04-05北航材料力学第二学期期末答案
《材料力学》——期末考试答案

《材料力学》——期末考试答案一、单选题1.水平冲击的动荷系数与( )和原构件的静变形大小有关。
A.初速度B.末速度C.加速度D.平均速度正确答案:A2.等效长度因子是等效长度与( )的比值。
A.等效长度B.原长C.实际长度D.直线长度正确答案:B3.在冲击应力和变形实用计算的能量法中,因为不计被冲物的重量,所以计算结果与实际相比( )。
A.冲击应力偏大,冲击变形偏小B.冲击应力偏小,冲击变形偏大C.冲击应力和冲击变形均偏大D.冲击应力和冲击变形均偏小正确答案:C4.在下列关于内力与应力的讨论中,说法( )是正确的。
A.内力是应力的代数和B.内力是应力的矢量和C.应力是内力的平均值D.应力是内力的分布集度正确答案:D5.应力状态分类以下不正确的是()A.单向应力状态B.二向应力状态C.三向应力状态D.四向应力状态正确答案:D6.不会引起静定结构产生内力的因素是( )。
A.集中力B.集中力偶C.分布力D.温度变化正确答案:D7.分析内力时,为了便于分析,一般将弹簧的螺旋角视为多少度?()A.30°B.0°C.60°D.90°正确答案:B8.什么是相应位移?()A.载荷作用点沿载荷作用方向的位移B.载荷作用点沿载荷作用反方向的位移C.载荷作用点沿载荷作用垂直方向的位移D.载荷作用点沿载荷作用倾斜方向的位移正确答案:A9.单位长度扭转角与( )无关。
A.杆的长度B.扭矩C.材料性质D.截面几何性质正确答案:A10.在冬天,当水管内的水结冰时,因体积膨胀,水管处于二向拉伸应力状态,故容易破坏,而冰块这时( )应力状态,则不容易破坏。
A.处于三向压缩B.处于二向压缩C.处于单向压缩D.处于极复杂的压缩正确答案:A11.构件抵抗破坏的能力叫做?()A.精度B.强度C.刚度D.刚性正确答案:B12.在单元体上,可以认为( )。
A.每个面上的应力是均匀分布的,—对平行面上的应力相等B.每个面上的应力是均匀分布的,—对平行面上的应力不等C.每个面上的应力是非均匀分布的,—对平行面上的应力相等D.每个面上的应力是非均匀分布的,—对平行面上的应力不等正确答案:A13.在下面关于梁、挠度和转角的讨论中,结论( )是正确的。
材料力学期末考试试卷(含答案)

材料力学一、填空题 (每空4分,共40分)1.一长,横截面面积为A 的等截面直杆,其密度为ρ,弹性模量为E ,则杆自由悬挂时由自重引起的最大应力 ;杆的总伸长= 。
2.对图中铆钉进行强度计算时, , .3.矩形截面梁的F smax 、M max 及截面宽度不变,若将截面高度增加一倍,则最大弯曲正应力为原来的 倍,最大弯曲切应力为原来的 倍。
4.图示两梁的材料相同,最小截面面积相同,在相同的冲击载荷作用下,图 所示梁的最大正应力较大。
5.图示等截面梁AC 段的挠曲线方程为,则该段的转角方程为 ;截面B 的转角和挠度分别为 和 。
二、选择题 (每题4分 共20分)1.矩形截面细长压杆,b/h = 1/2。
如果将b 改为 h 后仍为细长压杆,临界压力是原来的多少倍?( )(A)2倍;(B) 4倍;(C) 8倍;(D)16倍.2. 图示应力状态,用第三强度理论校核时,其相当应力为:( )(A ); (B );(C) ;(D)。
第2题图 第3题图3.一空间折杆受力如图,则AB 杆的变形:( )(A) 纵横弯曲 ;(B ) 弯扭组合;(C) 偏心拉伸; (D ) 拉、弯、扭组合.4.一内外直径之比 的空心圆轴,当两端受力偶矩作用产生扭转变形时,横截面的最大切应力为,则横截面的最小切应力:( )(A) ; (B) ; (C ) ; (D ) .5.对于图示交变应力,它是:(A )对称循环交变应力;(B )脉动循环交变应力;(C )静循环交变应力 。
( )三、图示杆系结构中AB 杆为刚性杆,①、②杆刚度为 EA,外加载荷为 P ,求①、②杆的轴力. (40分)材料力学参考答案σσ σ一、填空题1.,2.,3.0.25,0.54.(a)5.,,二、选择题1.(B)2.(D)3.(C) 4.(B) 5。
(B)三、解:(1)静力平衡方程如图b所示,F N1,F N2为①,②杆的内力;Fx、F Y为A处的约束力,未知力个数为4,静力平衡方程个数为3(平面力系),故为一次超静定问题.由得即(a) (2分)(2)变形协调方程,或(b)(2分)(3)物理方程, (c)(2分)由(c)(d)得补充方程(d)(2分)(4)由(a)和(d)式得,(拉力) (2。
(完整版)材料力学期末考试选择、填空参考题解析

一点的应力状态一、判断1、“单元体最大剪应力作用面上必无正应力”答案此说法错误答疑在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。
拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。
2、”单向应力状态有一个主平面,二向应力状态有两个主平面”答案此说法错误答疑无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零。
3、“受拉构件内B点的正应力为σ=P/A”答案此说法错误答疑受拉构件内的B点在α=0度的方位上的正应力为σ=P/A。
4、“弯曲变形时梁中最大正应力所在的点处于单向应力状态。
”答案此说法正确答疑最大正应力位于横截面的最上端和最下端,在此处剪应力为零。
5、过一点的任意两平面上的剪应力一定数值相等,方向相反”答案此说法错误答疑过一点的两相互垂直的平面上的剪应力一定成对出现,大小相等,方向同时指向共同棱边或同时远离共同棱边6、“梁产生纯弯曲时,过梁内任意一点的任意截面上的剪应力均等于零”答案此说法错误答疑梁产生纯弯曲时,横截面上各点在α=0的方位上剪应力为零,过梁内任意一点的任意截面上的剪应力不一定为零。
11、“从横力弯曲的梁上任意一点取出的单元体均处于二向应力状态“答案此说法错误答疑从横力弯曲的梁的横截面上距离中性轴最远的最上边缘和最下边缘的点取出的单元体为单向应力状态。
12、“受扭圆轴除轴心外,轴内各点均处于纯剪切应力状态”答案此说法正确答疑在受扭圆轴内任意取出一点的单元体如图所示,均为纯剪切应力状态。
选择一点的应力状态(共2页)1、在单元体中可以认为:。
A:单元体的三维尺寸必须为无穷小;B:单元体必须是平行六面体。
C:单元体只能是正方体。
D:单元体必须有一对横截面答案正确选择:A答疑单元体代表一个点,体积为无穷小。
2、滚珠轴承中,滚珠与外圆接触点为应力状态。
北航材料力学课后习题答案

σ max = 117MPa (在圆孔边缘处)
2-15 图示桁架,承受载荷 F 作用,已知杆的许用应力为[σ ]。若在节点 B 和 C 的
位置保持不变的条件下,试确定使结构重量最轻的α 值(即确定节点 A 的最佳位置)。
解:1.求各杆轴力
题 2-15 图
设杆 AB 和 BC 的轴力分别为 FN1 和 FN2 ,由节点 B 的平衡条件求得
分别为
FN
=
1 2
σmax A
=
1 2
× (100 ×106 Pa) × (0.100m × 0.040m)
=
2.00 ×105 N
=
200kN
Mz
=
FN
(
h 2
−
h )
3
=பைடு நூலகம்
1 6
FN h
=
1 × (200 ×103 N) × (0.100m) 6
= 3.33×103 N ⋅ m
=
3.33kN ⋅ m
2-5 .........................................................................................................................................................2
= 0.2 ×10−3 m 0.100m
= 2.00 ×10−3
rad
α AB
= 0.1×10−3 m = 1.00 ×10−3 0.100m
rad
得 A 点处直角 BAD 的切应变为
γ A = γ BAD = α AD − α AB = 1.00 ×10−3 rad
材料力学期末考试题及答案ab卷

材料力学期末考试题及答案ab卷一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是基本假设?A. 均匀性假设B. 连续性假设C. 各向异性假设D. 小变形假设答案:C2. 材料力学中,下列哪一项不是应力的类型?A. 正应力B. 剪应力C. 拉应力D. 弯应力答案:C3. 在材料力学中,下列哪一项不是材料的基本力学性能?A. 弹性B. 塑性C. 韧性D. 导电性答案:D4. 材料力学中,下列哪一项不是材料力学的研究对象?A. 杆件B. 板件C. 壳体D. 流体答案:D5. 材料力学中,下列哪一项不是杆件的基本受力形式?A. 拉伸与压缩B. 剪切C. 弯曲D. 扭转答案:D6. 材料力学中,下列哪一项不是材料力学的基本概念?A. 应力B. 应变C. 位移D. 温度答案:D7. 在材料力学中,下列哪一项不是材料力学的基本方程?A. 胡克定律B. 圣维南原理C. 牛顿第二定律D. 应力-应变关系答案:C8. 材料力学中,下列哪一项不是材料力学的分析方法?A. 静力平衡法B. 能量法C. 虚功原理D. 热力学第一定律答案:D9. 材料力学中,下列哪一项不是材料力学的实验方法?A. 拉伸实验B. 压缩实验C. 扭转实验D. 电导率实验答案:D10. 材料力学中,下列哪一项不是材料力学的应用领域?A. 结构工程B. 机械工程C. 航空航天D. 化学工程答案:D二、填空题(每题2分,共20分)1. 材料力学中,材料在外力作用下发生形变,当外力去除后,材料能够恢复原状的性质称为______。
答案:弹性2. 材料力学中,材料在外力作用下发生形变,当外力去除后,材料不能恢复原状的性质称为______。
答案:塑性3. 材料力学中,材料在外力作用下发生形变,当形变超过一定程度时,材料发生断裂的性质称为______。
答案:脆性4. 材料力学中,材料在外力作用下发生形变,当形变超过一定程度时,材料发生断裂的性质称为______。
第四章北航的材料力学全部课件习题答案

第四章 扭 转4-5 一受扭薄壁圆管,外径D = 42mm ,内径d = 40mm ,扭力偶矩M = 500N •m ,切变模量G =75GPa 。
试计算圆管横截面与纵截面上的扭转切应力,并计算管表面纵线的倾斜角。
解:该薄壁圆管的平均半径和壁厚依次为mm 122 mm 5.20)22(210=-==+=d D d D R δ,于是,该圆管横截面上的扭转切应力为189.4MPa Pa 10894.1m001.00.02052πN 500π282220=⨯=⨯⨯==δτR T 依据切应力互等定理,纵截面上的扭转切应力为 MPa 4.189=='ττ 该圆管表面纵线的倾斜角为rad 102.53rad 1075104.189396-⨯=⨯⨯==G τγ 4-7 试证明,在线弹性范围内,且当R 0/δ≥10时,薄壁圆管的扭转切应力公式的最大误差不超过4.53%。
解:薄壁圆管的扭转切应力公式为δR Tτ20π2=设βδR =/0,按上述公式计算的扭转切应力为3220π2π2δβTδR T τ== (a)按照一般空心圆轴考虑,轴的内、外直径分别为 δR D δR d +=-=002 2,极惯性矩为 )4(2π])2()2[(32π)(32π2200404044p δR δR δR δR d D I +=--+=-=由此得)14(π)12()2()4(π)2(23022000p max ++=++=+=ββδβδδδT R R R TδR I T τ (b)比较式(a)与式(b),得)12(214)12()14(ππ222332max++=++⋅=ββββββδδβT Tττ 当100==δβR 时,9548.0)1102(10211042max=+⨯⨯⨯+⨯=ττ可见,当10/0≥δR 时,按薄壁圆管的扭转切应力公式计算τ的最大误差不超过4.53%。
4-8 图a 所示受扭圆截面轴,材料的γτ-曲线如图b 所示,并可用mC /1γτ=表示,式中的C 与m 为由试验测定的已知常数。
(完整版)材料力学期末试卷2答案

三明学院2009~2010学年第二学期《材料力学》期末考试卷(B)(考试时间:120分钟)使用班级: 学生数: 任课教师: 考试类型 闭卷题 序 一 二 三 四 五 六 总分 得 分 阅卷人一.填空题(20分)1. 材料力学对可变形固体的假设有连续性假设、均匀性假设和各向同性假设。
(每空1分,共3分)2.第一到第四强度理论用文字叙述依次是最大拉应力理论、最大拉应变理论、最大剪应力理论和形状改变能理论。
(每空1分,共4分)3. 为保证工程结构或机械的正常工作,构件应满足三个要求,即 强度要求、 刚度要求 及 稳定性要求 。
(每空1分,共3分)4.四种基本变形是 拉伸(压缩) 、 剪切 、 扭转 及 弯曲变形 。
(每空1分,共4分)5.矩形截面梁的弯曲剪力为Q ,横截面积为A ,则梁上的最大切应力为1.5Q A 。
(2分)6. 主平面是指通过受力物体的一点所做的诸平面中没有剪应力的那个截面,主平面上的正应力称为该点的主应力。
(每空1分,共2分)7. 图示正方形孔边长为a ,圆盘直径为D ,若在该圆盘中间位置挖去此正方形孔,则剩下部分图形的惯性矩y z I I ==446412D a π-。
(2分)二、选择题(每小题2分,共30分)( B )1.求解装配应力和温度应力属于 。
A 静定问题;B 静不定问题;C 两者均不是。
( B )2.圆轴受扭转变形时,最大剪应力发生在 。
A 圆轴心部;B 圆轴表面;C 心部和表面之间。
( A )3.梁受弯曲变形时,最大剪应力发生在 。
A 梁的轴心处;B 梁的表面;C 轴心处和表面之间。
( B )4.弯曲内力与外加载荷成 。
A 非线性关系;B 线性关系;C 二次函数关系。
( C )5.为提高弯曲刚度,下列措施中不能采用的是 。
A 改善结构形式;B 选择合理的截面形状;C 增大弹性模量E 。
( C )6.在强度理论中,对于塑性材料,在三向拉应力相近时,应采用 。
A 第三强度理论; B 第四强度理论; C 最大拉应力理论。
材料力学期末考试题及答案

材料力学期末考试题及答案材料力学的期末考试大家复习好了吗?以下是为大家推荐关于材料力学试题及答案,希望对大家有所帮助。
一、单项选择题(在每题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每题2分,共20分)T?1.轴的扭转剪应力公式??=适用于如下截面轴( ) IPA.矩形截面轴B.椭圆截面轴C.圆形截面轴D.任意形状截面轴2.用同一材料制成的实心圆轴和空心圆轴,假设长度和横截面面积均相同,那么抗扭刚度较大的是哪个?( )A.实心圆轴B.空心圆轴C.两者一样D.无法判断3.矩形截面梁当横截面的高度增加一倍、宽度减小一半时,从正应力强度考虑,该梁的承载能力的变化为( )A.不变B.增大一倍C.减小一半D.增大三倍4.图示悬臂梁自由端B的挠度为( ) aaama2(l?)ma3(l?)ma(l?)C.maD. B. A.EIEIEIEI5.图示微元体的最大剪应力τmax为多大?( )A. τmax=100MPaB. τmax=0C. τmax=50M PaD. τmax=200MPa6.用第三强度理论校核图示圆轴的强度时,所采用的强度条件为( ) A.B.PM2T2?()?4()≤[σ] AWZWPPMT??≤[σ] AWZWPC.D. (PM2T2?)?()≤[σ] AWZWP(PM2T2?)?4()≤[σ] AWZWP7.图示四根压杆的材料、截面均相同,它们在纸面内失稳的先后次序为( )A. (a),(b),(c),(d)B. (d),(a),(b),(c)C. (c),(d),(a),(b)D. (b),(c),(d),(a)8.图示杆件的拉压刚度为EA,在图示外力作用下其变形能U的以下表达式哪个是正确的?( ) P2aA. U= 2EAP2lP2b?B. U= 2EA2EAP2lP2b?C. U= 2EA2EAP2aP2b?D. U= 2EA2EA9图示两梁抗弯刚度相同,弹簧的刚度系数也相同,那么两梁中最大动应力的关系为( )A. (σd) a =(σd) bB. (σd) a >(σd) bC. (σd) a <(σd) bD. 与h大小有关二、填空题(每空1分,共20分)1.在材料力学中,为了简化对问题的研究,特对变形固体作出如下三个假设: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
wA = wA1 + wB + lBC × θ B =
3Fl 3 2 EI
5
试卷二参考答案 2004—2005 年度第二学期材料力学期末考试试卷(答案)
一、单选题或多选题(每题 5 分,部分选对 3 分,出现选错 0 分) 1、下述说法正确的是(A、D) 。 A.图(1)所示单元体最大正应力作用面是图(3)阴影面 B.图(1)所示单元体最大正应力作用面不是图(3)阴影面 C.图(2)所示单元体最大正应力作用面是图(3)阴影面 D.图(2)所示单元体最大正应力作用面不是图(3)阴影面
B
)
(b)
由式(a)
σ
故
t
= 2σ
x
E ( ε A + µε 1− µ2
εA =
B
)
=
2 E ( ε B + µε 1− µ2
A
)
2−µ ε B = 420 × 10 −6 1 − 2µ
(3)由式(b)
σ
x
= 48 MPa 4 δσ D
,σ
t
= 96 MPa
(4)由式(a)
P =
x
=
4 × 10 × 48 = 3 . 84 MPa 500
1
σ / Mpa
B C
30o 30o
100
A F 图(a) 图(b)
E2 E1 ε
解: (1)当 F = 10 3KN 时, FN , AB = FN , AC = F /(2 cos 30 ) = 10 KN
0
σ AB = σ AC = 4 F /(π d 2 ) = 100 MPa
∆l AB = ∆l AC = Fl /( EA) = 1mm f A = ∆l AB / cos 300 = 1.15mm
(2)当 F = 11 3KN 时, FN , AB = FN , AC = F /(2 cos 30 ) = F /(π d 2 ) = 110 MPa
∆l AB = ∆l AC = 100 10 × 1× 103 + × 1× 103 = 2mm 3 100 × 10 10 × 103
试卷一参考答案
材料力学 A ( I ) 期末考试卷(A 卷)(参考答案)
1. 悬臂梁长 2l,自由端作用向下集中力 F 和力偶 Fl。试画梁的剪力弯矩图,并画出梁变形 时挠曲轴的大致形状。(12 分)
F Fl
2l
答案: Fs 图:
_ F Fl
M 图:
+ _ Fl
挠曲轴大致形状:
w=0,θ=0 凹 凸 拐点
A B
解: ϕ AC + ϕCD + ϕ DB = 0 a a a
ϕ=
Tl GI P
M A a
2M
解得: M A = 0, M B = − M
C
a
D
a
B
τ max =
Tmax M 16M = = WP WP π d 3
6. 图所示铸铁梁长 l , [σ c ] = 4[σ t ] ,其中 [σ t ] 和 [σ c ] 分别为拉、压许用应力。支座 B 可 移动,则当支座 B 向内移动多少时,梁的许用载荷 q 为最大。(15 分) (1) (2) 梁横截面为对称的工字形; 梁横截面为 T 形, c 为截面形心; q B’ l x (1) B a C z C 2a z
M − ,max × a Iz
, σ − ,max =
M − ,max × 2a Iz M + ,max × a Iz
时,[q]最大
在 M − ,max 处:
M + ,max × 2a Iz =
, σ − ,max =
由于, [σ c ] = 4[σ t ] ,故当
M − ,max × a Iz
M + ,max × 2a Iz
l/2
l/2
解:等截面圆轴:
ϕ=
m1l = 0.1 GI P
⇒
m1 = 1.257 ×105 N ⋅ mm
阶梯轴:
ϕ = ϕ1 + ϕ2 =
m2l / 2 m2l / 2 + = 0.1 GI P1 GI P 2
3
⇒
m2 = 2.365 × 105 N ⋅ mm
5. 求图示轴的最大扭转切应力。已知轴的直径为 d,外扭力距分别为 M 和 2M,轴的变形 在线弹性变形范围内。(15 分) 2M M M + M = 2M + M
∫
0
3 Fa + F ∗ x ) x dx 2 3 Fax dx 2
F ∗ =0
∫
a
0
3 Fa 3 = (← ) 4 EI
4、如图,重量为 P 的物体自高度 H 自由下落到长 l 的简支梁中点 C,梁的弯曲刚度为 EI, 抗弯截面模量 W,且设 EIH /( pl
3
) = 15/ 4 。
d
(1)试求梁中点 C 的最大挠度 w d 和最大动应力 σ
( 2)
,则横杆的应变能 V
(1 )
( F ) 与 F ∗ 无关,竖
,弯矩 M ( x ) =
3 Fa + F ∗ x 2
∆
A
=
∂Vε ∂F ∗
=
F
∗
=0
∂ V ε( 2 ) ∂F ∗
F
∗
=0
= = =
1 EI 1 EI 1 EI
∫
a
0 a
M ( x) (
∂M ( x ) dx ∂F ∗
F ∗ =0
A
(2)
解: RB =
ql 2 ql (l − 2 x) , RA = 2(l − x) 2(l − x)
M − ,max
qx 2 = , 2 ql (l − 2 x) l (l − 2 x) q l (l − 2 x) 2 q l (l − 2 x) 2 × − ×( ) = ×( ) 2(l − x) 2(l − x) 2 2(l − x) 2 2(l − x)
f A = ∆l AB / cos 300 = 2.31mm
3. 图示三杆桁架,杆 2 水平,A 点承受铅垂载荷 F ,求各杆内力。 (15 分) (1) 三杆拉压刚度均为 EA ; (2) 杆 1 为刚性杆,杆 2 与杆 3 拉压刚度为 EA ;
1 45o 45 3
o
2
A F
2
解: (1)根据反对称性,可得:
BD 杆许用临界压力
[F ]cr = Fcr
nst
=
15.503 = 5.168kN 3
= 2.584kN
由梁的平衡,载荷 F 对应 BD 压杆稳定性的许用值
[F ]2 = 1 [F ]cr
2
故结构的许用载荷
[F ] = min{ [F ]1 , [F ]2 } = [F ]2
3、图示等截面线弹性刚架弯曲刚度 EI。 (1)试解释
M + ,max = M Fs =0 =
(1)梁横截面为对称的工字形: 当 M − ,max = M + ,max 时,[q]最大
qx 2 q l (l − 2 x) 2 ) = ( 2 2 2(l − x)
⇒
x = (1 −
2 )l 2
4
(2)梁横截面为 T 字形: 在 M − ,max 处:
σ + ,max = σ + ,max =
解得: x = 0.34l , x = 0.66l ( 舍去)
7. 试求图示阶梯悬臂梁自由端 A 的挠度。 F EI A l B l 2EI C
(15 分)
解:刚化 BC:
wA1 =
Fl 3 3EI
刚化 AB:
Fl 3 Fl 3 + 6 EI 4 EI Fl 2 Fl 2 + θB = 4 EI 2 EI wB =
(2)研究压杆 BD 的稳定性
λ =
µl
i
=
4 µl 4 × 1 × 1000 = = 200 > λ p 20 d
所以 BD 为大柔度杆。
π 2 EA π 3 Ed 2 π 3 × 2 ×105 × 202 Fcr = σ cr A = 2 = = 15503N = 15.503kN = 4λ2 4 × 2002 λ
解: (1)圆筒的轴向应力 σ
x
和周向应力 σ ,σ
t
的公式分别为:
σ
x
=
PD 4δ
t
=
PD 2δ
(a)
轴向与周向为应力主方向,同时也应为应变主方向,且周向应变大于轴向应变,从 测量精度考虑,由应变片 A 测量的方案较佳。 (2)由广义胡克定律
σ
x
=
E ( ε B + µε 1− µ2
A
)
,σ
t
=
E ( ε A + µε 1− µ2
= 0.25 。为测量内压 P,沿周向贴应变片 A,沿轴向贴应变片 B。
−6
(1)从测量精度考虑,由应变片 A 的测量方案还是由应变片 B 的测量方案较佳? (2)已测得应变片 B 的应变 ε B = 120 × 10 (3)计算轴向应力 σ
x
,ε
A
等于多少(不计实验误差)?
与周向应力 σ
t
。
6
(4)计算薄壁圆筒的内压 P。
故最大动挠度和最大动应力分别为:
5 Pl 3 ∆ d = K d ∆ st = 12 EI
(2)当梁的长度增加一倍时,
,
σ d = K d σ st =
′
5 Pl W
∆ st
′
P ( 2l ) 3 Pl 3 = = 48 EI 6 EI