信号与系统(梁风梅版)第三章习题答案
信号与系统习题答案第三章

第三章习题基础题3.1 证明cos t , cos(2)t , …, cos()nt (n 为正整数),在区间(0,2)π的正交集。
它是否是完备集?解:(积分???)此含数集在(0,2)π为正交集。
又有sin()nt 不属于此含数集02sin()cos()0nt mt dt π=⎰,对于所有的m 和n 。
由完备正交函数定义所以此函数集不完备。
3.2 上题的含数集在(0,)π是否为正交集?解:由此可知此含数集在区间(0,)π内是正交的。
3.3实周期信号()f t 在区间(,)22T T-内的能量定义为222()TT E f t dt -=⎰。
如有和信号12()()f t f t +(1)若1()f t 与2()f t 在区间(,)22T T-内相互正交,证明和信号的总能量等于各信号的能量之和;(2)若1()f t 与2()f t 不是相互正交的,求和信号的总能量。
解:(1)和信号f(t)的能量为[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2)由1()f t 与2()f t 在区间内正交可得2122()()0T T f t f t dt -=⎰则有 22221222()()T T T T E f t dt f t dt --=+⎰⎰即此时和信号的总能量等于各信号的能量之和。
和信号的能量为(2)[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2吧?)由1()f t 与2()f t 在区间(,)22T T-内不正交可得2122()()0T T f t f t dt K -=≠⎰则有2222222212122222()()()()T T T T T T T T E f t dt f t dt K f t dt f t dt ----=++≠+⎰⎰⎰⎰即此时和信号的总能量不等于各信号的能量之和。
《信号与系统》第三章习题解答

Chapter 3 3.15
Problem Solution
1 ω ≤ 100 H ( jω ) = 0 ω > 100
x(t ) , T = π/ 6 S y (t ) = x(t ) →
For what values of k is guaranteed that ak = 0 ?
k =−∞
分别如图2和图3 两个子系统的频率响应 H1 ( jω)和 H2 ( jω)分别如图2和图3 所示。 所示。试求该系统的输出信号 y ( t ) 。
x( t )
1
0
H1 ( jω)
+
−
H1 ( jω)
H2 ( jω)
y( t )
ω
H1 ( jω)
2
图1
H2 ( jω)
0 −1
ω
图2
+π / 2
Chapter 3 3.13 Consider a continuous-time LTI system
Problem Solution
H ( jω ) =
sin (4ω )
ω
1 0 ≤ t < 4 x(t ) = −1 4 ≤ t < 8
T =8
y (t ) =
k = −∞
∑
∞
ak H ( jkω 0 )e jkω 0t = 0
+∞
sin πt πt
n = −∞
∑ x (t − 3n )
1
Suppose we are given
1 -1 < t < 1 x1 (t ) = 0 others
2π 2 sin 2 3 cos 2π t y (t ) = + π 3 3
信号与系统 梁风梅主编 电子工业出版社 ppt第三章答案

习题三3.1考虑一个连续时间LTI 系统,满足初始松弛条件,其输入)(t x 与输出)(t y 的关系由下列微分方程描述:d ()4()()d y t y t x t t+= (1)若输入(13)()()j t x t e u t -+=,求输出)(t y 。
(2)若输入()e cos(3)()t x t t u t -=,求输出)(t y 。
解:此系统的特征方程为40s += 所以4()t h y t Ae -= (1)(13)()()j tx t eu t -+=设(13)()e j t p y t Y -+= 则(13)(13)(13)(13j)e 4e e ,0j tj t j t Y Y t -+-+-+-++=>解得11336jY j -==+ 所以4(13)1()()()e e ()6t j t h p j y t y t y t A u t --+-⎛⎫=+=+ ⎪⎝⎭又因为初始松弛,所以106jA -+= 即16j A -=所以4(13)11()()()()()66t j th p j j y t y t y t e e u t --+--=+=+ (2)()cos(3)()t x t e t u t -=是(1)中(13)()()j tx t eu t -+=的实部,用2()x t 表示cos(3)()t e t u t -,用1()x t 表示(13)()j t e u t -+观察得{}21()Re ()x t x t =所以{}421111()Re ()cos(3)sin(3)()666t t t y t y t e e t e t u t ---⎛⎫==-++ ⎪⎝⎭3.2若离散时间LTI 系统的输入[]x n 与输出][n y 的关系由下述差分方程给出:][]1[25.0][n x n y n y =--求系统的单位冲激响应][n h 。
解:[]0.25[1][]h n h n n δ=-+因为该系统是因果的,所以0n <时,[]0h n =2231[0]0.25[1][0]01111[1]0.25[0][1]1044111[2]0.25[1][2]0444111[3]0.25[2][3]0444 (111)[]0.25[1][]0444n nh h h h h h h h h n h n n δδδδδ-=-+=+==+=⨯+==+=⨯+==+=⨯+==-+=⨯+=综上,1[][]4n h n u n = 3.3系统S 为两个系统1S 与2S 的级联:S1:因果LTI 系统,[]0.5[1][]w n w n x n =-+; S2: 因果LTI 系统,[][1][]y n ay n bw n =-+][n x 与][n y 的关系由下列差分方程给出:[]0.125[2]0.75[1][]y n y n y n x n +---=(1) 确定a 与b 。
信号与系统课后习题与解答第三章

3-1 求图3-1所示对称周期矩形信号的傅利叶级数〔三角形式和指数形式〕。
图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数〔FS 〕为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数〔FS 〕的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。
假设:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20=幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。
解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数〔FS 〕的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n那么的指数形式的傅利叶级数〔FS 〕为∑∑∞-∞=∞-∞=⎪⎭⎫⎝⎛==n tjn n tjn ne n Sa TE eF t f 112)(1ωωτωτ 其直流分量为T E n Sa T E F n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω 将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 假设周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:〔1〕)(1t f 的谱线间隔和带宽〔第一零点位置〕,频率单位以kHz 表示; 〔2〕)(2t f 的谱线间隔和带宽; 〔3〕)(1t f 与)(2t f 的基波幅度之比; 〔4〕)(1t f 基波与)(2t f 三次谐波幅度之比。
信号与系统第三章习题部分参考答案

(w)
(14) f (t)u(t) ↔ 1 F ( jw) *[ 1 + πδ (w)]
2π
jw
(15) df (1 − t) ↔ jwF (−w)e− jw
dt t df (1 − t) ↔ jwF (−w)e− jw − F (−w)e− jw − wF ′(−w)e− jw
dt
(16) (t − 2) f (t)e j2(t−3) ↔ e− j6[F ′(w − 2) − 2F (w − 2)]
−τ τ
w
方法二 利用时域微分性质
对 f(t)求一阶导数得到
f
′(t)
=
1 τ
G2τ
(t)
−
δ
(t
+
τ
)
−
δ
(t
−
δ
)
F1 (w) = 2sa(wτ ) − 2 cos(wτ )
F1 (0) = 0
F (w) =
F1 (w) jw
+
πF1
(0)δ
(w)
=
j
2 [cos(wτ ) − sa(wτ )] w
1
− F(
jw )]
−∞
−∞
j2w 2
(12) df (t) ↔ jwF (w)
dt
df (t) + f (3t − 2)e− jt ↔ jwF (w) + 1 F ( w + 1)e j2(w+1) / 3
dt
33
(13) sa(t) ↔ πG4 (w) / 2
f
(t)
*
sa(t)
↔
π 2
F (w)G4
↔ 2π e−a⎜−ω⎜
推荐-信号与系统第三版第三章课后答案 2 精品

流及 cosnt分量
当该周期函数为奇函数时,a0=an=0,展开式只
会含 sin nt分量
3.2.2 指数形式傅立叶级数分解
1.复指数函数集
fT t
e jnt n 0, 1, 2...
T 2
该函数集在(t0,t0+T)上为周期信号的完备正交函数集。
2.正交展开: 将任一周期信号展开为
fT (t) ci gi (t) Fne jnt
Fn
t0 T t0
fT (t)gi*(t)dt
t0 T t0
gi (t) 2 dt
t0 T t0
fT (t)e jntdt
t0 T
e jnt
2
dt
1 T
t0
n
t0 T t0
fT (t)e jntdt
一矢量V都可表示为V1和V2的线性组合 (如上图)。即:
V=C1V1+C2 V2。式中V1、V2为单位矢量,且V1·V2=0。其
中:
c1V 1
V
c
os
1,
c 1
V
c os 1
V1
V V1 V 1 V 1
cV 2
2
V
c
os
2,
c 2
V
cos 2
V2
V V 2 V 2 V 2
同样,对于一个三维的空间矢量,要精
确地表示它,就必须用一个三维的正交
矢量集。如左图,三维矢量空间可精确
地表示为:V=c1V1+c2V2+c3V3
推广到n维空间,则有
其中,Ci = V·Vi/Vi ·Vi
V c1V 1 c2V 2 cnVn
信号与系统课后答案第三章作业答案
初始为 0, C2 -4
y f (t) -4e3tu(t) 4e2tu(t)
全响应= yx (t)+y f (t) 4e2tu(t)-2e3tu(t)
3-2 描述某 LTI 系统的微分方程为
d2 y(t) dt 2
3dy(t) dt来自2y(t)
df (t) dt
6
1
1
(2e1 e1 et ) u(t)
e1(2 et ) u(t)
(2)
f
(t)
a[u(t
s) 2
u(t
2)]
h(t) b[u(t 2) u(t 3)]
f
(t)
h(t)
ab[(t
1 2
)
u(t
1 2
)
(t
1 2
)
u(t
1) 2
tu(t)
1 4
(et
e3t
)u(t)
1 2
t
e3tu(t)
[
1 4
et
(
1 2
t
1 4
)e3t
]u
(t)
3-19 一 个 LTI 系 统 , 初 始 状 态 不 祥 。 当 激 励 为 f (t) 时 其 全 响 应 为
(2e3t sin 2t)u(t) ;当激励为 2 f (t) 时其全响应为 (e3t 2sin 2t)u(t) 。求
(1) 初始状态不变,当激励为 f (t 1) 时的全响应,并求出零输入相应、
零状态响应; (2) 初始状态是原来的两倍、激励为 2 f (t) 时系统的全响应。
信号与系统第三章习题答案
d (t - 1) « e- jw
\ e-2( t -1)d (t - 1) « e- jw
(8) U (t ) - U (t - 3) Q 根据傅里叶变换的线性性质可得: 1 U (t ) « p d (w ) + jw 1 U (t - 3) « e - j 3w (p d (w ) + ) jw \ U (t ) - U (t - 3) « ( 1- e - j 3w )(p d (w ) + 1 ) jw
U (t - 1) « e - jw (pd (w ) +
t 1 U ( - 1) « 2e - j 2w (pd (2w ) + ) 2 j 2w Q d (aw ) = 1 d (w ) a
\ 2e- j 2wpd (2w ) = 2pd (2w )w =0 = pd (w ) \ 2e - j 2w (pd (2w ) +
e - jtd (t - 2 ) « e - j 2(w +1)
(6) e -2( t -1)d (t - 1) Q 根据傅里叶变换的性质 f (t ± t0 ) « e ± jwt0 F ( jw ) 可得: e -2( t -1)d (t - 1) = d (t - 1) d (t ) « 1 (t = 1)
d F ( jw ) - 2 F ( jw ) dw
y ''(t ) + 4 y '(t ) + 3 y (t ) = f (t ) y ''(t ) + 5 y '(t ) + 6 y (t ) = f '(t ) + f (t )
(1) 求系统的频率响应 H(jw)和冲激响应 h(t) ; (2) 若激励 f (t ) = e-2tU (t ) ,求系统的零状态响应 y f (t ) 。 解: 方程 1:
信号与系统第三章习题答案
T 0
−
T 0
e−
jnω0t dt
( ) =
1 − jnω0T
e− jnω0T
+
1 jnω0T
+
1 jnω0T 2
Te
−
jnω0
T
−1 − jnω0
e− jnω0t T 0
=
1 jnω0T
+
1 j2 n 2ω02T 2
e− jnω0T
−1 =
1 j2nπ
+
1 n 2π
2
1−
e− j2 nπ
=1 j2 nπ
n = ±1, ±2,L
∫ ∫ F0
=
1 T
T f (t ) dt = 1
0
T
T 0
1−
1 T
t
dt
=
1 2
该信号的指数型傅里叶级数为
( ) ∑∞
ft =
1 e jnω0t
n=−∞ j 2nπ
98
其频谱图如图 3.2(b)所示。
(2)由图 3.1(b)可知,其周期为T = 2π ,其频ω0 = 1,信号的解析式为:
2πn
100
即
bn
=
−
2E nπ
n为奇数
0
n为偶数
故得信号的傅里叶级数展开式为
f
(t )
=
−
2E π
sin
ω0t
+
1 sin 3
3ω 0t
+
1 sin 5
5ω 0t
+
L
+
1 n
sin
nω0 t
+
信号与系统前三章习题答案
信号与系统前三章习题答案信号与系统前三章习题答案第一章:信号与系统基础1.1 习题答案1. 信号是指随时间变化的物理量,可以用数学函数表示。
系统是指对输入信号进行处理或变换的过程或装置。
2. 信号可以分为连续时间信号和离散时间信号。
连续时间信号在每个时间点上都有定义,可以用连续函数表示;离散时间信号只在某些离散的时间点上有定义,可以用数列表示。
3. 周期信号是在一定时间间隔内重复的信号,非周期信号则不具有重复性。
周期信号可以用正弦函数或复指数函数表示。
4. 信号的能量是指信号在无穷远处的总能量,可以用积分的形式表示;信号的功率是指信号在某个时间段内的平均功率,可以用平均值的形式表示。
5. 系统的特性可以通过冲激响应和频率响应来描述。
冲激响应是指系统对单位冲激信号的响应,可以用单位冲激函数表示;频率响应是指系统对不同频率信号的响应,可以用频率函数表示。
1.2 习题答案1. 线性系统具有叠加性和齐次性。
叠加性是指系统对两个输入信号的响应等于两个输入信号分别经过系统的响应的叠加;齐次性是指系统对输入信号的线性组合的响应等于输入信号分别经过系统的响应的线性组合。
2. 时不变性是指系统的特性不随时间的变化而变化。
即如果输入信号发生时间平移,系统的响应也会相应地发生时间平移。
3. 因果性是指系统的输出只依赖于当前和过去的输入信号。
即系统的响应不会提前预知未来的输入信号。
4. 稳定性是指系统对有界输入信号产生有界输出信号。
即输入信号有限,输出信号也有限。
5. 可逆性是指系统的输出可以唯一确定输入。
即系统的响应函数是可逆的。
第二章:连续时间信号与系统2.1 习题答案1. 连续时间信号的频谱是指信号在频域上的表示,可以通过傅里叶变换得到。
频谱表示了信号在不同频率上的能量分布情况。
2. 系统的冲激响应可以通过输入信号和输出信号的傅里叶变换来求得。
通过傅里叶变换,可以将系统的时域特性转换为频域特性。
3. 傅里叶变换具有线性性、时移性、频移性和共轭对称性。