8.6空间向量及其应用36

合集下载

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用空间直角坐标系的原则:规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

设 , ,空间向量的直角坐标运算:空间两点间距离: ;1:利用空间向量证明空间位置关系(同平面向量)2:利用空间向量求线线角、线面角1 )异面直线所成角 设 分别为异面直线的方向向量,则则:空间线段的中点 M (x ,y ,z )的坐标:2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则3 :利用空间向量求二面角其计算公式为:设 分别为平面 的法向量,则 与 互补或相等,操作方法:1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法:斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积,为斜面与射影所成二面角的平面角 )这个公式对于斜面为三角形, 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。

2.空间的距离点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离2)直线与平面所成的角的范围是[0, ] 。

射影转化法2方法 3)二面角的范围一般是指(0, ],解题时要注意图形的位置和题目的要求。

作二面角的平面角常有三种1)异面直线所成的角的范围是bF如右图所示,a、b 是两异面直线,n是a和b 的法向量,点 E ∈a,F∈ b ,则异面直线 a 与b 之间的距离EF n 是dn2)用法向量求点到平面的距离AB n 如右图所示,已知AB 是平面α的一条斜线,n 为平面α的法向量,则 A 到平面α的距离为d 如右图所示,已知AB 是平面α的一条斜线,n为平面α的法向量,则A到平面α的距离为d n(3)用法向量求直线到平面间的距离首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题。

高三数学一轮复习8.6空间向量及其应用精品课件人教版

高三数学一轮复习8.6空间向量及其应用精品课件人教版
8.6空间向量及其应用
中国人民大学附属中学
1.空间向量的概念 向量:在空间,我们把具有大小和方向的量 叫做向量。如位移、速度、力等; 相等向量:长度相等且方向相同的向量叫做 相等向量; 表示方法:用有向线段表示,并且同向且等 长的有向线段表示同一向量或相等的向量.
2.向量运算和运算率 OB OA AB a b BA OA OB a b
D1中,M为A1C1与B1D1的交点。若 AB a ,
,则下列向量中与 BM 相 AD b ,AA 1 c
等的向量是( A ) (A) (B) (C)
1 1 a b c 2 2 1 1 a b c 2 2 1 1 a b c 2 2 1 1 a bc 2 2
D1 A1 M B1 C1
D A B
C
(D)
例4.已知两个非零向量 a =(a1,a2,a3), b =(b1,b2,b3),它们平行的充要条件是 ( D ) A. a :| a | b :| b | B. a1· b1=a2· b2=a3· b3 C. a1b1+a2b2+a3b3=0 D. 存在非零实数k,使 a =k b
例7.已知空间三点A(-2,0,2),B(-1, 1, 2), C(-3,0,4)。设 (1)求 a 和 b =a , =b AB , AC
10 的夹角的余弦; 10
(2)若向量k a + b 与k或k 2 2
记作 a b
例1.有以下命题:①如果向量 a, b 与任何 向量不能构成空间向量的一组基底,那么 a, b 的关系是不共线;②O, A, B, C为空间 四点,且向量 OA, OB, OC 不构成空间的一 个基底,那么点O, A, B, C一定共面;③已 知向量 a, b, c 是空间的一个基底,则向 量 a b, a b, c ,也是空间的一个基底。其 中正确的命题是( C ) (A) ①② (B) ①③ (C) ②③ (D) ①②③

空间向量及向量的应用

空间向量及向量的应用

空间向量及向量的应用空间直角坐标系的原则:规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应。

一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

设,,则:空间向量的直角坐标运算:空间两点间距离:;空间线段的中点M(x,y,z)的坐标:;1:利用空间向量证明空间位置关系(同平面向量)2:利用空间向量求线线角、线面角(1)异面直线所成角设分别为异面直线的方向向量,则(2)线面角设是直线l 的方向向量,n 是平面的法向量,则3:利用空间向量求二面角其计算公式为:设分别为平面的法向量,则θ与互补或相等,操作方法:1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

(1)异面直线所成的角的范围是]2,0(π。

转化为共面问题。

(2)直线与平面所成的角的范围是]2,0[π。

射影转化法。

(3)二面角的范围一般是指],0(π,解题时要注意图形的位置和题目的要求。

作二面角的平面角常有三种方法①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法:斜面面积和射影面积的关系公式:θcos ⋅='S S (S 为原斜面面积,S '为射影面积,θ为斜面与射影所成二面角的平面角)这个公式对于斜面为三角形,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时,如果能找得斜面面积的射影面积,可直接应用公式,求出二面角的大小。

2.空间的距离点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离。

3.空间向量的应用(1)用法向量求异面直线间的距离aE如右图所示,a 、b 是两异面直线,n 是a 和b 的法向量,点E ∈a ,F ∈b ,则异面直线 a 与b 之间的距离是nn EF d⋅=;(2)用法向量求点到平面的距离如右图所示,已知AB 是平面α的 一条斜线,n 为平面α的法向量,则 A 到平面α的距离为nn AB d ⋅=;(3)用法向量求直线到平面间的距离首先必须确定直线与平面平行,然后将直线到平面的距离问题转化成直线上一点到平面的距离问题。

空间向量的应用认识空间向量的应用和几何解题方法

空间向量的应用认识空间向量的应用和几何解题方法

空间向量的应用认识空间向量的应用和几何解题方法空间向量的应用及认识空间向量的应用在数学中,空间向量是指具有大小和方向的向量,也称为三维向量。

空间向量在几何学和物理学中有广泛的应用,它们可以用于解决各种几何问题和实际应用中的物理问题。

本文将介绍空间向量及其应用,并讨论几种常见的解题方法。

一、空间向量的定义与性质空间向量是指由三个有序实数组成的有向线段。

假设有两点A和B,空间向量AB可以表示为→AB,它的大小等于线段AB的长度,方向则与线段AB的方向一致。

空间向量具有以下性质:1. 加法性质:如果有两个空间向量→AB和→BC,它们的和为→AC,即→AC = →AB + →BC。

2. 数乘性质:对于任意实数k,空间向量→AB乘以k的结果为k→AB,即k→AB = →BA。

3. 数量积性质:空间向量→AB和→AC的数量积为它们的模的乘积与它们夹角的余弦的乘积,即→AB·→AC = |→AB| × |→AC| × cosθ。

二、空间向量的应用1. 几何问题中的位置关系:空间向量可以用于判断点的位置关系。

例如,已知三个点A、B和C,可以通过向量→AB和→AC的数量积来判断它们的位置关系。

若→AB·→AC = 0,则表示点C在向量→AB 的延长线上;若→AB·→AC > 0,则表示点C在向量→AB的同侧;若→AB·→AC < 0,则表示点C在向量→AB的异侧。

2. 几何问题中的求解:空间向量可用于求解几何问题,如线段的中点坐标、平行四边形的面积等。

通过定义空间向量→AB = (x2-x1, y2-y1, z2-z1),可以得到线段AB的中点坐标为[(x1+x2)/2, (y1+y2)/2,(z1+z2)/2];平行四边形的面积可以通过向量的叉积来计算,即以两个边向量的叉积的模作为平行四边形的面积。

3. 物理学中的应用:空间向量在物理学中也有广泛的应用。

人教a版高考数学(理)一轮课件:8.6空间向量及其运算

人教a版高考数学(理)一轮课件:8.6空间向量及其运算

(2) 共面向量定理 如果两个向量 a, b 不共线, 那么向量 p 与向量 a, b 共面的充要条件是存在 惟一的有序实数对( x, y), 使 p=xa+yb. 推论: 空间一点 P 位于平面 AB C 内的充要条件是存在有序实数对(x, y), 使������������=x������������+y������������; 或对空间任意一点 O , 有������������= ������������+x������������+y������������. (3) 空间向量基本定理 如果三个向量 a , b, c不共面, 那么对空间任一向量 p, 存在有序实数组 (x, y, z), 使得 p=xa+yb+zc, 我们把 { a, b, c} 叫做空间的一个基底 , a, b, c都叫做基向 量.
������ 1������1 + ������ 2������2 + ������ 3������3
2 2 ������ 2 1+������ 2+ ������ 3· 2 2 ������2 1 +������2 +������3
.
若 A(a1 , b1 , c1 ), B (a2 , b2 , c2 ), 则 d AB =| ������������| = (������ 2 -������1) 2 + ( ������2-������1) 2 + ( ������2 -������1 )2.
考纲解读
高考中以选择题、填空题为主 , 重在考查空间两点间距离公式的 应用, 向量的概念、数量积及其运 算性质 ,运用空间向量的线性运 算及数量积考查点共线、 点共面、 线共面问题.

高三理数一轮讲义:8.6-空间向量及空间位置关系

高三理数一轮讲义:8.6-空间向量及空间位置关系

第6节 空间向量及空间位置关系最新考纲 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2.掌握空间向量的线性运算及其坐标表示;3.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直;4.理解直线的方向向量及平面的法向量;5.能用向量语言表述线线、线面、面面的平行和垂直关系;6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知 识 梳 理1.空间向量的有关概念2.(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作OA→=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是[0,π],若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②非零向量a ,b 的数量积a·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量.6.空间位置关系的向量表示1.在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x+y +z =1),O 为空间任意一点.3.向量的数量积满足交换律、分配律,即a ·b =b ·a ,a ·(b +c )=a ·b +a ·c 成立,但不满足结合律,即(a ·b )·c =a ·(b ·c )不一定成立.4.用向量知识证明立体几何问题,仍离不开立体几何中的定理.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.2.(选修2-1P104练习2改编)已知平面α,β的法向量分别为n 1=(2,3,5),n 2=(-3,1,-4),则( ) A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对3.(选修2-1P118A6改编)已知a =(cos θ,1,sin θ),b =(sin θ,1,cos θ),则向量a +b 与a -b 的夹角是________.4.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A.(-1,1,1)B.(1,-1,1)C.⎝ ⎛⎭⎪⎫-33,-33,-33D.⎝ ⎛⎭⎪⎫33,33,-335.(2018·合肥月考)如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.6.如图所示,在四面体OABC 中,OA→=a ,OB →=b ,OC →=c ,D 为BC 的中点,E为AD 的中点,则OE→=________(用a ,b ,c 表示).考点一 空间向量的数量积及应用典例迁移【例1】 (经典母题)如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EG →·BD→. 【迁移探究1】 本例的条件不变,求证:EG ⊥AB . 【迁移探究2】 本例的条件不变,求EG 的长.【迁移探究3】 本例的条件不变,求异面直线AG 和CE 所成角的余弦值. 规律方法 1.利用数量积解决问题的两条途径:一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.2.空间向量的数量积可解决有关垂直、夹角、长度问题. (1)a ≠0,b ≠0,a ⊥b ⇔a ·b =0; (2)|a |=a 2;(3)cos〈a,b〉=a·b |a||b|.【训练1】如图所示,四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.(1)求AC1的长;(2)求证:AC1⊥BD;(3)求BD1与AC夹角的余弦值.考点二用空间向量证明平行和垂直问题【例2】如图正方形ABCD的边长为22,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,FO=3,且FO⊥平面ABCD.(1)求证:AE∥平面BCF;(2)求证:CF⊥平面AEF.规律方法 1.证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算. 2.用向量证明垂直的方法(1)线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零. (2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示. 【训练2】 如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綉12BC ,二面角A 1-AB -C 是直二面角.求证:(1)A1B1⊥平面AA1C;(2)AB1∥平面A1C1C.证明考点三用空间向量解决有关位置关系的探索性问题多维探究角度1与平行有关的探索性问题【例3-1】(2018·西安八校联考)已知某几何体的直观图和三视图如图,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.M为AB的中点,在线段CB上是否存在一点P,使得MP∥平面CNB1?若存在,求出BP的长;若不存在,请说明理由.角度2 与垂直有关的探索性问题【例3-2】 如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2.(1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面P AC ⊥平面BCEF ?若存在,求出|BP ||PE |的值;若不存在,请说明理由.规律方法解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x,y,z);②坐标平面内的点其中一个坐标为0,如xOy面上的点为(x,y,0);③坐标轴上的点两个坐标为0,如z轴上的点为(0,0,z);④直线(线段)AB上的点P,可设为AP→=λAB→,表示出点P的坐标,或直接利用向量运算.【训练3】(2019·桂林模拟)如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.基础巩固题组 (建议用时:40分钟)一、选择题1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( ) A.2B.-4C.4D.-22.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A.垂直 B.平行C.异面D.相交但不垂直3.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A.a 2B.12a 2C.14a 2D.34a 24.如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.325.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A.斜交B.平行C.垂直D.MN 在平面BB 1C 1C 内二、填空题6.(2019·西安调研)已知AB→=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________.7.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 中点,则EF 的长为________.8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB→=(2,-1,-4),AD →=(4,2,0),AP→=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP→∥BD →.其中正确的序号是________.三、解答题9.(2018·青海质检)正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD .10.如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .能力提升题组(建议用时:20分钟)12.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( )A.(1,1,1)B.⎝ ⎛⎭⎪⎫23,23,1C.⎝ ⎛⎭⎪⎫22,22,1 D.⎝ ⎛⎭⎪⎫24,24,1。

《空间向量的应用》课件

《空间向量的应用》课件

向量的向量积运算性质
总结词:反交换律
详细描述:空间向量的向量积满足反交换律,即对于任意向量$mathbf{a}$和 $mathbf{b}$,有$mathbf{a} times mathbf{b} = -mathbf{b} times mathbf{a}$。
向量的向量积运算性质
总结词
与数量积的分配律不兼容
数乘的性质
结合律和分配律成立,即k(a+b)=(ka)+(kb)和(k+l)a=ka+la。
向量的模与向量的数量积
向量的模的性质
非负性、正定性、齐次性、三角不等式成立 。
向量的数量积
两个向量的数量积表示它们的夹角,记作 a·b,计算公式为$|a||b|cosθ$。
数量积的性质
交换律和分配律成立,即a·b=b·a和(k a)·b=k(a·b)。
04
空间向量的坐标表示
向量的坐标表示方法
固定原点
选择一个固定的点作为原点,并确定三个互相垂直的 坐标轴。
向量表示
将向量表示为坐标系中的有序实数组,例如向量A可 以表示为[a, b, c]。
长度和方向
向量的长度可以通过其坐标的模计算,方向可以通过 其分量表示。
向量在坐标系中的变换
平移变换
将向量在坐标系中沿某一轴平移一定 的距离,例如向量A平移d个单位后 变为[a+d, b, c]。
工程学的应用
总结词
在工程学中,空间向量被广泛应用于解决实际问题和设计复和土木工程等领域,空间向量被用于描述物体的位置、方向和运动状态,以及进行各 种物理量(如力、速度、加速度等)的分析和计算。此外,空间向量还被用于解决实际工程问题,如结构分析、 流体动力学和控制系统等。

第36讲 空间向量的应用(解析版)

第36讲 空间向量的应用(解析版)

第36讲 空间向量的应用一、 考情分析1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理;4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;5.能用向量方法解决点到平面、相互平行的平面的距离问题;6.并能描述解决夹角和距离的程序,体会向量方法在研究几何问题中的作用.二、 知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫做直线l 的参数方程.向量a 称为该直线的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量. 2.空间位置关系的向量表示3.异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则4.求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.5.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD→〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 6.点到平面的距离用向量方法求点B 到平面距离基本思路:确定平面法向量, 在平面内取一点A ,求向量AB →到法向量的投影向量,投影向量的长度即为所要求的距离.如图平面α的法向量为n ,点B 到平面α的距离d =|AB →·n ||n |. [微点提醒]1.平面的法向量是非零向量且不唯一.2.建立空间直角坐标系要建立右手直角坐标系.3.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.4.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、 经典例题考点一 利用空间向量证明平行问题【例1】 如图,在四面体ABCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .【解析】证明 法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ→=3QC →, 所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12, 所以PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0. 又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD , 所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设点F 坐标为(x ,y ,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0), ∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0 又由法一知PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0, ∴OF→=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算. 考点二 利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .【解析】证明 (1)取BC 的中点O ,连接PO , ∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD→,∴P A ⊥BD . (2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM →·PB→=32×1+0×0+32×(-3)=0, ∴DM→⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB . ∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示. ③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示. 考点三 用空间向量解决有关位置关系的探索性问题 角度1 与平行有关的探索性问题【例3-1】 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP→=(-3,1+λ,3λ).设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3), 设n 3=(x 3,y 3,z 3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP . 角度2 与垂直有关的探索性问题【例3-2】 如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2.(1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面P AC ⊥平面BCEF ?若存在,求出BP PE 的值;若不存在,请说明理由.【解析】(1)证明 ∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,AF ⊥AD ,AF ⊂平面ADEF , ∴AF ⊥平面ABCD .∵AC ⊂平面ABCD ,∴AF ⊥AC .过A 作AH ⊥BC 于H ,则BH =1,AH =3,CH =3, ∴AC =23,∴AB 2+AC 2=BC 2,∴AC ⊥AB , ∵AB ∩AF =A ,∴AC ⊥平面F AB , ∵BF ⊂平面F AB ,∴AC ⊥BF .(2)解 存在.由(1)知,AF ,AB ,AC 两两垂直.以A 为坐标原点,AB →,AC →,AF →的方向分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,23,0),E (-1,3,2).假设在线段BE 上存在一点P 满足题意,则易知点P 不与点B ,E 重合,设BPPE =λ,则λ>0,P ⎝⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ. 设平面P AC 的法向量为m =(x ,y ,z ).由AP→=⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ,AC →=(0,23,0), 得⎩⎨⎧m ·AP →=2-λ1+λx +3λ1+λy +2λ1+λz =0,m ·AC →=23y =0,即⎩⎪⎨⎪⎧y =0,z =λ-22λx ,令x =1,则z =λ-22λ, 所以m =⎝⎛⎭⎪⎫1,0,λ-22λ为平面P AC 的一个法向量. 同理,可求得n =⎝ ⎛⎭⎪⎫1,33,1为平面BCEF 的一个法向量.当m ·n =0,即λ=23时,平面P AC ⊥平面BCEF ,故存在满足题意的点P ,此时BP PE =23.规律方法 解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y ,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP →=λAB →,表示出点P 的坐标,或直接利用向量运算.考点四 用空间向量求异面直线所成的角【例4】 (1)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32B.155C.105D.33(2)在三棱锥P -ABC 中,△ABC 和△PBC 均为等边三角形,且二面角P -BC -A 的大小为120°,则异面直线PB 和AC 所成角的余弦值为( ) A.58B.34C.78D.14【答案】 (1)C (2)A【解析】 (1)法一 以B 为原点,建立如图(1)所示的空间直角坐标系.图(1)则B (0,0,0),B 1(0,0,1),C 1(1,0,1).又在△ABC 中,∠ABC =120°,AB =2,则A (-1,3,0). 所以AB 1→=(1,-3,1),BC 1→=(1,0,1), 则cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=(1,-3,1)·(1,0,1)5·2=25·2=105,因此,异面直线AB 1与BC 1所成角的余弦值为105.法二 将直三棱柱ABC -A 1B 1C 1补形成直四棱柱ABCD -A 1B 1C 1D 1(如图(2)),连接AD 1,B 1D 1,则AD 1∥BC 1.图(2)则∠B 1AD 1为异面直线AB 1与BC 1所成的角(或其补角),易求得AB 1=5,BC 1=AD 1=2,B 1D 1= 3.由余弦定理得cos ∠B 1AD 1=105.(2)法一 取BC 的中点O ,连接OP ,OA ,因为△ABC 和△PBC 均为等边三角形,所以AO ⊥BC ,PO ⊥BC ,所以∠POA 就是二面角P -BC -A 的平面角,即∠POA =120°,过点B 作AC 的平行线交AO 的延长线于点D ,连接PD ,则∠PBD 或其补角就是异面直线PB 和AC 所成的角.设AB =a ,则PB =BD =a ,PO =PD =32a ,所以cos ∠PBD =a 2+a 2-⎝ ⎛⎭⎪⎫32a 22×a ×a=58.法二 如图,取BC 的中点O ,连接OP ,OA ,因为△ABC 和△PBC 均为等边三角形,所以AO ⊥BC ,PO ⊥BC ,所以BC ⊥平面P AO ,即平面P AO ⊥平面ABC .且∠POA 就是其二面角P -BC -A 的平面角,即∠POA =120°,建立空间直角坐标系如图所示.设AB =2,则A (3,0,0),C (0,-1,0),B (0,1,0),P ⎝ ⎛⎭⎪⎫-32,0,32,所以AC→=(-3,-1,0),PB →=⎝ ⎛⎭⎪⎫32,1,-32, cos 〈AC→,PB →〉=-58,所以异面直线PB 与AC 所成角的余弦值为58.法三 如图所示,取BC 的中点O ,连接OP ,OA ,因为△ABC 和△PBC 是全等的等边三角形,所以AO ⊥BC ,PO ⊥BC ,所以∠POA 就是二面角的平面角,设AB =2,则AC→=OC →-OA →,PB →=OB →-OP →,故AC →·PB →=(OC →-OA →)·(OB→-OP →)=-52, 所以cos 〈AC →,PB →〉=AC →·PB →|AC →|·|PB →|=-58.即异面直线PB 与AC 所成角的余弦值为58.规律方法 1.利用向量法求异面直线所成角的一般步骤是:(1)选好基底或建立空间直角坐标系;(2)求出两直线的方向向量v 1,v 2;(3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.2.两异面直线所成角的范围是θ∈⎝ ⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角. 考点五 用空间向量求线面角【例5】如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值. 【解析】(1)证明 因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB ,因为AB =BC =22AC , 所以AB 2+BC 2=AC 2,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 且OB ∩AC =O ,知PO ⊥平面ABC .(2)解 如图,以O 为坐标原点,OB→的方向为x 轴正方向,建立空间直角坐标系O -xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面P AC 的一个法向量OB→=(2,0,0).设M (a ,2-a ,0)(0<a ≤2),则AM →=(a ,4-a ,0).设平面P AM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB→,n 〉|=32,所以23|a -4|23(a -4)2+3a 2+a 2=32,解得a =-4(舍去),a =43, 所以n =⎝⎛⎭⎪⎫-833,433,-43. 又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面P AM 所成角的正弦值为34. 规律方法 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.考点六用空间向量求二面角【例6】如图1,在高为6的等腰梯形ABCD中,AB∥CD,且CD=6,AB=12,将它沿对称轴OO1折起,使平面ADO1O⊥平面BCO1O,如图2,点P为BC的中点,点E在线段AB上(不同于A,B两点),连接OE并延长至点Q,使AQ∥OB.(1)(一题多解)证明:OD⊥平面P AQ;(2)若BE=2AE,求二面角C-BQ-A的余弦值.【解析】(1)证明法一取OO1的中点F,连接AF,PF,如图所示.∵P为BC的中点,∴PF∥OB,∵AQ∥OB,∴PF∥AQ,∴P,F,A,Q四点共面.由题图1可知OB⊥OO1,∵平面ADO1O⊥平面BCO1O,且平面ADO1O∩平面BCO1O=OO1,OB⊂平面BCO1O,∴OB⊥平面ADO1O,∴PF⊥平面ADO1O,又OD⊂平面ADO1O,∴PF⊥OD.由题意知,AO=OO1,OF=O1D,∠AOF=∠OO1D,∴△AOF ≌△OO 1D , ∴∠F AO =∠DOO 1,∴∠F AO +∠AOD =∠DOO 1+∠AOD =90°,∴AF ⊥OD . ∵AF ∩PF =F ,且AF ⊂平面P AQ ,PF ⊂平面P AQ , ∴OD ⊥平面P AQ .法二 由题设知OA ,OB ,OO 1两两垂直,∴以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设AQ 的长为m ,则O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0).∵点P 为BC 的中点,∴P ⎝ ⎛⎭⎪⎫0,92,3,∴OD →=(3,0,6),AQ →=(0,m ,0),PQ →=⎝ ⎛⎭⎪⎫6,m -92,-3. ∵OD →·AQ →=0,OD →·PQ→=0,∴OD→⊥AQ →,OD →⊥PQ →,又AQ →与PQ →不共线, ∴OD ⊥平面P AQ .(2)解 ∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3, 则Q (6,3,0),∴QB→=(-6,3,0),BC →=(0,-3,6).设平面CBQ 的法向量为n 1=(x ,y ,z ), 由⎩⎪⎨⎪⎧n 1·QB →=0,n 1·BC →=0,得⎩⎨⎧-6x +3y =0,-3y +6z =0,令z =1,则y =2,x =1,n 1=(1,2,1). 易得平面ABQ 的一个法向量为n 2=(0,0,1).设二面角C -BQ -A 的大小为θ,由图可知,θ为锐角,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=66,即二面角C -BQ -A 的余弦值为66.规律方法 利用空间向量计算二面角大小的常用方法:(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小. [方法技巧]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直.4.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.5.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.6.利用空间向量求空间角,避免了寻找平面角和垂线段等诸多麻烦,使空间点、线、面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算.7.利用法向量求距离问题的程序思想方法 第一步,确定法向量; 第二步,选择参考向量;第三步,确定参考向量到法向量的投影向量; 第四步,求投影向量的长度.8.异面直线所成的角与其方向向量的夹角:当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;否则向量夹角的补角是异面直线所成的角. 9.利用向量法求二面角大小的注意点(1)建立空间直角坐标系时,若垂直关系不明确,应先给出证明;(2)对于某些平面的法向量,要结合题目条件和图形多观察,判断该法向量是否已经隐含着,不用再求.(3)注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论失误.四、 课时作业1.在正方体1111ABCD A B C D -中,异面直线AC 与1B D 所成的角为( ) A .6π B .4π C .3π D .2π 【答案】D【解析】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,则A (1,0,0),C (0,1,0),D (0,0,0),B 1(1,1,1), AC =(﹣1,1,0),1B D =(﹣1,﹣1,﹣1), 设异面直线AC 与B 1D 所成的角为θ, 则cos θ=11||||||AC B D AC B D ⋅⋅=0,∴θ=2π. ∴异面直线AC 与B 1D 所成的角为2π. 故选:D .2.在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30 B .60︒C .90︒D .120︒【答案】C【解析】以D 为坐标原点,分别以DA ,DC ,1DD 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系D xyz -,如图设1AD =,则()1,0,1E ,()0,1,2F ,()0,0,1G ,()1,2,0B , 所以()1,1,1EF =-,()1,2,1BG =--,0EF BG ⋅=,所以EF BG ⊥,所以异面直线EF 与BG 所成角的大小为90︒,故选:C.3.在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则直线1BC 与平面11BB DD 所成角的正弦值为( ) A .63B .102C .155D .105【答案】D【解析】解:以D 点为坐标原点,以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,则1(2,0,0),(2,2,0),(0,2,0),A B C C (0,2,1),1(2,0,1),(2,2,0),BC AC AC ∴=-=-为平面11BB D D 的一个法向量. 110cos ,558BC AC ∴<>==⋅. ∴直线1BC 与平面11BB DD 所成角的正弦值为10. 4.在正方体ABCD -A 1B 1C 1D 1中,点M 为棱C 1D 1的中点,则异面直线AM 与BD 所成角的余弦值为( ) A .2 B .3 C .2 D .3 【答案】C【解析】解:正方体ABCD -A 1B 1C 1D 1,M 为A 1B 1的中点,设正方体ABCD -A 1B 1C 1D 1棱长为1,以D 为原点建立如图所示的空间直角坐标系,A (1,0,0),M (0,12,1),B (1,1,0),D (0,0,0), AM =(-1,12,1),()110DB =,,, cos AM BD <,>=112362-+=-,所以异面直线AM 与BD所成角的余弦值为6, 5.平面α的法向量(2,2,2)u =-,平面β的法向量(1,2,1)v =,则下列命题正确的是( ) A .α、β平行 B .α、β垂直C .α、β重合D .α、β不垂直【答案】B【解析】解:平面α的法向量(2,2,2)u =-,平面β的法向量(1,2,1)v =, 因为2420u v =-+=, 所以两个平面垂直.6.若平面α的法向量为n ,直线l 的方向向量为a ,直线l 与平面α的夹角为θ,则下列关系式成立的是( ) A .cos n a n aθ⋅=⋅B .cos n a n aθ⋅=⋅C .sin n a n aθ⋅=⋅D .sin n a n aθ⋅=⋅【答案】D【解析】由于直线l 与平面α的夹角为θ, 其中0θπ≤<, 所以sin 0θ≥, 所以sin cos n a n a n aθ⋅=⋅=⋅.7.直三棱柱ABC —A′B′C′中,AC =BC =AA′,∠ACB =90°,E 为BB′的中点,异面直线CE 与C A '所成角的余弦值是( )A .5 B .5-C .-10 D .10 【答案】D【解析】直三棱柱ABC A B C -'''中,AC BC AA ==',90ACB ∠=︒,E 为BB '的中点. 以C 为原点,CA 为x 轴,CB 为y 轴,CC '为z 轴,建立空间直角坐标系,设2AC BC AA =='=,则(0C ,0,0),(0E ,2,1),(0C ',0,2),(2A ,0,0), (0CE =,2,1),(2C A '=,0,2)-,设异面直线CE 与C A '所成角为θ, 则||10cos ||||58CE C A CE C A θ'==='.∴异面直线CE 与C A '所成角的余弦值为1010.故选:D .8.如图,长方体1111ABCD A B C D -中,14AA AB ==,2AD =,E 、F 、G 分别是1DD 、AB 、1CC 的中点,则异面直线1A E 与GF 所成角的余弦值是( )A .0B .10C .22 D .15【答案】A【解析】如图()()()()12,0,40,0,2,2,2,0,0,4,2A E F G ,所以()()12,0,2,2,2,2A E GF =--=--所以异面直线1A E 与GF 所成角的余弦值110⋅=A EGFA E GF故选:A9.在正三棱柱111ABC A B C -中,若12AB BB ,则1AB 与1C B 所成角的大小为()A .60B .75C .105D .90【答案】D【解析】由题意可得60ABC ∠=,1BB ⊥平面ABC ;设11BB =,则2AB =,又11AB BB BA =-,11BC BC BB =+, 所以11112111()()AB BC BB BA BC BB BB BC BB BA BC BA BB ⋅=-⋅+=⋅+-⋅-⋅ 0122cos6000=+-⨯⨯-=.故11AB BC ⊥.即11AB BC ⊥,即1AB 与1C B 所成角的大小为90.故选D10.在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,24BC AB ==,且四边形ABCD 是矩形,E 是PD 的中点,则异面直线BE 与PC 所成角的余弦值是( )A .618-B .618C .26-D .26【答案】B【解析】根据题意建立如图空间直角坐标系所以()()()()0,0,2,2,0,0,2,4,0,0,2,1P B C E ,所以()()2,2,1,2,4,2=-=-BE PC则异面直线BE 与PC 所成角的余弦值为618⋅=BE PC BE PC 11.如图,四棱锥P ABCD -中,底面ABCD 是矩形,PA AB ⊥,PA AD ⊥,1AD =,2AB =,PAB△是等腰三角形,点E 是棱PB 的中点,则异面直线EC 与PD 所成角的余弦值是( )A 3B 6C 6D 2 【答案】B【解析】因为AB ,AD ,AP 两两垂直,以A 为原点,AB ,AD ,AP 分别为x ,y ,z 轴建立空间直角坐标系.又因为2PA AB ==,1AD =, 所以()0,0,0A ,()2,0,0B ,()2,1,0C ,()0,1,0D ,()0,0,2P因为E 是棱PB 的中点,所以22,0,22E ⎛⎫ ⎪ ⎪⎝⎭,所以22,1,22EC ⎛⎫=- ⎪ ⎪⎝⎭,()0,1,2PD =-, 所以6cos ,1111222EC PD 〈〉==++⨯+ 12.如图,直四棱柱1111ABCD A B C D -的底面是菱形,12AA AB ==,60BAD ∠=︒,M 是1BB 的中点,则异面直线1A M 与1B C 所成角的余弦值为( )A .10B .15- C .15 D 10 【答案】D【解析】由题意可得221111111111,5,2A M A B B M ABBB A M A B B M =+=-=+=221111,22B C BC BB B C BC BB =-=+=,()21111111111122cos ,210210AB BB BC BB AB BC BBA MBC A M B C A M B C ⎛⎫-⋅-⋅+ ⎪⋅⎝⎭〈〉===0122cos604102.210⨯⨯+⨯==13.若直线l 的方向向量为(1,2,3)a =-,平面α的法向量为(3,6,9)n =--,则( )A .l α⊂B .//l αC .l α⊥D .l 与α相交【答案】C【解析】解:∵直线l 的方向向量为()1,2,3a =-,平面α的法向量为()3,6,9n =--,∴13a n =-,∴a n ,∴l α⊥.14.若三棱锥P -ABC 的三条侧棱两两垂直,且满足PA =PB =PC =1,则点P 到平面ABC 的距离是( )A .66B .63 C .3D .33【答案】D【解析】解:分别以PA ,PB ,PC 所在的直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.则A (1,0,0),B (0,1,0),C (0,0,1).()()1,1,0,1,0,1AB AC =-=-.设平面ABC 的一个法向量为(),,n x y z =,由00n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩得:0x y x z -+=⎧⎨-+=⎩.令1x =,则1y z ==.则平面ABC 的一个法向量为()1,1,1n =.所以点P 到平面ABC 的距离||33||n PA d n =⋅=. 15.长方体1111ABCD A B C D -中12,1AB AA AD ===,E 为1CC 的中点,则异面直线1BC 与AE 所成角的余弦值为( )A .1010B .3010C .21510D .310 【答案】B【解析】建立坐标系如图所示.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2),1BC =(-1,0,2),AE =(-1,2,1).cos 〈1BC ,AE 〉==3010. 所以异面直线BC 1与AE 3016.直三棱柱111ABC A B C -中,120ABC ∠=︒,11AB BC CC ===,则异面直线1AB 与1BC 所成角的余弦值为( )A 3B .12C 3D .34【答案】D【解析】在直三棱柱111ABC A B C -中,120ABC ∠=︒,取AC 中点O ,11AB BC CC ===,则OB A C ⊥, 所以2sin 603AC BC =︒=,以AC 的中点O 坐标原点,OB 为x 轴,OC 为y 轴,以过点O 垂直平面ABC 的垂线为z 轴,建立空间直角坐标系,如图:则30,A ⎛⎫ ⎪ ⎪⎝⎭,11,0,12B ⎛⎫ ⎪⎝⎭,1,0,02B ⎛⎫ ⎪⎝⎭,13C ⎛⎫ ⎪ ⎪⎝⎭, 所以113,22AB ⎛⎫= ⎪ ⎪⎝⎭,113,22BC ⎛⎫=- ⎪ ⎪⎝⎭, 设异面直线1AB 与1BC 所成角为θ, 则1111131344cos 422AB BC AB BC θ-++⋅===⨯⋅. 17.在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( )A .16B .14C .16-D .14- 【答案】A【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 所在直线为,,x y z 轴建立空间直角坐标系. 设正方体的棱长为2,则()()()()1100,012,121,002M N O D ,,,,,,,,, ∴()()11,1,2,1,2,1MN OD =-=--. 则11111cos,666MN ODMNODMN OD⋅===⋅.∴异面直线MN与1OD所成角的余弦值为16,故选A.18.在棱长为3的正方体1111ABCD A B C D-中,E为线段1AA中点,F为线段11C D上靠近1D的三等分点,则异面直线1A B与EF所成角的余弦值为( )A.114B.2C.3D.17【答案】B【解析】如图建立空间直角坐标系,则知1(3,0,0)A,(3,3,3)B,33,0,2E⎛⎫⎪⎝⎭,(0,1,0)F,所以1(0,3,3)A B=,33,1,2EF⎛⎫=--⎪⎝⎭,所以1119322|cos,|714||322A B EFA B EFA B EF-⋅〈〉===⋅⨯.故选:B.19.如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC=4,AB=AC,∠BAC=90°,D为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为( )A .16+8πB .32+16πC .32+8πD .16+16π【答案】A 【解析】设D 在底面半圆上的射影为1D ,连接1AD 交BC 于O ,设1111A D B C O ⋂=.依题意半圆柱体底面直径4,,90BC AB AC BAC ==∠=︒,D 为半圆弧的中点,所以1111,AD BC A D B C ⊥⊥且1,O O 分别是下底面、上底面半圆的圆心.连接1OO ,则1OO 与上下底面垂直,所以11,,OO OB OO OA OA OB ⊥⊥⊥,以1,,OB OA OO 为,,x y z 轴建立空间直角坐标系,设几何体的高为()0h h >,则()()()()12,0,0,0,2,,0,2,0,2,0,B D h A B h -,所以()()12,2,,2,2,BD h AB h =--=-,由于异面直线BD 和1AB 所成的角的余弦值为23, 所以212212388BD AB h BD AB h h ⋅==⋅+⋅+, 即2222,16,483h h h h ===+. 所以几何体的体积为2112442416822ππ⨯⨯⨯+⨯⨯⨯=+. 故选:A20.如图,三棱锥V ABC -的侧棱长都相等,底面ABC 与侧面VAC 都是以AC 为斜边的等腰直角三角形,E 为线段AC 的中点,F 为直线AB 上的动点,若平面VEF 与平面VBC 所成锐二面角的平面角为θ,则cos θ的最大值是( )A 3B .23C 5D 6 【答案】D【解析】底面ABC 与侧面VAC 都是以AC 为斜边的等腰直角三角形,则Rt ABC Rt VAC ≅ ,所以VA VC BA BC ===设2VA VC BA BC VB ===== ,由E 为线段AC 的中点, 则2VE BV ==由222VE BE VB += ,所以VE EB ⊥,以E 为原点,EB 为x 轴,E C 为y 轴,EV 为z 轴,建立空间直角坐标系,如图所示:则()2,0C ,2,0,0B ,(2V ,设,2,Fxx-,(0,2,2VC =- ,(2,0,2VB =- ,(2EV = ,(,2,2VF x x = ,设平面VBC 的一个法向量()111,,m x y z = ,则00m VC m VB ⎧⋅=⎨⋅=⎩ ,即1111220220z x ⎧=⎪⎨-=⎪⎩ , 令11x =,则11y = ,11z =, 所以()1,1,1m = .设平面VEF 的一个法向量()222,,n x y z = ,则00n EV n VF ⎧⋅=⎨⋅=⎩ ,即(222220220z x x x y z ⎧=⎪⋅+⋅+=⎪⎩, 解得20z =,令21y = ,则221x =-, 所以21,1,0n x ⎛⎫=- ⎪ ⎪⎝⎭,平面VEF 与平面VBC 所成锐二面角的平面角为θ,则22cos 22232m n x m n x xθ⋅==-+ ,将分子、分母同除以1x,可得 2222322226626x xx x =-+-+令()2226626632f x x x x ⎛⎫=-+=-+ ⎪ ⎪⎝⎭, 当22x =时,()min 3f x = , 则cos θ的最大值为:263= . 21.(多选题)如图,棱长为的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )A .直线1D P 与AC 所成的角可能是6πB .平面11D A P ⊥平面1A APC .三棱锥1D CDP -的体积为定值D .平面1APD 截正方体所得的截面可能是直角三角形 【答案】BC【解析】对于A ,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,()()()10,0,1,1,0,0,0,1,0D A C ,设()()1,,01,01P a b a b <<<< ()()11,,1,1,1,0D P a b AC =-=- ()11221cos ,0112D P AC D P AC D P ACa b ⋅==<++-⨯1301,01,,24a b D P AC ππ<<<<∴<<∴直线D 1P 与AC 所成的角为,42ππ⎛⎫⎪⎝⎭,故A 错误;对于B ,正方体ABCD ﹣A 1B 1C 1D 1中,A 1D 1⊥AA 1,A 1D 1⊥AB , ∵AA 1AB =A ,∴A 1D 1⊥平面A 1AP ,∵A 1D 1⊥平面D 1A 1P ,∴平面D 1A 1P ⊥平面A 1AP ,故B 正确; 对于C ,1111122CDD S=⨯⨯=,P 到平面CDD 1的距离BC =1, ∴三棱锥D 1﹣CDP 的体积:111111326D CDP P CDD V V --==⨯⨯=为定值,故C 正确;对于D ,平面APD 1截正方体所得的截面不可能是直角三角形,故D 错误; 故选:BC .22.(多选题)正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为11,,BC CC BB 的中点.则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C.平面AEF 截正方体所得的截面面积为98D.点C和点G到平面AEF的距离相等【答案】BC【解析】对选项A:(方法一)以D点为坐标原点,DA、DC、1DD所在的直线分别为x、y、z轴,建立空间直角坐标系,则(0,0,0)D、(1,0,0)A、1(1,0,1)A、1,1,02E⎛⎫⎪⎝⎭、10,1,2F⎛⎫⎪⎝⎭、11,1,2G⎛⎫⎪⎝⎭.从而1(0,0,1)DD=,11,1,2AF⎛⎫=-⎪⎝⎭,从而112DD AF⋅=≠,所以1DD与直线AF不垂直,选项A错误;(方法二)取1DD的中点N,连接AN,则AN为直线AF在平面11ADD A内的射影,AN与1DD不垂直,从而AF与1DD也不垂直,选项A错误;取BC的中点为M,连接1A M、GM,则1A M AE∥,GM EF∥,易证1A MG AEF平面∥平面,从而1A G AEF∥平面,选项B正确;对于选项C,连接1AD,1D F,易知四边形1AEFD为平面AEF截正方体所得的截面四边形(如图所示),且15D H AH==12A D=1221232(5)222AD HS∆⎛⎫=-=⎪⎪⎝⎭,而113948AD HAEFDS S==四边形△,从而选项C正确;对于选项D :(方法一)由于111111112222224GEF EBG BEFG S S S ∆∆⎛⎫=-=+⨯-⨯⨯= ⎪⎝⎭梯形,而11112228ECF S ∆=⨯⨯=,而13A GEF EFG V S AB -∆=⋅,13A ECF ECF V S AB -∆=⋅,所以2A GEF A ECF V V --=,即2G AEF C AEF V V --=,点G 到平面AEF 的距离为点C 到平面AEF 的距离的二倍.从而D 错误.(方法二)假设点C 与点G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 的中点,连接CG 交EF 于点O ,易知O 不是CG 的中点,故假设不成立,从而选项D 错误.23.(多选题)若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则 由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径22222462R ++==,所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.24.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45︒B .存在某个位置,使得PB CD ⊥C .当二面角P BD C --的大小为90︒时,6PC =D .存在某个位置,使得B 到平面PDC 的距离为3 【答案】BC【解析】如图所示:对A ,取BD 的中点O ,连结OP ,OC ,则当60POC ∠=时,PC 与平面BCD 所成的最大角为60︒,故A 错误;对B ,当PD PC =时,取CD 的中点N ,可得,,CD PN CD BN ⊥⊥所以CD ⊥平面PBN , 所以PB CD ⊥,故B 正确;对C ,当二面角P BD C --的大小为90时,所以90∠=POC ,所以3PO OC ==,所以6PC =,故C 正确; 对D ,因为3BN =,所以如果B 到平面PDC 的距离为3,则BN ⊥平面PCD ,则2,3,1,1PB BN PN DN ====,所以2PD =,显然不可能,故D 错误;故选:BC.25.(多选题)如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 22C .三棱锥B ACQ -的体积为2D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD【解析】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥,因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A,(P C B,因为点Q是PD的中点,所以Q,平面PAD的一个法向量为(0,1,0)m =,6(QC=,显然m与QC不共线,所以CQ与平面PAD不垂直,所以A不正确;3632(6,23,32),(,0,),(26,PC AQ AC=-==,设平面AQC 的法向量为(,,)n x y z=,则3622260n AQ x zn AC⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z==,所以(1,2,n=-,设PC与平面AQC所成角为θ,则21sin36n PCn PCθ⋅===,所以cos3θ=,所以B正确;三棱锥B ACQ-的体积为1132B ACQ Q ABC ABCV V S OP--==⋅1116322=⨯⨯⨯=,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节 空间向量及其应用考纲解读1.空间向量及其运算.(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;(2)掌握空间向量的线性运算及其坐标表示;(3)掌握空间向量的数量积及其表示,能用向量的数量积判断向量的共线与垂直. 2.空间向量的应用.(1)理解直线的方向向量与平面的法向量;(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系; (3)能用向量方法证明有关直线和平面位置关系的一些定理;(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用. 命题趋势探究立体几何试题中,证明线面、面面的位置关系一般利用传统方法(非向量法)证明,对于空间角和距离的计算,既可用传统方法解答,也可以用向量法解答,而且多数情况下向量法会更容易一些. 知识点精讲一、空间向量及其加减运算1.空间向量在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可用有向线段表示,有向线段的长度表示向量的模,若向量a 的起点是A ,终点是B ,则向量a 也可以记作AB ,其模记为a 或AB .2.零向量与单位向量规定长度为0的向量叫做零向量,记作0.当有向线段的起点A 与终点B 重合时,0AB =.模为1的向量称为单位向量. 3.相等向量与相反向量方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量.与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a -. 4.空间向量的加法和减法运算(1)OC OA OB a b =+=+,BA OA OB a b =-=-.如图8-152所示.(2)空间向量的加法运算满足交换律及结合律 a b b a +=+,()()a b c a b c ++=++ 二、空间向量的数乘运算1.数乘运算实数λ与空间向量a 的乘积a λ称为向量的数乘运算.当0λ>时,a λ与向量a 方向相同;当0λ<时,向量a λ与向量a 方向相反. a λ的长度是a 的长度的λ倍.2.空间向量的数乘运算满足分配律及结合律()a b a b λλλ+=+,()()a a λμλμ=.3.共线向量与平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a 平行于b ,记作//a b .4.共线向量定理对空间中任意两个向量a ,b ()0b ≠,//a b 的充要条件是存在实数λ,使a b λ=. 5.直线的方向向量如图8-153所示,l 为经过已知点A 且平行于已知非零向量a 的直线.对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+①,其中向量a 叫做直线l的方向向量,在l 上取AB a =,则式①可化为()()1OP OA t AB OA t OB OA t OA tOB =+=+-=-+②①和②都称为空间直线的向量表达式,当12t =,即点P 是线段AB 的中点时,()12OP OA OB =+,此式叫做线段AB 的中点公式. 6.共面向量如图8-154所示,已知平面α与向量a ,作OA a =,如果直线OA 平行于平面α或在平面α内,则说明向量a 平行于平面α.平行于同一平面的向量,叫做共面向量.Aaaα图 8-154O7.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+.推论:(1)空间一点P 位于平面ABC 内的充要条件是存在有序实数对(),x y ,使AP xAB y AC =+;或对空间任意一点O ,有OP OA x AB y AC -=+,该式称为空间平面ABC 的向量表达式.(2)已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP xOA yOB zOC =++(其中1x y z ++=)的点P 与点A ,B ,C 共面;反之也成立.三、空间向量的数量积运算1.两向量夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b ,通常规定0,a b π≤≤,如果,2a b π=,那么向量a ,b 互相垂直,记作a b ⊥.2.数量积定义已知两个非零向量a ,b ,则cos ,a b a b 叫做a ,b 的数量积,记作a b ⋅,即cos ,a b a b a b ⋅=.零向量与任何向量的数量积为0,特别地,2a a a ⋅=.3.空间向量的数量积满足的运算律: ()()a b a b λλ⋅=⋅,a b b a ⋅=⋅(交换律); ()a b c a b a c ⋅+=⋅+⋅(分配律). 四、空间向量的坐标运算及应用(1)设()123,,a a a a =,()123,,b b b b =,则()112233,,a b a b a b a b +=+++;()112233,,a b a b a b a b -=---;()123,,a a a a λλλλ=; 112233a b a b a b a b ⋅=++;()112233//0,,a b b a b a b a b λλλ≠⇒===; 1122330a b a b a b a b ⊥⇒++=.(2)设()111,,A x y z ,()222,,B x y z ,则()212121,,AB OB OA x x y y z z =-=---. 这就是说,一个向量在直角坐标系中的坐标等于表示该向量的有向线段的终点的坐标减起点的坐标.(3)两个向量的夹角及两点间的距离公式.①已知()123,,a a a a =,()123,,b b b b =,则221a a a ==+221b b b ==+;112233a b a b a b a b ⋅=++; cos ,a b =;②已知()111,,A x y z ,()222,,B x y z ,则(AB x =或者(),d A B AB =.其中(),d A B 表示A 与B 两点间的距离,这就是空间两点的距离公式.(4)向量a 在向量b 上的射影为cos ,a b a a b b⋅=.(5)设()0n n ≠是平面M 的一个法向量,AB ,CD 是M 内的两条相交直线,则0n AB ⋅=,由此可求出一个法向量n (向量AB 及CD 已知).(6)利用空间向量证明线面平行:设n 是平面的一个法向量,l 为直线l 的方向向量,证明0l n ⋅=,(如图8-155所示).已知直线l (l α⊄),平面α的法向量n ,若0l n ⋅=,则//l α.(7)利用空间向量证明两条异面直线垂直:在两条异面直线中各取一个方向向量a ,b ,只要证明a b⊥,即0a b ⋅=.(8)利用空间向量证明线面垂直:即证平面的一个法向量与直线的方向向量共线.(9)证明面面平行、面面垂直,最终都要转化为证明法向量互相平行、法向量互相垂直.(10)空间角公式.①异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,a b a b a bθ⋅==.②线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,a n a n a nθ⋅==.③二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,n n θ=或12,n n π-(需要根据具体情况判断相等或互补),其中1212cos n n n n θ⋅=.(11)点A 到平面α的距离为d ,B α∈,n 为平面α的法向量,则AB n d n⋅=.题型归纳及思路提示题型116 空间向量及其运算思路提示空间向量的运算包括空间向量的加法、减法、数乘、数量积的几何意义及坐标运算,可以类比平面向量的运算法则.一、空间向量的加法、减法、数乘运算例8.41 如图8-156所示,已知空间四边形OABC ,点,M N 分别为OA ,BC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN = .变式1 如图8-157所示,已知空间四边形OABC ,其对角线为OB ,AC ,M 和N 分别是对边OA 和BC 的中点,点G 在线段MN 上,且2MG GN =,现用基向量OA ,OB ,OC 表示向量OG ,设OG xOA yOB zOC =++,则,,x y z 的值分别是( ).A 111,,333x y z ===.B 111,,336x y z ===.C 111,,363x y z ===.D 111,,633x y z ===变式2 如图8-158所示,在四面体O ABC -中,OA a =,OB b =,OC c =,D 为BC 的中点,E 为AD 的中点,则OE = (用a ,b ,c 表示).变式3 在空间四边形ABCD 中,连接对角线,AC BD ,若BCD ∆是正三角形,且E 为其重心,则1322AB BC DE AD +--的化简结果为 .变式4 如图8-159所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( ).A 1122a b c -++ .B 1122a b c ++.C 1122a b c --+ .D 1122a b c -+二、空间共线向量定理的应用空间共线向量定理:()//0a b b a b λ≠⇔=. 利用此定理可解决立体几何中的平行问题.例8.42 已知3240m a b c =--≠,()182n x a b yc =+++,且,,a b c 不共面,若//m n ,求,x y 的值.二、空间向量的数量积运算121212cos ,a b a b a b x x y y z z ⋅==++;求模长时,可根据221a a x ==+求空间向量夹角时,可先求其余弦值cos ,a b a b a b⋅=.要判断空间两向量垂直时,可以求两向量的数量积是否为0,即0a b a b ⋅=⇔⊥.,a b 为锐角0a b ⇒⋅>;,a b 为钝角0a b ⇒⋅<.由此,通常通过计算a b ⋅的值来判断两向量夹角是锐角还是钝角.例8.43 已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,AE ⋅AF 的值为( )..A2a .B 21.2B a 21.4C a 2D变式1 如图8-161所示,已知平行六面体1111ABCD A B C D -中,1160A AD A AB DAB ∠=∠=∠=︒,且11A A AB AD ===,则1AC = .变式2 如图8-162所示,设,,,A B C D 是空间不共面的4个点,且满足0AB AC ⋅=,0AD AC ⋅=,0AD AB ⋅=,则BCD ∆的形状是( )..A 钝角三角形 .B 直角三角形 .C 锐角三角形 .D 无法确定例8.44 如图8-163所示,在45︒的二面角l αβ--的棱上有两点,A B ,点,C D 分别在,αβ内,且AC AB ⊥,45ABD ∠=︒,1AC BD AB ===,则CD 的长度为 .变式1 已知二面角l αβ--为60︒,动点,P Q 分别在面,αβ内,P 到βQ 到α的距离为,P Q 两点之间距离的最小值为( )..2BC .4D变式2 在直角坐标系中,设()3,2A ,()2,3B --,沿y 轴把坐标平面折成120︒的二面角后,AB 的长为( ).ABCD例8.45 如图8-164所示,设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,记11D PD Bλ=.当APC ∠为钝角时,求λ的取值范围.变式1 已知正方体1111ABCD A B C D -的棱长为1,点P 在线段1BD 上,当APC ∠最大时,三棱锥P ABC -的体积为( ). 1.24A 1.18B 1.9C 1.12D例8.46 如图8-166所示,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP MC =,则点M 在正方形ABCD 内的轨迹为( ).变式1 到两互相垂直的异面直线距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )..A 直线 .B 椭圆 .C 抛物线 .D 双曲线变式2 空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离,已知平面α,β,γ两两互相垂直,点A α∈,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离是点P 到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是( )..3A -.3B -.6C D题型117 空间向量在立体几何中的应用思路提示用向量法可以证点共线、线共点、线(或点)共面、两直线(或线与面、面与面)垂直的问题,也可以求空间角和距离.因此,凡涉及上述类型的问题,都可以考虑利用向量法求解,且其解法一般都比较简单.用向量法解题的途径有两种:一种是坐标法,即通过建立空间直角坐标系,确定出一些点的坐标,进而求出向量的坐标,再进行坐标运算;另一种是基底法,即先选择基向量(除要求不共面外,还要能够便于表示所求的目标向量,并优先选择相互夹角已知的向量作为基底,如常选择几何体上共点而不共面的三条棱所在的向量为基底),然后将有关向量用基底向量表示,并进行向量运算.一、证明三点共线(如A ,B ,C 三点共线)的方法先构造共起点的向量AB ,AC ,然后证明存在非零实数λ,使得AB AC λ=. 例8.47 如图8-168所示,已知在长方体1111ABCD A B C D -中,点M 为1DD 的中点,点N 在AC 上,且:2:1AN NC =,点E 为BM 的中点.求证:1A ,E ,N 三点共线.变式1 在正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 和1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( )..A 不存在 .B 有且只有两条 .C 有且只有三条 .D 有无数条变式2 如图8-170所示,在空间四边形ABCD 中,M ,N 分别是AB 和CD 的中点,P 为线段MN 的中点,Q 为BCD ∆的重心.求证:,,A P Q 三点共线.二、证明多点共面的方法要证明多点(如A ,B ,C ,D )共面,可使用以下方法解题.先作出从同一点出发的三个向量(如AB ,AC ,AD ),然后证明存在两个实数,x y ,使得AD x AB y AC =+.例8.48 如图8-171所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD FAB ∠=∠=︒,1//2BC AD ,1//2BE AF .求证:,,,C D E F 四边共面.变式 1 如图8-173所示,已知平行六面体1111ABCD A B C D -,,,,E F G H 分别是棱11111,,,A D D C C C AB 的中点.求证:,,,E F G H 四点共面.三、证明直线和直线平行的方法将证线线平行转化为证两向量共线.设,a b 是两条不重合的直线,它们的方向向量分别为,a b ,则()//,0a b a b R λλλ⇔=∈≠.例8.49 如图8-174所示,在正方体1111ABCD A B C D -中,MN 是异面直线1A D 与AC 的公垂线段.求证:1//MN BD .四、证明直线和平面平行的方法(1)利用共面向量定理.设,a b 为平面α内不共线的两个向量,证明存在两个实数,x y ,使得l xa yb =+,则//l α.(2)转化为证明直线和平面内的某一直线平行.(3)转化为证明直线的方向向量与平面的法向量垂直(此方法最常用).例8.50 如图8-176所示,在直四棱柱1111ABCD A B C D -中,已知122DC DD AD AB ===,AD DC ⊥,//AB DC ,E 是DC 的中点.求证:1//D E 平面1A BD .变式1 如图8-177所示,已知P 是正方形ABCD 所在平面外一点,M 、N 分别是PA 、 BD 上的点,且::5:8PM MA BN ND ==.求证:直线//MN 平面PBC .五、证明平面与平面平行的方法(1)证明两平面内有两条相交直线分别平行.(2)转化为证两平面的法向量平行(常用此方法).例8.51 如图8-178所示,在正方体1111ABCD A B C D -中,,,M N P 分别是11111,,C C B C C D 的中点.求证:平面//MNP 平面1A BD .变式1 如图8-180所示,在平行六面体1111ABCD A B C D -中,,,E F G 分别是11111,,A D D D D C 的中点.求证:平面//EFG 平面1AB C .六、证明直线与直线垂直的方法设直线12,l l 的方向向量为,a b ,则a b ⊥0a b ⇔⋅=.这里要特别指出的是,用向量法证明两直线尤其是两异面直线垂直是非常有效的方法.例8.52 如图8-181所示,四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =,AB AC =.求证:AD CE ⊥.变式1 如图8-183所示,已知空间四边形ABCD 的每条边和对角线长都等于a .点M ,N 分别为边AB ,CD 的中点.求证:MN 为AB 和CD 的公垂线.七.证明直线与平面垂直的方法(1)证明直线和平面内的两天相交直线垂直.(2)证明直线和平面内的任一直线垂直.(3)转化为证明直线与平面的法向量共线.例8.53 如图8-184所示,在直四棱柱ABCD-1111A B C D 中,已知AB ∥CD,AB=AD=1,1DD =CD =2.A B ⊥AD.求证:BC ⊥平面1D DB .变式1 正三棱锥O-ABC 的三条侧棱OA ,OB ,OC 两两垂直,且长度均为2,E ,F 分别是AB ,AC 的中点,H 是EF 的中点,过EF 的一个平面与侧棱OA ,OB ,OC 或其延长线分别交于111,A B C ,,132OA =。

相关文档
最新文档