总体布置图》,综合考虑箱梁横截面面积和钢管支架立杆纵向间距,空心段箱梁腹板等厚段下方,纵桥向间距最大的立杆受力最不利。
根据立杆纵桥向布置,受力最不利立杆纵向间距取为d=(0.9+1.2)/2=1.05m。
本计算书主要检算该范围箱梁和支架受力。
钢管支架立杆纵向间距为30cm、60cm、90cm、120cm四种形式,横向间距为120cm+3×60cm+3×90cm+60cm+3×90cm+3×60cm+120cm。
根据钢管支架立杆所处的位置分为四个受力区,详见《0#台-1#墩出京线30米跨箱梁满堂支架施工总体布置图(二)》。
各受力区钢管支架立杆所承受钢筋砼自重荷载详见下表:根据上表,位于中腹板处间距60cm的立杆受力最大,单根钢管承受最大钢筋砼荷载为2.03t。
四、模板、支架、枕木等自重及施工荷载本桥箱梁底模、外模均采用δ=12mm厚竹胶板,内模采用δ=30mm厚木板。
底模通过纵横向带木支撑在钢管支架顶托上,支架采用Φ48mm×3.5mm钢管,通过顶托调整高度,支架底部通过垫块1或垫块2分配传力于地基。
垫块1:45cm×45cm×7cm 新制砼块。
垫块2:当立杆纵桥向间距≤60cm时,在立杆下方纵桥向布设25cm宽方木;当立杆纵桥向间距≥90cm时,在立杆下方纵桥向布设20cm宽方木。
采用方木垫块时,方木应沿纵桥向连续布设,方木断开位置应加设一层方木垫块,以保证立杆荷载均匀传至地基。
1、底模、外模面积共:15.16×30=454.80m2共重:454.80×0.012×0.85=4.64t2、内模面积共:13.4×25.2=337.68m2共重:337.68×0.03×0.65=6.58t3、模板底层横向带木采用100mm×100mm方木(间距按0.3m布置)共重:(30/0.3)×9.10×0.1×0.1×0.65=5.92t4、模板底层纵向带木采用150mm×100mm方木共重:30×20×0.15×0.1×0.65=5.85t5、外模木肋采用100mm×100mm方木(间距按0.3m布置)共重:(30/0.3)×6.81×0.1×0.1×0.65=4.43t6、内模木肋采用100mm×100mm方木(间距按0.3m布置)共重:(25.2/0.3)×13.4×0.1×0.1×0.65=7.32t7、钢管支架钢管支架采用Φ48mm×3.5mm规格,单重为3.841kg/m。
①立杆纵横向布置为16×33排,立杆长度有4m、5.5m、7m三种,数量分别为176根、192根、160根。
共重:(176×4+192×5.5+160×7)×3.841/1000=11.06t②水平杆步距为2×1.5m+3×1.2m,共5步6层。
纵向水平杆:长度有27.9m、18.6m、7.2m三种,数量分别为72根、16根、16根。
共重:(72×27.9+16×18.6+16×7.2)×3.841/1000=9.30t横向水平杆:长度有12.6m 、1.7m 两种,数量分别为164根、132根。
共重:(164×12.6+132×1.7)×3.841/1000=8.80t③纵横向剪刀撑:按每4档布置一道,长度有5.5m 、7.2m 、9.0m 三种,数量分别为54根、54根、44根。
共重:(54×5.5+54×7.2+44×9.0)×3.841/1000=4.16t 钢管支架共重:9.30+8.80+4.16=22.26t 8、施工荷载按0.25t/m 2考虑 以上荷载共计:4 4.64 6.58 5.92 5.85 4.437.3222.26q 0.251330++++++=+⨯ 257.000.250.40t /m 1330=+=⨯五、支架受力计算1、立杆稳定计算根据各受力区钢管支架立杆所承受钢筋砼自重荷载表,位于箱梁中腹板处间距60cm 的立杆受力最大,单根钢管承受最大荷载为2.03t 。
单根钢管所承受的模板、支架自重以及施工荷载为0.40t/ m 2,N 2=1.05×0.6×0.40=0.252t 。
单根钢管实际最大受力(考虑受力不均匀系数1.2): N max =(2.03+0.252)×1.2=2.74t φ48×3.5mm 钢管支架截面特性为:A=4.89cm 2,E=2.06×108KPa ,i=1.58cm ,μ=1,L=1.5m 。
21 1.5951.5810Li μλ-⨯===⨯,查表得φ=0.552故[N]=φA[σ]=0.552×4.89×10-4×215×102=5.80tN max=2.74t<[N]=5.80t,满足立杆稳定要求。
2、立杆扣件式钢管强度计算扣件式钢管立杆容许荷载,查《简明施工计算手册》表8-18(P440),当横杆间距(步距)为150cm时,φ48*3.5mm对接钢管容许荷载[N]=3.03t。
N max=2.74t<[N]=3.03t,满足钢管强度要求。
3、纵横向水平钢管承载力根据施工技术规范,砼倾倒所产生的水平荷载按0.2 t/m2考虑纵横向水平钢管由于立杆间距<1.05×2m,横向水平杆间距≤1m。
满足不需计算的条件,故可不对纵向、横向水平杆进行抗弯强度、抗弯刚度及扣件抗滑移计算。
4、地基承载力的检算(1)采用垫块1,即45cm×45cm×7cm新制砼块。
检算中腹板处地基承载力(《0#台-1#墩出京线30米跨箱梁满堂支架施工总体布置图(二)》中2--2截面Ⅳ区)每个垫块支撑一根钢管,钢管传力为2.74t。
由于砼块的高宽比h/b=7/45=0.16<0.20,故其应力扩散角θ=0。
砼块与地面接触面积为:0.45×0.45=0.20m2地基应力为:2.74/0.2=13.7t/m2>12t/m2,不满足要求。
将中腹板处垫块尺寸换为55cm×55cm×7cm,则砼块与地面接触面积为:0.55×0.55=0.30m2地基应力为:2.74/0.36=9.1t/m2<12t/m2,满足要求。
其它范围地基应力均满足要求。
(2)采用垫块2①当立杆纵桥向间距≤60cm时,在立杆下方纵桥向布设25cm宽方木。
根据上表,位于中腹板处间距60cm的立杆受力最大,单根钢管承受砼最大荷载为2.03t,N2=0.6×0.6×0.40=0.144t。
N max=(2.03+0.144)×1.2=2.61t方木与地面接触面积为:0.6×0.25=0.15m2地基顶面应力为:2.61/0.15=16.5t/m2>12t/m2,不满足要求。
将Ⅱ区、Ⅳ区钢管支架底方木宽度改为45cm,则方木与地面接触面积为:0.6×0.45=0.27m2地基顶面应力为:2.61/0.27=9.7t/m2<12t/m2,满足要求。
②当立杆纵桥向间距≥90cm时,在立杆下方纵桥向布设20cm宽方木。
N max=2.74t方木与地面接触面积为:1.05×0.20=0.21m2地基顶面应力为:2.74/0.21=13.0t/m2>12t/m2,不满足要求。
将Ⅱ区、Ⅳ区钢管支架底方木宽度改为30cm,则方木与地面接触面积为:0.9×0.30=0.27m2地基顶面应力为:2.74/0.27=10.1t/m2<12t/m2,满足要求。
其它范围地基应力均满足要求。
5、底模、分配梁计算(1)面板计算底模采用δ=12mm 厚竹胶板,按单向板计算,箱梁横隔板处的模板受力最不利,按两跨等跨连续梁计算。
取板宽1cm 进行计算,过程如下: 自重,上方模板、木肋,施工荷载为:2111.2300.0120.85 4.647.320.250.29/1330q t m ⨯⨯⨯++=+=⨯上方砼荷载为:q 2=1.6×2.6=4.16t/m 2q=(q 1+ q 2)b=(0.29+4.16)×10×0.01=0.445kN/m 。
其截面特性为:3364bh 0.010.0121.44101212I m -⨯===⨯ 22730.010.012 2.41066bh W m -⨯===⨯420.010.012 1.210A bh m -==⨯=⨯受力简图如下,图中尺寸以mm 计:参照《简明施工计算手册》 江正荣编著 P54中表2-13“两跨等跨连续梁” 查表得K M =0.125,K V =0.625,K f =0.521最大弯矩M max =K M ql 2=0.125×0.445×0.32=5.01×10-3 KN ·m 最大剪力V max =K V ql=0.625×0.445×0.3=0.083KN ·m最大挠度446max660.4450.30.521 1.4510100100910 1.4410f ql f K m EI --⨯==⨯=⨯⨯⨯⨯⨯ []6max75.011020.9a<902.410M MP MPaW σσ--⨯====⨯,满足要求 3max max430.083101.5 1.04[] 1.32 1.210V MPa MPa A ττ--⨯=⨯=⨯=<=⨯,满足要求 变形满足要求。