南昌全国各地备战中考数学分类:相似综合题汇编
中考数学相似的综合题试题附详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,抛物线过点,.为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与相似,求点M的坐标.【答案】(1)解:设直线的解析式为()∵,∴解得∴直线的解析式为∵抛物线经过点,∴解得∴(2)解:∵轴,则,∴,∵点是的中点∴∴解得,(不合题意,舍去)∴(3)解:∵,,∴,∴∵∴当与相似时,存在以下两种情况:∴解得∴∴ ,解得∴【解析】【分析】(1)运用待定系数法解答即可。
(2)由(1)可得直线AB的解析式和抛物线的解析式,由点M(m,0)可得点N,P用m 表示的坐标,则可求得NP与PM,由NP=PM构造方程,解出m的值即可。
(3)在△BPN与△APM中,∠BPN=∠APM,则有和这两种情况,分别用含m的代数式表示出BP,PN,PM,PA,代入建立方程解答即可。
2.如图,BD是□ABCD的对角线,AB⊥BD,BD=8cm,AD=10cm,动点P从点D出发,以5cm/s的速度沿DA运动到终点A,同时动点Q从点B出发,沿折线BD—DC运动到终点C,在BD、DC上分别以8cm/s、6cm/s的速度运动.过点Q作QM⊥AB,交射线AB于点M,连接PQ,以PQ与QM为边作□PQMN.设点P的运动时间为t(s)(t>0),□PQMN与□ABCD重叠部分图形的面积为S(cm2).(1)AP=________cm(同含t的代数式表示).(2)当点N落在边AB上时,求t的值.(3)求S与t之间的函数关系式.(4)连结NQ,当NQ与△ABD的一边平行时,直接写出t的值.【答案】(1)(10-5t)(2)解:如图①,当点N落在边AB上时,四边形PNBQ为矩形.∵PN∥DB,∴△APN∽△ADB,∴AP:AD=PN:DB,∴(10-5t):10=8t:8,120t=80,∴.(3)解:分三种情况讨论:a)如图②,过点P作PE⊥BD于点E,则PE=3t.当时,.b)如图③,过点P作PE⊥BD于点E,则PE=3t,设PN交AB于点F,则.当时,.c)如图④,当时,PF=8-4t,FB=3t,PN=DB=QM=8,∴FN=4t,DQ=6(t-1),∴BM=DQ=6(t-1).∵∠GBM=∠A,∠DBA=∠GMB,∴△BGM∽△ABD,∴GM:BM=DB:AB,解得:GM=8t-8,∴S=S平行四边形PNMQ-S△FMN-S△BMG=8(9t-6)- ×4t×(9t-6)- ×(6t-6)(8t-8)= .综上所述:(4)解:分三种情况讨论.①当NQ∥AB时,如图5,过P作PF⊥BD于F,则PF=3t,DF=4t,PN=FQ=BQ=8t,∴BD=8t+8t+4t=8,解得:.②当AD∥NQ,且Q在BD上时,如图6.∵PNQD和PNBQ都是平行四边形,∴PN=DQ=BQ,∴8t+8t=8,解得:.③当AD∥NQ,且Q在DC上时,如图7,可以证明当Q与C重合,即直线NQ与直线BC重合时,满足条件,如图8,此时DQ=AB= =6,t= =2.综上所述:或或.【解析】【解答】解:(1)(10-5t);【分析】(1)由题意可得,DP=5t,所以AP=AD-DP=10-5t;(2)由欧勾股定理的逆定理可得∠ABD=,所以根据有一个角是直角的平行四边形是矩形可得,当点N落在边AB上时,四边形PNBQ为矩形;由平行线分线段成比例定理可得比例式:,则可得关于t的方程,解方程即可求解;(3)由(2)知,当□PQMN全部在□ABCD中时,运动时间是秒,由已知条件可知,点Q 在BD边上的运动速度是8cm/s,在DC边上的运动速度是6cm/s,所以当点Q运动到C点时,点P也运动到了点A,所以分3种情况:a)如图②,过点P作PE⊥BD于点E,当0 < t ≤时, S=BQ PE;b)如图③,过点P作PE⊥BD于点E,设PN交AB于点F,当< t ≤ 1 时,S =(PF+BQ)PE;c)如图④,当 1 < t ≤ 2 时, S =平行四边形PNMQ的面积-三角形FNM的面积-三角形BMG 的面积;(4)由题意NQ与△ABD的一边平行可知,有3种情况:①当NQ∥AB;②当AD∥NQ,且Q在BD上时;③当AD∥NQ,且Q在DC上时。
中考数学 相似 综合题及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,在四边形ABCD中,AD//BC,,BC=4,DC=3,AD=6.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P、Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设的面积为,直接写出与之间的函数关系式是________(不写取值范围).(2)当B,P,Q三点为顶点的三角形是等腰三角形时,求出此时的值.(3)当线段PQ与线段AB相交于点O,且2OA=OB时,直接写出 =________. (4)是否存在时刻,使得若存在,求出的值;若不存在,请说明理由.【答案】(1)(2)解:如图1,过点P作PH⊥BC于点H,∴∠PHB=∠PHQ=90°,∵∠C=90°,AD∥BC,∴∠CDP=90°,∴四边形PHCD是矩形,∴PH=CD=3,HC=PD=2t,∵CQ=t,BC=4,∴HQ=CH-CQ=t,BH=BC-CH=4-2t,BQ=4-t,∴BQ2= ,BP2= ,PQ2= ,由BQ2=BP2可得:,解得:无解;由BQ2=PQ2可得:,解得:;由BP2= PQ2可得:,解得:或,∵当时,BQ=4-4=0,不符合题意,∴综上所述,或;(3)(4)解:如图3,过点D作DM∥PQ交BC的延长线于点M,则当∠BDM=90°时,PQ⊥BD,即当BM2=DM2+BD2时,PQ⊥BD,∵AD∥BC,DM∥PQ,∴四边形PQMD是平行四边形,∴QM=PD=2t,∵QC=t,∴CM=QM-QC=t,∵∠BCD=∠MCD=90°,∴BD2=BC2+DC2=25,DM2=DC2+CM2=9+t2,∵BM2=(BC+CM)2=(4+t)2,∴由BM2=BD2+DM2可得:,解得:,∴当时,∠BDM=90°,即当时,PQ⊥BD.【解析】【解答】解:(1)由题意可得BQ=BC-CQ=4-t,点P到BC的距离=CD=3,∴S△PBQ= BQ×3= ;( 3 )解:如图2,过点P作PM⊥BC交CB的延长线于点M,∴∠PMC=∠C=90°,∵AD∥BC,∴∠D=90°,△OAP∽△OBQ,∴四边形PMCD是矩形,,∴PM=CD=3,CM=PD=2t,∵AD=6,BC=4,CQ=t,∴PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,∴,解得:,∴MQ= ,又∵PM=3,∠PMQ=90°,∴tan∠BPQ= ;【分析】(1)点P作PM⊥BC,垂足为M,则四边形PDCM为矩形,根据梯形的面积公式就可以利用t表示,就得到s与t之间的函数关系式。
2024中考备考重难点重难点 相似三角形模型及其综合题综合训练(11大题型+满分技巧+限时分层检测)

重难点02 相似三角形模型及其综合题综合训练中考数学中《相似三角形模型及其综合题综合训练》部分主要考向分为五类:一、K型相似二、8字图相似三、A字图相似四、母子型相似五、手拉手相似相似三角形的综合题中各种相似模型的掌握是解决对应压轴题的便捷方法,所以本专题是专门针对相似三角形模型压轴题的,对提高类型的学生可以自主训练。
考向一:K型相似1.(2023•锡山区校级四模)如图,矩形ABCD中,AB=10,BC=8.点P在AD上运动(点P不与点A、D重合)将△ABP沿直线翻折,使得点A落在矩形内的点M处(包括矩形边界),则AP的取值范围是0<AP≤5,连接DM并延长交矩形ABCD的AB边于点G,当∠ABM=2∠ADG时,AP的长是25﹣5.【分析】根据矩形的性质得到AB=CD=5,BC=AD=4,∠A=∠C=∠D=90°,根据折叠的性质得到∠PMB=∠A=90°,BM=AB=5,根据勾股定理得到CM=3,DM=5﹣3=2,根据相似三角形的判定和性质定理即可得到结论;根据折叠的性质得到∠ABP=∠MBP,求得∠ABM=2∠ABP,根据相似三角形的性质得到==,设AP=5x,AG=4x,过M作MH⊥AD于H,根据折叠的性质得到AP=MP=5x,AM⊥BP,根据三角形中位线定理得到MN=AG=2x,根据勾股定理即可得到结论.【解答】解:当M落在CD上时,AP的长度达到最大,∵四边形ABCD是矩形,∴AB=CD=10,BC=AD=8,∠A=∠C=∠D=90°,∵△ABP沿直线翻折,∴∠PMB=∠A=90°,BM=AB=10,∴CM===6,∴DM=10﹣6=4,∴∠PMD+∠BMC=90°,∠PMD+∠MPD=90°,∴∠BMC=∠MPD,∴△PDM∽△MCB,∴=,∴=,∴PD=3,∴AP=8﹣3=5,∴AP的取值范围是0<AP≤5;如图,∵将△ABP沿直线翻折,使得点A落在矩形内的点M处,∴∠ABP=∠MBP,∴∠ABM=2∠ABP,∵∠ABM=2∠ADG,∴∠ABP=∠ADG,∵∠DAG=∠BAP,∴△ADG∽△ABP,∴==,设AP=5x,AG=4x,过M作MH⊥AD于H,∵将△ABP沿直线翻折,使得点A落在矩形内的点M处,∴AP=MP=5x,AM⊥BP,∴∠DAM=90°﹣∠BAM=∠ABP=∠ADG,∴AM=DM,∴DH=AH=4,HP=4﹣5x,∵∠BAD=∠MHA=90°,∴MH∥AG,∴MH为△ADG的中位线,∴MH=AG=2x,在Rt△PHM中,PM2=PH2+HM2,∴(5x)2=(2x)2+(4﹣5x)2,解得x1=5﹣,x2=5+(不合题意舍去),∴AP=5x=25﹣5.故答案为:0<AP≤5;25﹣5.2.(2023•福田区模拟)综合与探究在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上的点F处.(1)如图①,若BC=2BA,求∠CBE的度数;(2)如图②,当AB=5,且AF•FD=10时,求EF的长;(3)如图③,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,请直接写出的值.【分析】(1)由折叠的性质得出BC=BF,∠FBE=∠EBC,根据直角三角形的性质得出∠AFB=30°,可求出答案;(2)证明△F AB∽△EDF,由相似三角形的性质得出,可求出DE=2,求出EF=3,由勾股定理求出DF=,则可求出AF,即可求出BC的长;(3)过点N作NG⊥BF于点G,证明△NFG∽△BF A,,设AN=x,设FG=y,则AF =2y,由勾股定理得出(2x)2+(2y)2=(2x+y)2,解出y=x,则可求出答案.【解答】解:(1)∵四边形ABCD是矩形,∴∠C=90°,∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴BC=BF,∠FBE=∠EBC,∠C=∠BFE=90°,∵BC=2AB,∴BF=2AB,∴∠AFB=30°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFB=∠CBF=30°,∴∠CBE=∠FBC=15°;(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴∠BFE=∠C=90°,CE=EF,又∵矩形ABCD中,∠A=∠D=90°,∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,∴∠AFB=∠DEF,∴△F AB∽△EDF,∴,∴AF•DF=AB•DE,∵AF•DF=10,AB=5,∴DE=2,∴CE=DC﹣DE=5﹣2=3,∴EF=3;(3)过点N作NG⊥BF于点G,∵NF=AN+FD,∴NF=AD=BC,∵BC=BF,∴NF=BF,∵∠NFG=∠AFB,∠NGF=∠BAF=90°,∴△NFG∽△BF A,∴,设AN=x,∵BN平分∠ABF,AN⊥AB,NG⊥BF,∴AN=NG=x,AB=BG=2x,设FG=y,则AF=2y,∵AB2+AF2=BF2,∴(2x)2+(2y)2=(2x+y)2,解得y=x.∴BF=BG+GF=2x+x=x.∴=.3.(2023•桐柏县一模)【初步探究】(1)把矩形纸片ABCD如图①折叠,当点B的对应点B'在MN的中点时,填空:△EB'M∽△B'AN (“≌”或“∽”).【类比探究】(2)如图②,当点B的对应点B'为MN上的任意一点时,请判断(1)中结论是否成立?如果成立,请写出证明过程;如果不成立,请说明理由.【问题解决】(3)在矩形ABCD中,AB=4,BC=6,点E为BC中点,点P为线段AB上一个动点,连接EP,将△BPE沿PE折叠得到△B'PE,连接DE,DB',当△EB'D为直角三角形时,BP的长为或1.【分析】(1)由矩形纸片ABCD如图①折叠,可证△EB'M∽△B'AN;(2)同(1)由四边形ABCD是矩形,如图②折叠,可得∠EB'M=90°﹣∠AB'N=∠B'AN,即可得△EB'M ∽△B'AN,(3)分两种情况:当∠DB'E=90°时,证明Rt△CDE≌Rt△B'DE(HL),得B'D=CD=AB=4,设BP =x=B'P,在Rt△APD中,有(4﹣x)2+62=(x+4)2,可解得BP=;当∠B'ED=90°时,过B'作B'H⊥AB于H,作B'Q⊥BC于Q,则∠B'QE=∠C=90°,证明△B'EQ∽△EDC,可得==,设BP=y=B'P,在Rt△B'PH中,(﹣y)2+()2=y2,可解得BP=1.【解答】解:(1)∵四边形ABCD是矩形,∴∠B=90°,∵矩形纸片ABCD如图①折叠,∴∠EB'A=∠B=90°,∴∠EB'M=90°﹣∠AB'N=∠B'AN,∵∠EMB'=90°=∠B'NA,∴△EB'M∽△B'AN,故答案为:∽;(2)(1)中结论成立,理由如下:∵四边形ABCD是矩形,∴∠B=90°,∵矩形纸片ABCD如图①折叠,∴∠EB'A=∠B=90°,∴∠EB'M=90°﹣∠AB'N=∠B'AN,∵∠EMB'=90°=∠B'NA,∴△EB'M∽△B'AN;(3)如图所示,当∠DB'E=90°时,△EB'D是直角三角形,由折叠可得,∠PB'E=∠B=90°,BE=B'E=CE,∴∠DB'P=180°,即点P,B',D在一条直线上,在Rt△CDE和Rt△B'DE中,,∴Rt△CDE≌Rt△B'DE(HL),∴B'D=CD=AB=4,设BP=x=B'P,则AP=4﹣x,PD=x+4,在Rt△APD中,AP2+AD2=PD2,∴(4﹣x)2+62=(x+4)2,解得x=,∴BP=;如图所示,当∠B'ED=90°时,△EB'D是直角三角形,过B'作B'H⊥AB于H,作B'Q⊥BC于Q,则∠B'QE=∠C=90°,又∵∠B'ED=90°,∴∠B'EQ+∠CED=90°=∠EDC+∠CED,∴∠B'EQ=∠EDC,∴△B'EQ∽△EDC,∴==,∵CE=BE=BC=3,CD=4,∴DE==5,∵△BPE沿PE折叠得到△B'PE,∴B'E=BE=3,∴==,解得B'Q=,EQ=,∴BQ=BE﹣EQ==B'H,BH=B'Q=,设BP=y=B'P,则HP=BH﹣BP=﹣y,在Rt△B'PH中,HP2+B'H2=B'P2,∴(﹣y)2+()2=y2,解得y=1,∴BP=1.综上所述,BP的长为或1.考向二:8字图相似1.(2023•海州区校级二模)“关联”是解决数学问题的重要思维方式.角平分线的有关联想就有很多……【问题提出】(1)如图①,PC是△P AB的角平分线,求证:.小明思路:关联“平行线、等腰三角形”,过点B作BD∥P A,交PC的延长线于点D,利用“三角形相似”.小红思路:关联“角平分线上的点到角的两边的距离相等”,过点C分别作CD⊥P A交P A于点D,作CE⊥PB交PB于点E,利用“等面积法”.请根据小明或小红的思路,选择一种并完成证明.【理解应用】(2)如图②,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,使点C恰好落在边AB上的E点处,落AC=1,AB=2,则DE的长为.【深度思考】(3)如图③,△ABC中,AB=6,AC=4,AD为∠BAC的角平分线.AD的垂直平分线EF交BC延长线于点F,连接AF,当BD=3时,AF的长为6.【拓展升华】(4)如图④,PC是△P AB的角平分线,若AC=3,BC=1,则△P AB的面积最大值是3.【分析】(1)选择小明的思路,过点BD∥AP交PC的延长线于点D,易证△ACP∽△BCD,得到,由角平分线的性质和平行线的性质得∠BPC=∠D,可得PB=BD,等量代换即可证明;选择小红的思路,根据角平分线的性质得到CD=CE,再利用等面积;(2)利用(1)中的结论得到,再利用勾股定理即可解答;(3)利用(1)中的结论得到,再利用垂直平分线的性质得到∠B=∠F AC,再根据相似三角形得到AF的值;(4)作△APB的外角平分线PD,交AB的延长线于D,在AP的延长线上截取PE=PB,易得△BPD≌△EPD(SAS),由(1)结论可得,由等量代换可得,利用(1)中的结论得到,求得⊙O的半径为,当P运动到点P′,P′O⊥AD时,△APB的面积最大,计算即可.【解答】(1)证明:选择小明的思路,如图,过点BD∥AP交PC的延长线于点D,∵BD∥AP,∴∠APC=∠D,又∵∠ACP=∠BCD,∴△ACP∽△BCD,∴,∵PC是△P AB的角平分线,∴∠APC=∠BPC,∴∠BPC=∠D,∴PB=BD,∴;选择小红的思路,如图,过点C分别作CD⊥P A交P A于点D,作CE⊥PB交PB于点E,作PF⊥BC于点F,∵PC是△P AB的角平分线,∴CD=CE,∴,,,,∴BC•PF=PB•CE,P A•CD=AC•PF,∴,∴,∴.(2)解:∵将△ACD沿AD所在直线折叠点C恰好落在边AB上的E点处,∴AD平分∠BAC,∴,∵AC=1,AB=2,∴,∴BD=2CD,∵∠BAC=90°,∴,∴,∴,∴,∴;故答案为:;(3)解:∵AD为∠BAC的角平分线,∴,∠BAD=∠DAC,∵△ABC中,AB=6,AC=4,BD=3,∴,∴CD=2,∵AD的垂直平分线EF交BC延长线于F,∴AF=DF,∴∠F AD=∠FDA,∵∠F AD=∠F AC+∠DAC,∠FDA=∠B+∠BAD,∴∠B=∠F AC,∵∠AFB=∠CF A,∴△FBA∽△F AC,∴,∴,∴AF=6,故答案为:6.(4)解:如图,在AP的延长线上截取PE=PB,作△APB的外角平分线PD,交AB的延长线于D,∵PD是△APB的外角平分线,∴∠BPD=∠EPD,又∵PD=PD,∴△BPD≌△EPD(SAS),∴DB=DE,∠BDP=∠EDP,∴,∵PE=PB,DB=DE,∴,∵PC是△APB的角平分线,∴,∴,∴,∴,∴BD=2,∴CD=3,∵,∴点P在以半径为的⊙O上,如图,当P运动到点P′,P′O⊥AD时,△APB的面积最大,最大值为,故答案为:3.2.(2023•衢州二模)如图1,在正方形ABCD中,点E在线段BC上,连接AE,将△ABE沿着AE折叠得到△AFE,延长EF交CD于点G.(1)求证:DG=FG;(2)如图2,当点E是BC中点时,求tan∠CGE的值;(3)如图3,当时,连接CF并延长交AB于点H,求的值.【分析】(1)由“HL”可证Rt△AFG≌Rt△ADG,可得DG=FG;(2)由勾股定理可求GF的长,即可求解;(3)由勾股定理可求BC=CD=6x,由面积法可求FN的长,即可求FM的长,通过证明△MFH∽△NFC,可得=,即可求解.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵将△ABE沿着AE折叠得到△AFE,∴AB=AF,∠B=∠AFE=90°,∴AD=AF,又∵AF=AD,∴Rt△AFG≌Rt△ADG(HL),∴DG=FG;(2)解:设BC=CD=2a,∵点E是BC的中点,∴BE=CE=a,∵将△ABE沿着AE折叠得到△AFE,∴BE=EF=a,∵EG2=EC2+CG2,∴(a+DG)2=a2+(2a﹣DG)2,∴DG=a,∴tan∠CGE===;(3)如图3,过点F作MN⊥AB于M,交CD于N,∵MN⊥AB,∠ABC=∠BCD=90°,∴四边形BCNM是矩形,∴BC=MN,∵,∴设BE=2x,DG=3x,则EG=5x,∵EG2=EC2+CG2,∴25x2=(CD﹣2x)2+(CD﹣3x)2,∴CD=6x(负值舍去),∴BC=6x,∴EC=4x,CG=3x,∵S△CFG=S△ECG,∴CG•FN=EC•CG,∴FN=x,∴MF=x,∵AB∥CD,∴△MFH∽△NFC,∴=,∴==,∴=.考向三:A字图相似1.(2023•宿城区一模)如图,在矩形ABCD中,AB=5,AD=3,先将△ABC沿AC翻折到△AB′C处,再将△AB'C沿翻折到△AB'C'处,延长CD交AC′于点M,则DM的长为.【分析】过点C′作C′E⊥AD的延长线于点E,设CD与AB′交于点G,根据矩形性质和翻折性质,设B′G=DG=x,CG=CD﹣DG=5﹣x,利用勾股定理求出x的值,证明△ADG∽△AB′F,求出B′F=,然后证明△CDF≌△AB′F(AAS),得DF=B′F=,再由△C′EF∽△CDF,得==,求出C′E=,EF=,证明△ADM∽△AEC′,对应边成比例即可求出DM的长.【解答】解:如图,过点C′作C′E⊥AD的延长线于点E,设CD与AB′交于点G,∵四边形ABCD是矩形,∴AB=CD=5,AD=BC=3,AB∥CD,∴∠BAC=∠DCA,由翻折可知:∠BAC=∠B′AC,∴∠B′AC=∠DCA,∴GA=GC,由翻折可知:B′A=BA=5,B′C=BC=B′C′=3,∴B′A=CD=5,∴B′G=DG,设B′G=DG=x,∴CG=CD﹣DG=5﹣x,在Rt△B′CG中,根据勾股定理得:B′G2+B′C2=CG2,∴x2+32=(5﹣x)2,∴x=,∴B′G=DG=x=,∴AG=CG=5﹣x=,∵∠DAG=∠B′AF,∠ADG=∠AB′F=90°,∴△ADG∽△AB′F,∴=,∴=,∴B′F=,∴C′F=C′B′﹣B′F=3﹣=,CF=CB′+B′F=3+=,∵∠CFD=∠AFB′,∠CDF=∠AB′F=90°,CD=AB′,∴△CDF≌△AB′F(AAS),∴DF=B′F=,∵C′E⊥AD,CD⊥AD,∴C′E∥CD,∴△C′EF∽△CDF,∴==,∴==,∴C′E=,EF=,∴DE=DF+EF=+=,∴AE=AD+DE=3+=,∵C′E∥DM,∴△ADM∽△AEC′,∴=,∴=,∴DM=.故答案为:.2.(2023•沙坪坝区校级模拟)如图,△ABC中,D在AB上,E在BC上,∠AED=∠ABC,F在AE上,EF=DE.(1)如图1,若CE=BD,求证:BE=CF;(2)如图2,若CE=AD,G在DE上,∠EFG=∠EFC,求证:CF=2GF;(3)如图3,若CE=AD,EF=2,∠ABC=30°,当△CEF周长最小时,请直接写出△BCF的面积.【分析】(1)先说明∠FEC=∠EDB,然后用SAS证明△FEC≌△EDB,得到BE=CF;(2)仿照(1)得△FEC≌△EDH,出现中点倍长中线,利用相似得CF=2GF;(3)先说明∠CJE=30°,即点C的轨迹是条直线,然后考虑将军饮马,最后求△BCF的面积.【解答】(1)证明:∵∠DEC=∠AED+∠FEC,∠DEC=∠ABC+∠EDB,∠AED=∠ABC,∴∠FEC=∠EDB,∵EF=DE,CE=BD,∴△FEC≌△EDB(SAS),∴BE=CF;(2)证明:延长AB至H使DH=AD,由(1)得△FEC≌△EDH,∴FC=HE,∠CFE=∠HED,延长ED至I使DI=ED,连接AI,则EF=DE=IE,∵DH=AD,∠ADI=∠HDE,∴△ADI≌△HDE(SAS),∴AI=HE,∠HED=∠AID,∴AI=FC,∠AID=∠CFE,∵∠EFG=∠EFC,∴∠EFG=∠AID,∵∠FEG=∠IEA,∴△FEG∽△IEA,∴=,∴=,∴CF=2GF;(3)解:延长FE至J使EJ=EF,∵EF=DE∴EJ=DE∵∠FEC=∠EDB,∴∠CEJ=∠ADE,∵CE=AD,∴△CEJ≌△ADE(SAS),∴∠CJE=∠AED,∵∠AED=∠ABC,∠ABC=30°,∴∠CJE=30°,过E作JC的对称点E',连接CE'、FE'、CE'、JE',C△CEF=EF+CF+CE=2+CF+CE'≥2+FE',∴当F、C、E'三点共线时周长最小,当周长最小时如图所示:∵∠CJE=30°,∴∠EJE'=60°,∵JE=JE',∴△EJE'是正三角形,∴∠JEE'=60°,EE'=EJ=EF,∴∠EFE'=∠EE'F=30°,∵CE=CE',∴∠CEE'=∠EE'F=30°,∴∠CEJ=90°,∴∠FEC=90°,∴EC===,∵∠AED=30°,∴∠BED=60°,∴∠BDE=90°,∴BE=2DE=4,∴S△BCF=×BC×EF=BC=BE+EC=4+.3.(2023•中山区模拟)如图,在平面直角坐标系中,直线y=﹣x+4与x轴,y轴分别交于点A、B,点P 为射线AO上的一个动点,过点P作PQ⊥AB于点Q,将沿PQ翻折得到R.设△PQR与△AOB重合部分的面积为S,点P的坐标为(m,0).(1)求AR的长.(用含m的代数式表示)(2)求S关于m的函数解析式,并直接写出自变量m的取值范围.【分析】(1)求出直线y=﹣x+4与x轴,y轴分别交于点A、B的坐标,得到OA,OB的长,利用勾股定理求AB得长.证出△PQA∽△BOA,利用对应线段成比例,求出AR.(2)点P为射线AO上的一个动点,在移动过程中,△PQR与△AOB重合部分有三种形状,①直角三角形②四边形③直角三角形.分类讨论,利用三角形相似对应边成比例,找边之间的转换关系,解决问题.【解答】解:(1)直线y=﹣x+4与x轴,y轴分别交于点A、B,当x=0时,y=4,∴点B坐标(0,4),∴OB=4.当y=0时,x=3,∴点A坐标(3,0),∴OA=3.Rt△AOB中,AB2=OA2+OB2,∴AB=5.∵∠P AQ=∠BAC,∠AQP=∠AOB,∴△PQA∽△BOA,∴,AQ=,AR=2AQ=.(2)在移动过程中,△PQR与△AOB重合部分有三种形状.①点P在线段OA上,△PQR与△AOB重合部分是△PQR.当0≤m<3时,∵∠P AQ=∠BAC,∠AQP=∠AOB,∴△PQA∽△BOA,∴S△APQ:S△ABO=AP2:AB2=(3﹣m)2:25,∵S△ABO==6,又∵△PQR≌△PQA,∴S=(3﹣m)2.②△PQR与△AOB重合部分是四边形CDRQ.作RE⊥OA于E,QF⊥OA于F.当R和B重合时,Q为AB中点,AQ=2.5,∵△PQA∽△BOA,∴,∴AP===,∴OP=AP﹣AO=﹣3=,∴m=.∴当<m<0时,△PQR与△AOB重合部分是四边形CDRQ.∵△PQA∽△BOA,∴∠APQ=∠ABO,∵∠AOB=∠OFQ,∴△AOB∽△QFP,∴,∴=,同理,∴,∴,∵AP=3﹣m,∴F A=.∴QF=AF×=(3﹣m).∴RE=2QF=(3﹣m),∴PE=P A﹣2AF=,∵OD∥RE,∴,∴OD===﹣,∵,∴OC=﹣m,∴CD=OD﹣OC=﹣=﹣m.∵S=S△PQR﹣S△PCD∴S=×P A×QF﹣×OP×CD=.,③△PQR与△AOB重合部分是△BQC,当Q、B重合时,AQ=5,∴AP=,OP==,m=,当时,△PQR与△AOB重合部分是△BQC.∵OC=OP=﹣,∴BC=4﹣OC=,∵CQ=,BQ=,∴S===,∴S=.考向四:母子型相似1.(2023•樊城区模拟)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF =6,AD=9,求CE的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,连接DE、DF分别交AC于M,N,∠EDF=∠BAD,DF=AE,若MN=18,求EF的值.【分析】(1)证△ADC∽△ACB,得=,即可得出结论;(2)证△BFE∽△BCF,得=,则BF2=BE•BC,求出BC=4,即可得出结论;(3)延长EF与DC相交于点G,证四边形AEGC为平行四边形,得EG=AC=2EF,CG=AE,∠EAC =∠G,设EF=x,则EG=2x,再证△EDF∽△EGD,得==,则ED=x,==,设CG=AE=k,则DF=2k,DG=CD+k,求出CD=3k,然后证△AEM∽△CDM,得==,进而证△DEF∽△DMN,得==,即可得出结论.【解答】(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB.∴=,∴AC2=AD•AB;(2)解:∵四边形ABCD是平行四边形,∴BC=AD=9,∠A=∠C,又∵∠BFE=∠A,∴∠BFE=∠C.又∵∠FBE=∠CBF,∴△BFE∽△BCF.∴=,∴BF2=BE•BC,即62=9BE,∴BE=4,∴CE=BC﹣BE=9﹣4=5,即CE的长为5;(3)解:如图,延长EF与DC相交于点G,∵四边形ABCD是菱形,∴AB∥CD,AD=CD,∠DAC=∠BAD,∴∠DAC=∠DCA=∠BAD,∵EF∥AC,∴四边形AEGC为平行四边形,∠DCA=∠G,∴EG=AC=2EF,CG=AE,∠EAC=∠G,设EF=x,则EG=2x,∵∠EDF=∠BAD,∴∠DAC=∠DCA=∠EDF,∴∠EDF=∠G,又∵∠DEF=∠GED,∴△EDF∽△EGD,∴==,∴ED2=EF•EG=x•2x=2x2,∴ED=x(负值已舍去),∴==,设CG=AE=k,则DF=2k,DG=CD+k,∴=,解得:CD=3k,∵AB∥CD,∴△AEM∽△CDM,∴===,∴=,∵EF∥AC,∴△DEF∽△DMN,∴==,∴EF=MN=×18=24,即EF的值为24.2.(2023•润州区二模)如图1,在△ABC中,点D在边AB上,点P在边AC上,若满足∠BPD=∠BAC,则称点P是点D的“和谐点”.(1)如图2,∠BDP+∠BPC=180°.①求证:点P是点D的“和谐点”;②在边AC上还存在某一点Q(不与点P重合),使得点Q也是点D的“和谐点”,请在图2中仅用圆规作图,找出点Q的位置,并写出证明过程.(保留作图痕迹)(2)如图3,以点A为原点,AB为x轴正方向建立平面直角坐标系,已知点B(6,0),C(2,4),点P在线段AC上,且点P是点D的“和谐点”.①若AD=1,求出点P的坐标;②若满足条件的点P恰有2个,直接写出AD长的取值范围是≤AD<.【分析】(1)①由∠BDP+∠BPC=180°考虑平角APC,只要证明∠BPD=∠BAC即可;②分别做线段DB、BP的中垂线,两条中垂线交于点O,则O为△PDB的外心,以O为圆心,OP为半径作圆交AC于点Q,点Q即为所求.用同弧所对的圆周角相等证明;(2)①通过△PBD∽△ABP求出BP的长度,然后求出直线AC的表达式为:y=2x,设点P的坐标为(x,2x),利用B、P两点间的距离公式解方程求出点P;②求出两个临界状态时的AD:一是当点P与点C重合时;二是△BDP的外接圆与线段AC恰有一个交点时.【解答】(1)①证明:∵∠BDP+∠BPC=180°,∠BDP=∠BAC+∠APD,∴∠BAC+∠APD+∠BPC=180°,∵∠APD+∠BPD+∠BPC=180°,∴∠BPD=∠BAC,∴点P是点D的“和谐点”;②解:以B为圆心,BP为半径作弧交AC于点Q,点Q即为所求,如图:连接BQ,∵∠BDP=∠BAC+∠APD,∠BPD=∠BAC,∴∠BDP=∠BPD+∠APD,∵∠APD+∠BPD+∠BPC=180°,∴∠BDP+∠BPC=180°,∵BP=BQ,∴∠BPC=∠BQP,∴∠BDP+∠BQP=180°,∴B、Q、P、D四点共圆,∴∠BPD=∠DQB,∵∠BPD=∠BAC,∴∠DQB=∠BAC,∴Q也是点D的“和谐点”;(2)解:①∵∠BPD=∠BAP,∠PBD=∠ABP,∴△PBD∽△ABP,∴=,=,∴BP=,∵C(2,4),∴直线AC的表达式为:y=2x,设点P的坐标为(x,2x),∵点B(6,0),∴(x﹣6)2+(2x)2=30,∴5x2﹣12x+6=0,∴x1=,x2=,∴P(,)或(,);②当点P与点C重合时,△BDP的外接圆与线段AC恰有两个交点,恰有两个“和谐点”,如图:∵点B(6,0),C(2,4),∴BC==4,由①知△PBD∽△ABP,∴=,即=,∴BD=,∴AD=AB﹣BD=6﹣=;当△BDP的外接圆与线段AC恰有一个交点时,如图:此时△BDP的外接圆与线段AC相切,则AP⊥PB,且PB为直径,∴∠PDB=90°,∵点P的坐标为(x,2x),∴AD=x,PD=2x,BD=AB﹣AD=6﹣x,∵∠P AD+∠PBD=90°,∠P AD+∠APD=90°,∴∠APD=∠PBD,∵∠ADP=∠PDB=90°,∴△ADP∽△PDB,∴=,∴PD2=AD•DB,即(2x)2=x(6﹣x),∴x=,∴AD=;综上,若满足条件的点P恰有2个,AD长的取值范围是≤AD<,故答案为:≤AD<.考向五:手拉手相似1.(2023•宝安区校级三模)【问题背景】已知D、E分别是△ABC的AB边和AC边上的点,且DE∥BC,则△ABC∽△ADE,把△ADE绕着A逆时针方向旋转,连接BD和CE.①如图2,找出图中的另外一组相似三角形△BAD∽△CAE;②若AB=4,AC=3,BD=2,则CE=;【迁移应用】在Rt△ACB中,∠BAC=90°,∠C=60°,D、E,M分别是AB、AC、BC中点,连接DE和CM.①如图3,写出CE和BD的数量关系BD=EC;②如图4,把Rt△ADE绕着点A逆时针方向旋转,当D落在AM上时,连接CD和CE,取CD中点N,连接MN,若,求MN的长.【创新应用】如图5:,BC=4,△ADE是直角三角形,∠DAE=90°,tan∠ADE=2,将△ADE绕着点A旋转,连接BE,F是BE上一点,,连接CF,请直接写出CF的取值范围.【分析】【问题背景】①结论:△BAD∽△CAE.利用两边成比例夹角相等两三角形相似证明;②利用相似三角形的性质求解;【迁移应用】①结论:BD=CE,证明AB=AC,可得结论;②连接BD,利用相似三角形的性质,求出BD,再利用三角形的中位线定理求解即可;【创新应用】如图5中,过点A作AK⊥BC于点K,过点C作CJ⊥AB于点J,连接FJ.通过计算证明FJ∥AE,求出JF,JC,可得结论.【解答】解:【问题背景】①如图2中,∵△ABC∽△ADE,∴=,∴=,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD∽△CAE.故答案为:△BAD∽△CAE;②∵△BAD∽△CAE,∴=,∴=,∴CE=.故答案为:;【迁移应用】①如图3中,在Rt△ABC中,∠BAC=90°,∠C=60°,∴tan60°=,∴AB=AC,∵BD=AB,EC=AC,∴BD=EC.故答案为:BD=EC;②如图4中,连接BD,MN.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵==,∴△BAD∽△CAE,∴==,∵EC=2,∴BD=6,∵BM=CM,DN=CN,∴MN=BD=3;【创新应用】如图5中,过点A作AK⊥BC于点K,过点C作CJ⊥AB于点J,连接FJ.∵AB=AC=2,AK⊥BC,∴BK=CK=2,∴AK===4,∵•BC•AK=•AB•CJ,∴CJ=,∴AJ===,∴BJ=AJ=2﹣=,∴BJ:AB=2:5,∵BF:BE=2:5,∴==,∴FJ∥AE,∴△BJF∽△BAE,∴==,∴JF=AE=,∴CJ﹣JF≤CF≤FJ+CJ,∴≤CF≤.2.(2023•东港市二模)(1)问题发现:如图1,已知正方形ABCD,点E为对角线AC上一动点,将BE绕点B顺时针旋转90°到BF处,得到△BEF,连接CF.填空:①=1;②∠ACF的度数为90°;(2)类比探究:如图2,在矩形ABCD和Rt△BEF中,∠EBF=90°,∠ACB=∠EFB=60°,连接CF,请分别求出的值及∠ACF的度数;(3)拓展延伸:如图3,在(2)的条件下,将点E改为直线AC上一动点,其余条件不变,取线段EF 的中点M,连接BM,CM,若,则当△CBM是直角三角形时,请直接写出线段CF的长.【分析】(1)①由旋转的性质得出BE=BF,∠EBF=90°,由正方形的性质得出∠ABC=90°,AB=BC,证明△ABE≌△CBF(SAS),由全等三角形的性质得出AE=CF,则可得出答案;②由全等三角形的性质及等腰直角三角形的性质得出答案;(2)证明△ABE∽△CBF,由相似三角形的性质可得出,则可得出结论;(3)求出EF=2CM=2,设CF=x,则AE=x,分两种情况解答,由勾股定理可求出答案.【解答】解:(1)①∵将BE绕点B顺时针旋转90°到BF处,∴BE=BF,∠EBF=90°,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠ABE=∠CBF,∴△ABE≌△CBF(SAS),∴AE=CF,∴=1,故答案为:1;②∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵△ABE≌△CBF,∴∠BAE=∠BCF=45°,∴∠ACF=∠ACB+∠BCF=45°+45°=90°.故答案为:90°;(2),∠ACF=90°.理由如下:∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ACB=60°,∴,同理在Rt△EBF中,∠EFB=60°,∴,∴,∵∠ABC=∠EBF,∴∠ABC﹣∠EBC=∠EBF﹣∠EBC,即∠ABE=∠CBF,∴△ABE∽△CBF,∴,∴∠BCF=∠BAE=30°,∴∠ACF=∠ACB+∠BCF=60°+30°=90°.(3)由(2)知,∵AB=2,∴CB=2,∵△ABE∽△CBF,∴∠ABE=∠CBF,∴∠EBF=∠EBC+∠CBF=∠EBC+∠ABE=∠ABC=90°,∵M为EF的中点,∴BM=EF,由(2)知∠ACF=90°,∴CM=EF,∴BM=CM,又∵△CBM是直角三角形,∴CM=BC=,∴EF=2CM=2,设CF=x,则AE=x,∵∠CAB=30°,BC=2,∴AC=2BC=4,∴CE=AC﹣AE=4﹣x,∵∠ECF=90°,∴CE2+CF2=EF2,∴,∴x=﹣1或x=+1(不合题意,舍去),当∠MBC=90°或∠MCB=90°时,点M不存在,当E在AC延长线上时,设CF=x,则AE=x,∵∠CAB=30°,BC=2,∴AC=2BC=4,∴CE=AE﹣AC=x﹣4,∵∠ECF=90°,∴CE2+CF2=EF2,∴,∴x=﹣1(不合题意,舍去)或x=+1,综上所述,CF的长为﹣1或+1.3.(2023•晋中模拟)综合与实践问题情境:(1)如图1,在△ABC和△ADE中,AB=AC,AD=AE.如图2,将△ABC绕顶点A按逆时针方向旋转15°得到△AB'C',连接B′D,C′E,求证:B′D=C′E.深入研究:(2)①如图3,在正方形ABCD和正方形CEFG中,已知点B,C,E在同一直线上,连接DE,AF,交于点P,求AF:DE的值;②如图4,若将正方形CEFG绕点C按顺时针方向旋转一定角度,AF:DE的值变化吗?请说明理由.拓展应用:(3)如图5,若把正方形ABCD和正方形CEFG分别换成矩形ABCD和矩形CEFG,且AD:AB=CG:CE=k,请直接写出此时AF:DE的值.【分析】(1)根据旋转的性质得到∠DAB'=∠EAC',然后用SAS判定△DAB'=△EAC'即可得证;(2)①连接AC、CF,根据正方形的性质得到对应边成比例,对应角相等,判定△ACF∽△DCE后即可求出AF:DE的值;②根据正方形的性质和旋转的性质判定△ACF∽△DCE后求出AF:DE的值即可证明AF:DE的值没有变化;(3)连接AC、CF,根据矩形的性质得到对应边成比例,对应角相等,判定△ACF∽△DCE后即可求出AF:DE的值.【解答】(1)证明:由旋转得:∠DAB'=∠EAC',又∵AB'=AC',AD=AE,∴△DAB'≌△EAC',∴B′D=C′E;(2)解:①如图1,连接AC、CF,∵四边形ABCD,CEFG是正方形,∴∠ACF=∠DCE=90°,AC=CD,CF=CE,∴,∴△ACF∽△DCE,∴,即AF:DE=:1;②成立.证明如下:如图2,连接AC、CF,∵四边形ABCD,CEFG是正方形,∴∠ACD=∠FCE,∴∠ACF=∠DCE,∵AC=CD,CF=CE,∴,∴△ACF∽△DCE,∴AF:DE=AC:CD=:1,∴不变;(3)解:如图3,连接AC、CF,∵四边形ABCD,CEFG是矩形,且AD:AB=CG:CE=k,∴∠ACD=∠FCE,AC=CD,CF=CE,∴∠ACF=∠DCE,,∴△ACF∽△DCE,∴.(建议用时:150分钟)1.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.【分析】(1)由矩形的性质得∠C=∠ADE=90°,再证∠AED=∠DFC,即可得出结论;(2)证Rt△ADE≌Rt△DCF(HL),得DE=CF,再证△DCF≌△DCH(SAS),得∠DFC=∠H,然后由平行线的性质得∠ADF=∠DFC,即可得出结论;(3)延长BC至点G,使CG=DE=8,连接DG,△ADE≌△DCG(SAS),得∠DGC=∠AED=60°,AE=DG,再证△DFG是等边三角形,得FG=DF=11,即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°,∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF;(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°,∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF,∵CH=DE,∴CF=CH,∵点H在BC的延长线上,∴∠DCH=∠DCF=90°,又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H,∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H;(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG,∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11,∵CF+CG=FG,∴CF=FG﹣CG=11﹣8=3,即CF的长为3.2.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接P A,PC,求P A+PC的最小值.【分析】(1)由锐角三角函数可求∠BDC=60°,通过证明△ADG∽△ABE,可得;(2)由“AAS”可证△ABE≌△GMF,可得BE=MF,AB=GM=2,由锐角三角函数可求MF=BE=x,DG=2+x,利用(1)的结论可求解;(3)通过证明△AGC是等边三角形,可得PE=EF=AG=4,由旋转的性质可得P A=P'C,∠PEP'=120°,EP=EP'=4,则当点P,C,P′三点共线时,P A+PC的值最小,即可求解.【解答】解:(1)∵矩形ABCD中,AB=2,,∴∠C=90°,CD=AB=2,,∴,∴∠BDC=60°,∵∠ABE=∠BAD=∠EAG=∠ADG=90°,∴∠EAG﹣∠EAD=∠BAD﹣∠EAD,即∠DAG=∠BAE,∴△ADG∽△ABE,∴;(2)如图2,过点F作FM⊥CG于点M,∵∠ABE=∠AGF=∠ADG=90°,AE=GF,∴∠BAE=∠DAG=∠CGF,∠ABE=∠GMF=90°,∴△ABE≌△GMF(AAS),∴BE=MF,AB=GM=2,∴∠MDF=∠BDC=60°,FM⊥CG,∴,∴,设DM=x,则,∴DG=GM+MD=2+x,由(1)可知:,∴,解得x=1,∴;(3)如图3,连接AC,将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',连接PP',矩形ABCD中,AD=BC=,AB=2,∴tan∠ACB==,∴∠ACB=30°,∴AC=2AB=4,∵EA=EC,∴∠EAC=∠ACE=30°,∠AEC=120°,∴∠ACG=∠GAC=90°﹣30°=60°,∴△AGC是等边三角形,AG=AC=4,∴PE=EF=AG=4,∵将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',∴P A=P'C,∠PEP'=120°,EP=EP'=4,∴,∴当点P,C,P′三点共线时,P A+PC的值最小,此时为.3.(2023•武汉)问题提出如图(1),E是菱形ABCD边BC上一点,△AEF是等腰三角形,AE=EF,∠AEF=∠ABC=α(α≥90°),AF交CD于点G,探究∠GCF与α的数量关系.问题探究(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF的大小;(2)再探究一般情形,如图(1),求∠GCF与α的数量关系.问题拓展将图(1)特殊化,如图(3),当α=120°时,若,求的值.【分析】问题探究(1)如图(2)中,在BA上截取BJ,使得BJ=BE.证明△EAJ≌△FEC(SAS),推出∠AJE=∠ECF,可得结论;(2)结论:∠GCF=α﹣90°;在AB上截取AN,使AN=EC,连接NE.证明方法类似;问题拓展解:过点A作CD的垂线交CD的延长线于点P,设菱形的边长为3m.用m表示出BE,CE,可得结论.【解答】解:问题探究(1)如图(2)中,在BA上截取BJ,使得BJ=BE.∵四边形ABCD是正方形,∴∠B=∠BCD=90°,BA=BC,∵BJ=BE,∴AJ=EC,∵∠AEC=∠AEF+∠CEF=∠BAE+∠B,∠AEF=∠B=90°,∴∠CEF=∠EAJ,∵EA=EF,∴△EAJ≌△FEC(SAS),∴∠AJE=∠ECF,∵∠BJE=45°,∴∠AJE=180°﹣45°=135°,∴∠ECF=135°,∴∠GCF=∠ECF﹣∠ECD=135°﹣90°=45°;(2)结论:∠GCF=α﹣90°;理由:在AB上截取AN,使AN=EC,连接NE.∵∠ABC+∠BAE+∠AEB=∠AEF+∠FEC+∠AEB=180°,∠ABC=∠AEF,∴∠EAN=∠FEC.∵AE=EF,∴△ANE≌△ECF(SAS).∴∠ANE=∠ECF.∵AB=BC,∴BN=BE.∵∠EBN=α,∴,∴∠GCF=∠ECF﹣∠BCD=∠ANE﹣∠BCD=;问题拓展:过点A作CD的垂线交CD的延长线于点P,设菱形的边长为3m.,∴DG=m,CG=2m.在Rt△ADP中,∠ADC=∠ABC=120°,∴∠ADP=60°,∴m,,∴α=120°,由(2)知,,∵∠AGP=∠FGC,∴△APG∽△FCG.∴,∴=,∴,由(2)知,,∴.∴.4.(2023•内蒙古)已知正方形ABCD,E是对角线AC上一点.(1)如图1,连接BE,DE.求证:△ABE≌△ADE;(2)如图2,F是DE延长线上一点,DF交AB于点G,BF⊥BE.判断△FBG的形状并说明理由;(3)在第(2)题的条件下,BE=BF=2.求的值.【分析】(1)由正方形的性质得AB=AD=CB=CD,∠ABC=∠ADC=90°,则∠BAC=∠BCA=∠DAC =∠DCA=45°,即可根据全等三角形的判定定理“SAS”证明△ABE≌△ADE;(2)由△ABE≌△ADE,得∠ABE=∠ADE,可推导出∠EBC=∠EDC,因为AB∥CD,所以∠FGB=∠EDC,则∠FGB=∠EBC,而∠FBE=90°,则∠FBG=∠EBC=90°﹣∠ABE,所以∠FGB=∠FBG,即可证明△FBG是等腰三角形;(3)由BE=BF=2,∠FBE=90°,得∠F=∠BEF=45°,则∠BAC=∠F,可证明∠AEG=∠FBG,进而证明∠AGE=∠AEG,则AE=AG,由勾股定理得EF==2,而BF=GF=2,所以GE=2﹣2,由全等三角形的性质得BE=DE=2,再证明△AGE∽△CDE,则==﹣1,所以=﹣1.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD=CB=CD,∠ABC=∠ADC=90°,∴∠BAC=∠BCA=∠DAC=∠DCA=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).(2)解:△FBG是等腰三角形,理由如下:∵△ABE≌△ADE,∴∠ABE=∠ADE,∴∠ABC﹣∠ABE=∠ADC﹣∠ADE,∴∠EBC=∠EDC,∵AB∥CD,∴∠FGB=∠EDC,∴∠FGB=∠EBC,∵BF⊥BE,∴∠FBE=90°,∴∠FBG=∠EBC=90°﹣∠ABE,∴∠FGB=∠FBG,∴BF=GF,∴△FBG是等腰三角形.(3)解:∵BE=BF=2,∠FBE=90°,∴∠F=∠BEF=45°,∴∠BAC=∠F,∴∠AEG=∠AGF﹣∠BAC=∠AGF﹣∠F=∠FBG,∵∠AGE=∠FGB,且∠FGB=∠FBG,∴∠AGE=∠AEG,∴AE=AG,∵EF===2,BF=GF=2,∴GE=EF﹣GF=2﹣2,∵△ABE≌△ADE,∴BE=DE=2,∵AG∥CD,∴△AGE∽△CDE,∴===﹣1,∴=﹣1,∴的值为﹣1.5.(2023•湖州)【特例感知】(1)如图1,在正方形ABCD中,点P在边AB的延长线上,连结PD,过点D作DM⊥PD,交BC的延长线于点M.求证:△DAP≌△DCM.【变式求异】(2)如图2,在Rt△ABC中,∠ABC=90°,点D在边AB上,过点D作DQ⊥AB,交AC于点Q,点P在边AB的延长线上,连结PQ,过点Q作QM⊥PQ,交射线BC于点M.已知BC=8,AC=10,AD =2DB,求的值.【拓展应用】(3)如图3,在Rt△ABC中,∠BAC=90°,点P在边AB的延长线上,点Q在边AC上(不与点A,C重合),连结PQ,以Q为顶点作∠PQM=∠PBC,∠PQM的边QM交射线BC于点M.若AC=mAB,CQ=nAC(m,n是常数),求的值(用含m,n的代数式表示).【分析】(1)根据正方形的性质及角的和差推出∠A=∠DCM,AD=DC,∠ADP=∠CDM,利用ASA 即可证明△DAP≌△DCM;(2)作QN⊥BC于点N,则四边形DBNQ是矩形,根据矩形的性质推出∠DQN=90°,QN=DB,根据角的和差推出∠DQP=∠MQN,结合∠QDP=∠QNM=90°,推出△DQP∽△NQM,根据相似三角形的性质得到,根据勾股定理求出AB=6,则DB=2,根据矩形的性质推出DQ∥BC,进而推出△ADQ∽△ABC,根据相似三角形的性质求解即可;(3)根据题意推出CQ=mnAB,AQ=(m﹣mn)AB,根据勾股定理求出BC=AB,根据四边形内角和定理及邻补角定义推出∠AQP=∠NQM,结合∠A=∠QNM=90°,推出△QAP∽△QNM,根据相似三角形的性质得出,根据题意推出△QCN∽△BCA,根据相似三角形的性质求出,据此求解即可.【解答】(1)证明:在正方形ABCD中,∠A=∠ADC=∠BCD=90°,AD=DC,∴∠DCM=180°﹣∠BCD=90°,∴∠A=∠DCM,∵DM⊥PD,∴∠ADP+∠PDC=∠CDM+∠PDC=90°,∴∠ADP=∠CDM,在△DAP和△DCM中,,∴△DAP≌△DCM(ASA);(2)解:如图2,作QN⊥BC于点N,∵∠ABC=90°,DQ⊥AB,QN⊥BC,∴四边形DBNQ是矩形,∴∠DQN=90°,QN=DB,∵QM⊥PQ,∴∠DQP+∠PQN=∠MQN+∠PQN=90°,∴∠DQP=∠MQN,∵∠QDP=∠QNM=90°,∴△DQP∽△NQM,∴,∵BC=8,AC=10,∠ABC=90°,∴,∵AD=2DB,∴DB=2,∵∠ADQ=∠ABC=90°,∴DQ∥BC,∴△ADQ∽△ABC,∴,∴,∴;(3)解:∵AC=mAB,CQ=nAC,∴CQ=mnAB,∴AQ=AC﹣CQ=(m﹣mn)AB,∵∠BAC=90°,∴,如图3,作QN⊥BC于点N,∵∠BAC+∠ABN+∠BNQ+∠AQN=360°,∠BAC=90°,∴∠ABN+∠AQN=180°,∵∠ABN+∠PBN=180°,∴∠AQN=∠PBN,∵∠PQM=∠PBC,∴∠PQM=∠AQN,∴∠AQP=∠NQM,∵∠A=∠QNM=90°,∴△QAP∽△QNM,∴,∵∠A=∠QNC=90°,∠QCN=∠BCA,∴△QCN∽△BCA,∴,∴,∴.6.(2023•鞍山)如图,在△ABC中,AB=AC,∠BAC=α,点D是射线BC上的动点(不与点B,C重合),连接AD,过点D在AD左侧作DE⊥AD,使AD=kDE,连接AE,点F,G分别是AE,BD的中点,连接DF,FG,BE.(1)如图1,点D在线段BC上,且点D不是BC的中点,当α=90°,k=1时,AB与BE的位置关系是垂直,=.(2)如图2,点D在线段BC上,当α=60°,k=时,求证:BC+CD=2FG.(3)当α=60°,k=时,直线CE与直线AB交于点N,若BC=6,CD=5,请直接写出线段CN的长.。
中考数学试题汇编之《图形的相似》综合题(1)

中考数学试题汇编之《图形的相似》综合题(1)1.如图,△ABC中,D、E分别是边BC、AB的中点,AD、CE相交于G.求证:.2.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.3.如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.(1)求证:DE﹣BF=EF;(2)当点G为BC边中点时,试探究线段EF与GF之间的数量关系,并说明理由;(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).4.如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,过点D作DF⊥AB于点E,交⊙O于点F,已知OE=1cm,DF=4cm.(1)求⊙O的半径;(2)求切线CD的长.5.已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.(1)求的值;(2)若AB=a,FB=EC,求AC的长.6.如图,半圆的直径AB=10,点C在半圆上,BC=6.(1)求弦AC的长;(2)若P为AB的中点,PE⊥AB交AC于点E,求PE的长.7.如图,已知AB是⊙O的直径,过点O作弦BC的平行线,交过点A的切线AP于点P,连接AC.(1)求证:△ABC∽△POA;(2)若OB=2,OP=,求BC的长.8.将一个量角器和一个含30度角的直角三角板如图(1)放置,图(2)是由它抽象出的几何图形,其中点B在半圆O的直径DE的延长线上,AB切半圆O于点F,且BC=OD.(1)求证:DB∥CF;(2)当OD=2时,若以O、B、F为顶点的三角形与△ABC相似,求OB.9.如图,A、P、B、C是⊙O上的四点,∠APC=∠BPC=60°,AB与PC交于Q点.(1)判断△ABC的形状,并证明你的结论;(2)求证:;(3)若∠ABP=15°,△ABC的面积为4,求PC的长.10.已知A、D是一段圆弧上的两点,且在直线l的同侧,分别过这两点作l的垂线,垂足为B、C,E是BC上一动点,连接AD、AE、DE,且∠AED=90度.(1)如图①,如果AB=6,BC=16,且BE:CE=1:3,求AD的长;(2)如图②,若点E恰为这段圆弧的圆心,则线段AB、BC、CD之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当A、D分别在直线l两侧且AB≠CD,而其余条件不变时,线段AB、BC、CD之间又有怎样的等量关系?请直接写出结论,不必证明.11.如图1,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连接EQ交PC于点H.猜想线段EH与AC的数量关系,并证明你的猜想.说明:如果你经历反复探索,没有解决问题,可以从下面①、②中选取一个作为已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得6分.①AC=BC,DP=DQ,∠C=∠PDQ(如图2);②在①的条件下且点P与点B重合(如图312.如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.(1)求EC:CF的值;(2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由;(3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.13.如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中:①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y取最小值时,判断△PQC的形状,并说明理由.14.如图,在直角梯形OABC中,OA∥CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q 以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交x轴于点F.设动点PQ 运动时间为t(单位:秒).(1)当t为何值时,四边形PABQ是等腰梯形,请写出推理过程;(2)当t=2秒时,求梯形OFBC的面积;(3)当t为何值时,△PQF是等腰三角形?请写出推理过程.15.如图,半径为2的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:PA•PB=PC•PD;(2)设BC的中点为F,连接FP并延长交AD于E,求证:EF⊥AD;(3)若AB=8,CD=6,求OP的长.16.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=2,⊙O的半径为3,求BC的长.17.如图,AB是半圆O的直径,C为半圆上一点,N是线段BC上一点(不与B、C重合),过N作AB的垂线交AB于M,交AC的延长线于E,过C点作半圆O的切线交EM于F.(1)求证:△ACO∽△NCF;(2)NC:CF=3:2,求sin B的值.18.如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.(1)求证:△CBE∽△AFB;(2)当时,求的值.19.如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB 于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.求证:BC2=BG•BF.20.如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接OG.(1)判断OG与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若OG⋅DE=3(2﹣),求⊙O的面积.21.如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点M (5,0)出发,以1个单位长度/秒的速度沿x轴向左做匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向做匀速运动.设运动时间为t 秒.(1)请用含t的代数式分别表示出点C与点P的坐标;(2)以点C为圆心、t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B 的左侧),连接PA、PB.①当⊙C与射线DE有公共点时,求t的取值范围;②当△PAB为等腰三角形时,求t的值.22.如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY 切于点B,交射线OX于点C,连接BC,作CD⊥BC,交AY于点D.(1)求证:△ABC∽△ACD;(2)若P是AY上一点,AP=4,且sin A=,①如图2,当点D与点P重合时,求R的值;②当点D与点P不重合时,试求PD的长(用R表示).23.如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O 与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.24.如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连接DE.(1)当BD=3时,求线段DE的长;(2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.求证:△FAE是等腰三角形.25.在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM ∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.(1)求b的值和点D的坐标;(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.26.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P.(1)请你在图1中作出⊙O(不写作法,保留作图痕迹);(2)与是否相等?请你说明理由;(3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考)。
备战中考数学专项练习(全国通用)有理数的大小比较卷一(含解析)

备战中考数学专项练习(全国通用)有理数的大小比较卷一(含解析)一、单选题1.小于5的正整数有()个.A.1B.2C.3D.42.在-0.1,这四个数中,最小的一个数是()A.-0.1B.C.1D.3.在–1,–2,1,2四个数中,最大的一个数是()A.–1B.–2C.1D.24.下列各数中,在﹣2和0之间的数是()A.﹣1B.1C.﹣3D.35.下列各数中最小的数是()A.﹣8B.﹣4C.0D.76.比2小3的数是()A.-1B.-5C.1D.57.下列大于﹣5的负整数是()A.﹣3B.﹣2.5C.4D.﹣68.下列各数中,最小的数是()A.-2B.-1C.0D.二、填空题9.比较大小:﹣1________﹣2.10.比较大小:________ ;(填“>”或“<”).11.最小的正整数是________,最大的负整数是________.12.所有小于3.14的非负整数是________,不小于-3同时小于2的整数是________.13.3与﹣4的大小关系是________.14.观看下面各数列,研究它们各自的变化规律,并接着填出后面的两个数.①1,-1,1,-1,1,-1,1,-1,________,________;②2,-4,6,-8,10,-12,14,-16,________,________;③1,0,-1,0,1,0,-1,0,1,0,-1,0,1,0,________,________.15.将有理数0,﹣,2.7,﹣4,0.14按从小到大的顺序排列,用“<”号连接起来应为________16.冷库甲的温度是-5℃,冷库乙的温度是-15℃,则温度高的是冷库____ ____.17.若|a|=20,|b|=9,且a<b,则a=________,b=________.18.比较大小:4________5三、解答题19.把下列各数在数轴上表示出来,并用“>”连接各数.3,﹣4,﹣2,0,﹣1,1.20.将下列各数在数轴上表示出来,并用“<”把它们连接起来.﹣3,﹣(﹣1)4 ,0,|﹣2.5|,﹣1.四、综合题21.已知a ,b ,c ,d四个有理数,它们在数轴上的对应点的位置如图所示.(1)在a ,b , c ,d四个数中,正数是________,负数是__ ______;(2)a , b ,c ,d从大到小的顺序是________;(3)按从小到大的顺序用“<”将-a ,-b ,-c ,-d四个数连接起来.答案解析部分一、单选题1.【答案】D【考点】有理数大小比较【解析】【解答】解:小于5的正整数有:1,2,3,4,共有4个.故选:D.【分析】直截了当利用正整数的定义得出答案.2.【答案】B【考点】有理数大小比较【解析】【分析】依照有理数的大小比较法则即可得到结果.,∴最小的一个数是,故选B.【点评】有解答本题的关键是熟练把握有理数的大小比较法则:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小.3.【答案】D【考点】有理数大小比较【解析】【分析】负数定义:任何正数前加上负号都等于负数。
中考数学相似的综合题试题附答案解析

一、相似真题与模拟题分类汇编(难题易错题)1.如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.(1)若AB=3,AD= ,求△BMC的面积;(2)点E为AD的中点时,求证:AD= BN .【答案】(1)解:如图1中,在△ABM和△CAD中,∵AB=AC,∠BAM=∠ACD=90°,AM=CD,∴△ABM≌△CAD,∴BM=AD= ,∴AM= =1,∴CM=CA﹣AM=2,∴S△BCM= •CM•BA= ×23=3.(2)解:如图2中,连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.∵AE=ED,∠ACD=90°,∴AE=CE=ED,∴∠EAC=∠ECA,∵△ABM≌△CAD,∴∠ABM=∠CAD,∴∠ABM=∠MCE,∵∠AMB=∠EMC,∴∠CEM=∠BAM=90°,∴△ABM∽△ECM,∴,∴,∵∠AME=∠BMC,∴△AME∽△BMC,∴∠AEM=∠ACB=45°,∴∠AEC=135°,易知∠PEQ=135°,∴∠PEQ=∠AEC,∴∠AEQ=∠EQC,∵∠P=∠EQC=90°,∴△EPA≌△EQC,∴EP=EQ,∵EP⊥BP,EQ⊥BC∴BE平分∠ABC,∴∠NBC=∠ABN=22.5°,∵AH垂直平分BC,∴NB=NC,∴∠NCB=∠NBC=22.5°,∴∠ENC=∠NBC+∠NCB=45°,∴△ENC的等腰直角三角形,∴NC= EC,∴AD=2EC,∴2NC= AD,∴AD= NC,∵BN=NC,∴AD= BN.【解析】【分析】(1)首先利用SAS判断出△ABM≌△CAD,根据全等三角形对应边相等得出BM=AD= ,根据勾股定理可以算出AM,根据线段的和差得出CM的长,利用S△BCM= •CM•BA即可得出答案;(2)连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.根据直角三角形斜边上的中线等于斜边的一半得出AE=CE=ED,根据等边对等角得出∠EAC=∠ECA,根据全等三角形对应角相等得出∠ABM=∠CAD,从而得出∠ABM=∠MCE,根据对顶角相等及三角形的内角和得出∠CEM=∠BAM=90°,从而判断出△ABM∽△ECM,由相似三角形对应边成比例得出BM∶CM= AM∶EM,从而得出BM∶AM= CM∶EM,根据两边对应成比例及夹角相等得出△AME∽△BMC,故∠AEM=∠ACB=45°,∠AEC=135°,易知∠PEQ=135°,故∠PEQ=∠AEC,∠AEQ=∠EQC,又∠P=∠EQC=90°,故△EPA≌△EQC,故EP=EQ,根据角平分线的判定得出BE平分∠ABC,故∠NBC=∠ABN=22.5°,根据中垂线定理得出NB=NC,根据等腰三角形的性质得出∠NCB=∠NBC=22.5°,故∠ENC=∠NBC+∠NCB=45°,△ENC的等腰直角三角形,根据等腰直角三角形边之间的关系得出NC= EC,根据AD=2EC,2NC= AD,AD= NC,又BN=NC,故AD= BN.2.如图,在平面直角坐标系中,直线分别交x轴,y轴于点A,C,点D (m,4)在直线AC上,点B在x轴正半轴上,且OB=2OC.点E是y轴上任意一点,连结DE,将线段DE按顺时针旋转90°得线段DG,作正方形DEFG,记点E为(0,n).(1)求点D的坐标;(2)记正方形DEFG的面积为S,① 求S关于n的函数关系式;② 当DF∥x轴时,求S的值;(3)是否存在n的值,使正方形的顶点F或G落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.【答案】(1)解:∵点D(m,4)在直线AC上;∴4= m+8,解得m=﹣3,∴点D的坐标为(﹣3,4)(2)解:①如图1,过点D作DH⊥y轴于H,则EH=|n﹣4|∴S=DE2=EH2+DH2=(n﹣4)2+9;②当DF∥x轴时,点H即为正方形DEFG的中心,∴EH=DH=3,∴n=4+3=7,∴S=(7﹣4)2+9=18(3)解:∵OB=2OC=16,∴B为(16,0),∴BC为:;①当点F落在BC边上时,如图2,作DM⊥y轴于M,FN⊥y轴于N.在△DEM与△EFN中,,∴△DEM≌△EFN(AAS),∴NF=EM=n﹣4,EN=DM=3∴F为(n﹣4,n﹣3)∴n﹣3=﹣(n﹣4)+8,∴n= ;②当点G落在BC边上时,如图3,作DM⊥y轴于M,GN⊥DM轴于N,由①同理可得△DEM≌△GDN,∴GN=DM=3,DN=EM=n﹣4,∴点G纵坐标为1,∴,∴x=14,∴DN=14+3=17=n﹣4,∴n=21;③当点F落在AB边上时,如图4,作DM⊥y轴于M,由①同理可得△DEM≌△EFO,∴OE=DM=3,即n=3;④当点G落在AC边上时,如图5.∵∠CDE=∠AOC=90°,∠DCE=∠OCA,∴△DCE∽△OCA,∴,∴,∴n= ,显然,点G不落在AB边上,点F不落在AC边上,故只存在以上四种情况.综上可得,当n= 或21或3或时,正方形的顶点F或G落在△ABC的边上.【解析】【分析】(1)根据点D在直线AC上;于是将D(m,4)代入直线AC的解析式得出m=-3,从而得出D点的坐标;(2)①如图1,过点D作DH⊥y轴于H,根据和y轴垂直的直线上的点的坐标特点及y轴上两点间的距离,则DH=|n-4|,根据正方形的面积等于边长的平方及勾股定理得出S=DE2=EH2+DH2=(n﹣4)2+9;②当DF∥x轴时,点H即为正方形DEFG的中心,故EH=DH=3,n=7,将n=7代入函数解析式即可得出S的值;(3)首先找到C点的坐标,得出OC的长度,然后根据OB=2OC=16得出B点的坐标,利用待定系数法得出直线BC的解析式,①当点F落在BC边上时,如图2,作DM⊥y轴于M,FN⊥y轴于N.利用AAS判断出∴△DEM≌△EFN,根据全等三角形对应边相等得出NF=EM=n﹣4,EN=DM=3从而得出F点的坐标,根据F点的纵坐标的两种不同表示方法得出关于n的方程,求解得出n的值;②当点G落在BC边上时,如图3,作DM⊥y轴于M,GN⊥DM轴于N,由①同理可得△DEM≌△GDN,GN=DM=3,DN=EM=n﹣4,从而得出G点的纵坐标为1,根据点G的纵坐标列出方程,求解得出N的值;③当点F落在AB 边上时,如图4,作DM⊥y轴于M,由①同理可得△DEM≌△EFO,OE=DM=3,即n=3;④当点G落在AC边上时,如图5.首先判断出△DCE∽△OCA,根据相似三角形对应边成比例得出 C E∶ A C = C D∶ O C,从而得出关于n的方程,求解得出n的值,综上所述得出所有答案。
备战中考数学(人教版)综合能力冲刺练习(含解析)

2021备战中考数学〔人教版〕-综合才能冲刺练习〔含解析〕一、单项选择题1.y关于t的函数y=--,那么以下有关此函数图像的描绘正确的选项是〔〕A.该函数图像与坐标轴有两个交点B.该函数图象经过第一象限C.该函数图像关于原点中心对称D.该函数图像在第四象限2.a、b均为正整数,且a>,b<,那么a+b的最小值是〔〕A.3B.4C.5D.63.以下语句不是命题的是〔〕A.两点之间线段最短B.不平行的两条直线有一个交点C.x与y的和等于0吗?D.相等的角是对顶角4.假如零上6℃记作+6℃,那么零下4℃记作〔〕A.-4B.4C.-4℃D.4℃5.以下关系式中,y是x反比例函数的是〔〕A.y=B.y=-1C.y=-D.y=6.如下图,四边形ABCD的四个顶点都在℃O上,称这样的四边形为圆的内接四边形,那么图中℃A+℃C=〔〕度.A.90°B.180°C.270°D.360°7.下面哪个点不在函数y = -2x+3的图象上〔〕A.〔-5,13〕B.〔0.5,2〕C.〔3,0〕D.〔1,1〕8.如图,在平面直角坐标系xOy中,℃A′B′C′由℃ABC绕点P旋转得到,那么点P的坐标为〔〕A.〔0,1〕B.〔0,﹣1〕C.C〔1,﹣1〕D.〔1,0〕9.如图,下午2点30分时,时钟的分针与时针所成角的度数为〔〕A.90°B.120°C.105°D.135°10.假如将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,那么这一方向应为〔〕A.北偏东60°B.北偏东30°C.南偏东60°D.南偏东30°11.把一副三角板如图甲放置,其中℃ACB=℃DEC=90,℃A=45,℃D=30,斜边AB=6,DC=7,,把三角板DCE绕着点C顺时针旋转15得到℃D1CE1〔如图乙〕,此时AB与CD1交于点O,那么线段AD1的长度为〔〕A. B.5 C.4 D.二、填空题12.假设最简二次根式与是同类根式,那么b的值是________.13.我区有15所中学,其中九年级学生共有3000名.为了理解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进展排序.①搜集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.那么正确的排序为________.〔填序号〕14.假设分式有意义,那么实数x的取值范围是________15.估计与的大小关系是:________ 〔填“>〞“=〞或“<〞〕16.假如3y9﹣2m+2=0是关于y的一元一次方程,那么m=________.17.如图, 量具ABC是用来测量试管口直径的,AB的长为10cm,AC被分为60等份.假如试管口DE正好对着量具上20等份处(DE℃AB),那么试管口直径DE是________cm.三、计算题18.解方程:.19.计算:〔﹣﹣+ 〕÷〔﹣〕20.计算以下各题〔1〕计算:〔﹣〕﹣2﹣|2﹣|﹣3tan30°;〔2〕解不等式组:.21.解方程组:.四、解答题22.小明为班级联欢会设计了一个摸球游戏.游戏规那么如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全一样,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,假设两次摸到的球颜色一样,那么游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.23.阅读以下材料:“为什么不是有理数〞.假是有理数,那么存在两个互质的正整数m,n,使得=,于是有2m2=n2.℃2m2是偶数,℃n2也是偶数,℃n是偶数.设n=2t〔t是正整数〕,那么n2=2m,℃m也是偶数℃m,n都是偶数,不互质,与假设矛盾.℃假设错误℃不是有理数有类似的方法,请证明不是有理数.五、综合题24.如图,AB为℃O直径,C是℃O上一点,CO℃AB于点O,弦CD与AB交于点F.过点D作℃O 的切线交AB的延长线于点E,过点A作℃O的切线交ED的延长线于点G.〔1〕求证:℃EFD为等腰三角形;〔2〕假设OF:OB=1:3,℃O的半径为3,求AG的长.25.一工地方案租用甲、乙两辆车清理淤泥,从运输量来估算,假设租两车合运,10天可以完成任务,假设甲车的效率是乙车效率的2倍.〔1〕甲、乙两车单独完成任务分别需要多少天?〔2〕两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.答案解析局部一、单项选择题1.【答案】D【考点】函数关系式,函数自变量的取值范围【解析】【分析】在w关于t的函数式y=--中,根据二次根式有意义的条件解答此题.【解答】函数式中含二次根式,分母中含t,故当t>0时,函数式有意义,此时y<0,函数图象在第四象限.应选D.【点评】此题考察了函数式的意义,自变量与函数值对应点的坐标的位置关系.2.【答案】B【考点】估算无理数的大小【解析】【分析】此题需先根据条件分别求出a、b的最小值,即可求出a+b的最小值.【解答】a、b均为正整数,且a>,b<℃a的最小值是3,b的最小值是:1,那么a+b的最小值4.应选B.【点评】此题主要考察了如何估算无理数的大小,在解题时要能根据题意求出a、b的值是此题的关键.3.【答案】C【考点】命题与定理【解析】【分析】判断一件事情的语句叫做命题.x与y的和等于0吗是询问的语句,故不是命题.【解答】A、正确,符合命题的定义;B、正确,符合命题的定义;C、错误;D、正确,符合命题的定义.应选C.【点评】主要考察了命题的概念.判断一件事情的语句叫做命题.4.【答案】C【考点】正数和负数【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.【解答】“正〞和“负〞相对,℃假如零上6℃记作+6℃,那么零下4℃记作-4℃,应选C.【点评】解题关键是理解“正〞和“负〞的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.5.【答案】A【考点】根据实际问题列反比例函数关系式【解析】【解答】解:A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.应选A.【分析】此题应根据反比例函数的定义,解析式符合y=〔k≠0〕的形式为反比例函数6.【答案】B【考点】圆内接四边形的性质【解析】【解答】解:℃四边形ABCD为圆的内接四边形,℃℃A+℃C=180°.应选B.【分析】根据圆内接四边形的对角互补即可作答.7.【答案】C【考点】一次函数的性质【解析】【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】A、当x=-5时,y=-2x+3=13,点在函数图象上;B、当x=0.5时,y=-2x+3=2,点在函数图象上;C、当x=3时,y=-2x+3=-3,点不在函数图象上;D、当x=1时,y=-2x+3=1,点在函数图象上;应选C.【点评】此题考察了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上8.【答案】C【考点】坐标与图形变化-旋转【解析】【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.℃直线MN为:x=1,设直线CC′为y=kx+b,由题意:,℃ ,℃直线CC′为y= x+ ,℃直线EF℃CC′,经过CC′中点〔,〕,℃直线EF为y=﹣3x+2,由得,℃P〔1,﹣1〕.应选:C.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.9.【答案】C【考点】钟面角、方位角【解析】【解答】解:下午2点30分时,时针与分针相距3.5份,下午2点30分时下午2点30分时3.5×30°=105°,应选:C.【分析】根据钟面平均分成12份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.10.【答案】D【考点】平移的性质【解析】【解答】解:从图中可发现挪动形成的三角形ABC中,AB=AC=3,℃BAC=90°﹣30°=60°,故℃ABC是等边三角形.℃℃ACB=60°,℃℃2=90°﹣60°=30°.所以此题的答案为南偏东30°.应选D.【分析】根据方位角的概念,画图正确表示出方位角,利用等边三角形的断定与性质即可求解.11.【答案】B【考点】勾股定理,旋转的性质【解析】【分析】℃把三角板DCE绕着点C顺时针旋转15得到℃D1CE1,℃℃BCE1=15°,℃D1CE1=℃DCE=60°℃℃BCO=45°又℃℃B=45°℃OC=OB℃BOC=90°℃℃D1OA=90°℃℃ABC是等腰直角三角形℃AO=BO=AB=3℃CO=3又℃CD=7℃OD1=CD1-CO=CD-OC=4在Rt℃D1OA中,AD1=。
3年中考真题 2年模拟预测全国500套数学试题分类汇编第2章 实数

解
(1)∠C=∠E(答案不唯一).
∵AB=AD,∠A=∠A, ∴若利用“AAS”,可以添加∠C=∠E;
若利用“ASA”,可以添加∠ABC=∠ADE,或∠EBC=∠CDE;
若利用“SAS”,可以添加AC=AE,或BE=DC. 综上所述,可以添加的条件为∠C=∠E(或∠ABC=∠ADE或 ∠EBC=∠CDE或AC=AE或BE=DC).
⑥如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD
一定是平行四边形.
首 页
其中正确的说法有 A.3个 解析 B.4个 C.5个 已知:AB∥CD,则
( B ) D.6个
①“AD∥BC”, 两组对边分别平行的四边形是平行四边形;
②“AB=CD”,一组对边平行且相等的四边形是平行四边形; ③“∠DAB=∠DCB”,可以证明另一组对边AD∥BC;
∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等
解析 已知AB∥CD,可根据有一组边平行且相等的四边
形是平行四边形来判定,也可以根据两组边分别平行的
四边形是平行四边形来判定.
探究提高
此题主要考查学生对平行四边形的判定方法的理解能 力,常用的平行四边形的判定方法有: ①两组对边分别平行的四边形是平行四边形;
结论,并且符合条件的结论具有多样性,需将已知的信息集
首 页
中进行分析,探索问题成立所必须具备的条件或特定的条件 应该有什么结论,通过这一思维活动得出事物内在联系,从 而把握事物的整体性和一般性.
基础自测
1.(2013·新疆)等腰三角形的两边长分别为3和6,则这个
等腰三角形的周长为 A.12 B.15 ( B )
首 页
(1)常规题的结论往往是唯一确定的,而多数开放题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似真题与模拟题分类汇编(难题易错题)1.在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC= ,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= ,,直接写出tan∠CEB的值.【答案】(1)解:∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN(2)解:如图2,过点P作PM⊥AP交AC于M,PN⊥AM于N.∵∠BAP+∠1=∠CPM+∠1=90°,∴∠BAP=∠CPM=∠C,∴MP=MC∵tan∠PAC=,设MN=2m,PN=m,根据勾股定理得,PM=,∴tanC=(3)解:在Rt△ABC中,sin∠BAC= = ,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴ =同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC= =【解析】【分析】(1)根据垂直的定义得出∠AMB=∠BNC=90°,根据同角的余角相等得出∠BAM=∠CBN,利用两个角对应相等的两个三角形相似得出:△ABM∽△BCN;(2)过点P作PF⊥AP交AC于F,在Rt△AFP中根据正切函数的定义,由tan∠PAC=,同(1)的方法得,△ABP∽△PQF,故,设AB= a,PQ=2a,BP= b,FQ=2b(a>0,b>0),然后判断出△ABP∽△CQF,得从而表示出CQ,进根据线段的和差表示出BC,再判断出△ABP∽△CBA,得出再得出BC,从而列出方程,表示出BC,AB,在Rt△ABC中,根据正切函数的定义得出tanC的值;(3)在Rt△ABC中,利用正弦函数的定义得出:sin∠BAC=,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,根据平行线分线段成比例定理得出,同(1)的方法得,△ABG∽△BCH ,故,设BG=4m,CH=3m,AG=4n,BH=3n,根据等腰三角形的三线合一得出EG=BG=4m,故GH=BG+BH=4m+3n,根据比例式列出方程,求解得出n与m的关系,进而得出EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中根据正切函数的定义得出tan∠BEC的值。
2.如图1,在△ABC中,点DE分别在AB、AC上,DE∥BC,BD=CE,(1)求证:∠B=∠C,AD=AE;(2)若∠BAC=90°,把△ADE绕点A逆时针旋转到图2的位置,点M,P,N分别为DE,DC,BC的中点,连接MN,PM,PN.①判断△PMN的形状,并说明理由;________②把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN的最大面积为________ 。
【答案】(1)证明:∵DE∥BC,∴,∵BD=CE,∴AB=AC,∴∠B=∠C,AB﹣BD=AC﹣CD,∴AD=AE,即:∠B=∠C,AD=AE(2)解:△PMN是等腰直角三角形,理由:∵点P,M分别是CD,DE的中点,∴PM= CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN= BD,PN∥BD,∵BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB +∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;【解析】【解答】解:②由①知,△PMN是等腰直角三角形,PM=PN= BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大= PM2= ×72= .【分析】(1)根据平行线分线段成比例定理及BD=CE可得AB=AC,进而可得AD=AE,由等边对等角可得∠B=∠C.(2)①由中位线定理可得PM=CE,PM//CE,PN=BD,PN//BD,由BD=CE 可得PN=PM.由两直线平行同位角相等可得∠DPM=∠DCE,∠PNC=∠DBC,利用三角形的外角的性质和等量代换可得∠MPN=∠ABC+∠ACB=∠BAC=90°,所以△PMN是等腰直角三角形。
②当PN最大时,△PMN的面积最大,当点D在AB的延长线上时,PN最大,PN=BD=7,根据三角形的面积计算公式可得结论。
3.如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF.(1)当∠BAC=30º时,求△ABC的面积;(2)当DE=8时,求线段EF的长;(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似,若存在,请求出点E的坐标;若不存在,请说明理由.【答案】(1)解:∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,AB=10,∠BAC=30°,∴BC= AB=5,∴AC= ,∴S△ABC= AC⋅BC=(2)解:连接AD,∵∠ACB=90°,CD=BC,∴AD=AB=10,∵DE⊥AB,∴AE= =6,∴BE=AB−AE=4,∴DE=2BE,∵∠AFE+∠FAE=90°,∠DBE+∠FAE=90°,∴∠AFE=∠DBE,∵∠AEF=∠DEB=90°,∴△AEF∽△DEB,∴ =2,∴EF= AE= ×6=3(3)解:连接EC,设E(x,0),当的度数为60°时,点E恰好与原点O重合;①0°< 的度数<60°时,点E在O、B之间,∠EOF>∠BAC=∠D,又∵∠OEF=∠ACB=90°,由相似知∠EOF=∠EBD,此时有△EOF∽△EBD,∴,∵EC是Rt△BDE斜边的中线,∴CE=CB,∴∠CEB=∠CBE,∴∠EOF=∠CEB,∴OF∥CE,∴△AOF∽△AEC∴,∴,即,解得x= ,因为x>0,∴x= ;②60°< 的度数<90°时,点E在O点的左侧,若∠EOF=∠B,则OF∥BD,∴OF= BC= BD,∴即解得x= ,若∠EOF=∠BAC,则x=− ,综上点E的坐标为( ,0) ;(,0);(−,0).【解析】【分析】(1)根据圆周角定理求得∠ACB=90°,根据30°的直角三角形的性质求得BC,进而根据勾股定理求得AC,然后根据三角形面积公式即可求得;(2)连接AD,由垂直平分线的性质得AD=AB=10,又DE=8,在Rt△ODE中,由勾股定理求AE,依题意证明△AEF∽△DEB,利用相似比求EF;(3)当以点E、O、F为顶点的三角形与△ABC相似时,分为两种情况:①当交点E在O,B之间时;②当点E在O点的左侧时;分别求E点坐标.4.已知:如图,在四边形中,,,,,垂直平分 .点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停止运动.过点作,交于点,过点作,分别交,于点, .连接, .设运动时间为,解答下列问题:(1)当为何值时,点在的平分线上?(2)设四边形的面积为,求与的函数关系式.(3)连接,,在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.【答案】(1)解:在中,∵,,,∴,∵垂直平分线段,∴,,∵,∴,∵,∴,∴,∴,∴,,∵,,∴∠BPE=∠BCA=90°又∠B=∠B∴△BPE∽△BAC∴即∴,,当点在的平分线上时,∵,,∴,∴,∴ .∴当为4秒时,点在的平分线上.(2)解:如图,连接, ..(3)解:存在.如图,连接 .∵,∴,∵,∴,∴,∴,∴,整理得:,解得或10(舍)∴当秒时, .【解析】【分析】(1)根据勾股定理求AC,根据证,求出CD、OD的值,根据△BPE∽△BAC得到比例式,用含有t的代数式表示出PE、BE,当点E在∠BAC的平分线上时,因为EP⊥AB,EC⊥AC,可得PE=EC,由此构建方程即可解决问题.(2)根据构建函数关系式即可.(3)证明∠EOC=∠QOG,可得,推出,由此构建方程即可解决问题.5.如图,已知一次函数y=﹣ x+4的图象是直线l,设直线l分别与y轴、x轴交于点A、B.(1)求线段AB的长度;(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.①当⊙N与x轴相切时,求点M的坐标;②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x 轴于点E,直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.【答案】(1)解:当x=0时,y=4,∴A(0,4),∴OA=4,当y=0时,- x+4=0,x=3,∴B(3,0),∴OB=3,由勾股定理得:AB=5(2)解:①如图1,过N作NH⊥y轴于H,过M作ME⊥y轴于E,tan∠OAB= ,∴设EM=3x,AE=4x,则AM=5x,∴M(3x,-4x+4),由旋转得:AM=AN,∠MAN=90°,∴∠EAM+∠HAN=90°,∵∠EAM+∠AME=90°,∴∠HAN=∠AME,∵∠AHN=∠AEM=90°,∴△AHN≌△MEA,∴AH=EM=3x,∵⊙N与x轴相切,设切点为G,连接NG,则NG⊥x轴,∴NG=OH,则5x=3x+4,2x=4,x=2,∴M(6,-4);②如图2,由①知N(8,10),∵AN=DN,A(0,4),∴D(16,16),设直线DM:y=kx+b,把D(16,16)和M(6,-4)代入得:,解得:,∴直线DM的解析式为:y=2x-16,∵直线DM交x轴于E,∴当y=0时,2x-16=0,x=8,∴E(8,0),由①知:⊙N与x轴相切,切点为G,且G(8,0),∴E与切点G重合,∵∠QAP=∠OAB=∠DCE,∴△APQ与△CDE相似时,顶点C必与顶点A对应,分两种情况:i)当△DCE∽△QAP时,如图2,∠AQP=∠NDE,∵∠QNA=∠DNF,∴∠NFD=∠QAN=90°,∵AO∥NE,∴△ACO∽△NCE,∴,∴,∴CO= ,连接BN,∴AB=BE=5,∵∠BAN=∠BEN=90°,∴∠ANB=∠ENB,∵EN=ND,∴∠NDE=∠NED,∵∠CNE=∠NDE+∠NED,∴∠ANB=∠NDE,∴BN∥DE,Rt△ABN中,BN= ,sin∠ANB=∠NDE= ,∴,∴NF=2 ,∴DF=4 ,∵∠QNA=∠DNF,∴tan∠QNA=tan∠DNF= ,∴,∴AQ=20,∵tan∠QAH=tan∠OAB= ,设QH=3x,AH=4x,则AQ=5x,∴5x=20,x=4,∴QH=3x=12,AH=16,∴Q(-12,20),同理易得:直线NQ的解析式:y=- x+14,∴P(0,14);ii)当△DCE∽△PAQ时,如图3,∴∠APN=∠CDE,∵∠ANB=∠CDE,∵AP∥NG,∴∠APN=∠PNE,∴∠APN=∠PNE=∠ANB,∴B与Q重合,∴AN=AP=10,∴OP=AP-OA=10-4=6,∴P(0,-6);综上所述,△APQ与△CDE相似时,点P的坐标的坐标(0,14)或(0,-6)【解析】【分析】(1)由一次函数解析式容易求得A、B的坐标,利用勾股定理可求得AB 的长度;(2)①根据同角的三角函数得:tan∠OAB= ,设EM=3x,AE=4x,则AM=5x,得M(3x,-4x+4),证明△AHN≌△MEA,则AH=EM=3x,根据NG=OH,列式可得x的值,计算M的坐标即可;②如图2,先计算E与G重合,易得∠QAP=∠OAB=∠DCE,所以△APQ与△CDE相似时,顶点C必与顶点A对应,可分两种情况进行讨论:i)当△DCE∽△QAP时,证明△ACO∽△NCE,列比例式可得CO= ,根据三角函数得:tan∠QNA=tan∠DNF= ,AQ=20,则tan∠QAH=tan∠OAB= ,设QH=3x,AH=4x,则AQ=5x,求出x的值,得P(0,14);ii)当△DCE∽△PAQ时,如图3,先证明B与Q重合,由AN=AP可得P(0,-6).6.在等腰直角三角形ABC中,∠ACB=90°,AC=BC,D是AB边上的中点,Rt△EFG的直角顶点E在AB边上移动.(1)如图1,若点D与点E重合且EG⊥AC、DF⊥BC,分别交AC、BC于点M、N,易证EM=EN;如图2,若点D与点E重合,将△EFG绕点D旋转,则线段EM与EN的长度还相等吗?若相等请给出证明,不相等请说明理由;(2)将图1中的Rt△EGF绕点D顺时针旋转角度α(0∘<α<45∘). 如图2,在旋转过程中,当∠MDC=15∘时,连接MN,若AC=BC=2,请求出线段MN的长;(3)图3, 旋转后,若Rt△EGF的顶点E在线段AB上移动(不与点D、B重合),当AB=3AE 时,线段EM与EN的数量关系是________;当AB=m·AE时,线段EM与EN的数量关系是________.【答案】(1)解:EM=EN;原因如下:∵∠ACB=90° AC=BC D是AB边上的中点∴DC=DB ∠ACD=∠B=45°∠CDB=90°∴∠CDF+∠FDB=90°∵∠GDF=90°∴∠GDC+∠CDF=90°∴∠CDM=∠BDN在△CDM和△BDN中∠MCD=∠B,DC=DB,∠CDM=∠BDN,∴△CDM≌△BDN ∴DM=DN 即EM=EN(2)解:作DP⊥AC于P,则∠CDP=45° CP=DP=AP=1∵∠CDG=15°∴∠MDP=30°∵cos∠MDP=∴DM=, DM=DN,∵△MND为等腰直角三角形∴MN=(3)NE=2ME;EN=(m-1)ME【解析】【解答】解:(3)NE=2ME,EN=(m-1)ME证明:如图3,过点E作EP⊥AB交AC于点P则△AEP为等腰直角三角形,∠PEB=90°∴AE=PE ∵AB=3AE ∴BE=2AE ∴BE=2PE又∵∠MEP+∠PEN=90°∠PEN+∠NEB=90°∴∠MEP=∠NEB又∵∠MPE=∠B=45°∴△PME∽△BNE∴,即EN=2EM由此规律可知,当AB=m·AE时,EN=(m-1)·ME【分析】(1)EM=EN;原因如下:根据等腰直角三角形的性质得出DC=DB ∠ACD=∠B=45°∠CDB=90°根据同角的余角相等得出∠CDM=∠BDN,然后由ASA判断出△CDM≌△BDN 根据全等三角形的对应边相等得出DM=DN 即EM=EN;(2)根据等腰直角三角形的性质得出∠CDP=45°CP=DP=AP=1,根据角的和差得出∠MDP=30°,根据余弦函数的定义及特殊角的三角函数值,由cos∠MDP=得出DM的长,又DM=DN,故△MND为等腰直角三角形,根据等腰直角三角形的性质即可得出MN 的长;(3)NE=2ME,EN=(m-1)ME,如图3,过点E作EP⊥AB交AC于点P,则△AEP为等腰直角三角形,∠PEB=90°,根据同角的余角相等得出∠MEP=∠NEB然后判断出△PME∽△BNE,根据相似三角形对应边成比例即可得出u结论,由此规律可知,当AB=m·AE时,EN=(m-1)·ME7.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【答案】(1)解:当x=0,y=3,∴C(0,3)设抛物线的解析式为y=a(x+1)(x- ).将c(0,3)代入得:- a=3,解得a=2,∴抛物线的解析式为y=-2x2+x+3(2)解:过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N。