发动机中冷器旁通方式

合集下载

大众1.4TSI拆解之冷却增压篇

大众1.4TSI拆解之冷却增压篇

大众1.4TSI拆解之冷却/增压篇“1.4TSI+7速DSG”,一汽-大众这套被形容为“黄金”的动力总成,在国内车市一度掀起了消费者对小排量增压发动机和双离合变速器的热潮,众多厂商也纷纷效仿一汽-大众推出了自己的增压动力和双离合变速器。

但作为这项技术在国内引领者的一汽-大众,似乎只是一直在被追赶,却从未被超越。

近日,我们来到了一汽-大众长春的发动机制造厂,对一汽-大众的“黄金动力”——1.4TSI发动机进行了彻底的拆解和研究。

我们将按照拆解顺序,根据这台发动机的特点和大量网友们对它的疑问,分三篇为大家带来全面详尽且深入浅出的解读。

下面,我们就先一起来看看这台“传说中”的小排量增压发动机,围绕着字母“T(涡轮增压)”究竟都有何过人之处吧。

●进气冷却系统拆解我们本次拆解的这台1.4TSI是一台刚刚从一汽-大众的生产线上下线的全新发动机,在对这台发动机进行上台架等固定工序后,我们的拆解也正式开始。

首先将进行拆解的部分是这台发动机的独立循环冷却系统。

刚刚走下生产线的EA111系列1.4TSI发动机冷却系统示意图,彩色为独立的进气和涡轮循环冷却系统,灰色为发动机内的循环冷却系统(蓝色为低温冷却液,红色为高温冷却液)这款1.4TSI发动机一大特色就是采用了两套独立的冷却系统:一套主要用于发动机自身冷却的发动机冷却系统,这套系统中的水泵通过皮带和曲轴相连接,直接靠发动机动力实现冷却液的循环,也可称为主循环;另一套冷却系统主要用于涡轮增压器和增压空气的冷却,是通过电动冷却液循环泵驱动冷却液实现的独立循环系统,也可称为副循环。

副循环中冷却液循环泵位置示意图1.4TSI发动机上的双循环冷却系统也是大众首次采用的发动机冷却方式。

其中独立的冷却液循环泵主要用于给增压系统冷却,包括两个循环通道:一个经过涡轮增压器,为涡轮系统冷却;另一个流经进气歧管内的气液热交换器(冷却器),为增压空气进行冷却。

两套独立冷却系统实现了缸盖和缸体温度的不同,在不同工况下可以根据需要分别对不同的部分进行冷却。

发动机冷却系统基本知识

发动机冷却系统基本知识
保证发动机在所有工况下在最适宜的温度范围内 工作。既要防止发动机夏天过热,又要防止发动 机冬季过冷。在冷启动时还要保证发动机能迅速 升温,尽快达到正常的工作温度。
水冷发动机的正常工作温度
水冷式发动机保持正常工作,其冷却水的温
度应在353K~363K(80℃~90℃)之间。此时,气 缸壁温度不超过473K~573K(200℃~300℃);
什么是气蚀、气蚀产生的原因及危害
(一)什么是气蚀? 液体在一定温度下,降低压力至该温度下的气化压力时,液
体便产生气泡。把这种产生气泡的现象称为气蚀。
气蚀时产生的气泡,流动到高压处时,其体积减小以致破 灭,这种由于压力上升气泡消失在液体中的现象称为气蚀溃灭。
气蚀极限:水泵转速不变的情况下,其流量下降3%,被认为气 蚀产生。
水冷式冷却系统的布置示意图:
冷却系统的工作原理
发动机的冷却系统是强制循环水冷系,即利用水泵提高冷 却液的压力,强制冷却液在发动机中循环流动。冷却系统 分大循环和小循环。节温器阀门开启的温度一般在87℃左 右,全开温度在102℃左右。在节温器阀门开启之前,冷 却系统进行的是小循环,此时的大循环是关闭的,随着温 度上升,节温器阀门逐渐开启,小循环逐步关闭,大循环 开始工作。冷却液经过散热器后,温度降低6℃左右。
什么叫冷却系?
内燃机是将燃烧的化学能转变为机械能的装置,在内燃 机不断地工作过程中,其火焰温度达2000 ℃以上,为保证 机械连续有效地工作,必须对相应部件采取冷却措施,尤其 是其气缸周围更为重要。对发动机进行冷却必须由一系列零、 部件协调工作来完成,其通常称为冷却系。
发动机过热或过冷的危害
1.发动机过热的危害
2.发动机过冷的危害
1)进入气缸的混合气(或空气)温度太低,可燃混合气品质差 (雾化差),使点火困难或燃烧迟缓,导致发动机功率下 降,燃料消耗量增加(热量流失过多,燃油凝结流进曲轴 箱)。

大众1.4TSI发动机新技术解析(增压冷却系统和双节温器)(优选材料)

大众1.4TSI发动机新技术解析(增压冷却系统和双节温器)(优选材料)

大众1.4TSI发动机新技术解析1.增压系统该款发动机的废气涡轮增压系统的机械结构与大众集团常规的增压系统没有根本的变化,但其冷却方式却有了很大的创新:采用了水冷式的中冷器。

此外单独设计了一个小型水箱安装在进气歧管内用来冷却增压后的空气,以适当降低进气温度,增加充气效率。

由这一大一小两个水箱及一个安装在发动机前部的电动冷却液循环泵构成了全新的增压冷却系统,它与用于发动机本体的冷却系统共用防冻液,但又通过单向阀相互隔开,互不影响,详细结构如图1、图2、图3所示。

增压系统的机械结构中,其叶轮和涡轮的直径分别达到了37mm和41mm,相应速度更快,旁通阀直径达到了26mm,1250r/min的时候就可以达到最大扭矩的80%,最大有效增压压力可达到 1.8bar(1bar=105Pa),增压控制元件可以单独更换。

增压系统的控制方面有4个重要的传感器:增压压力传感器G31和进气温度传感器G299整合为一体;增压压力传感器G71和进气温度传感器G42整合为一体,如图4所示。

增压压力传感器G31和进气温度传感器G299的作用是检测并控制增压压力,保护发动机,当温度超差时降低增压压力;增压压力传感器G71和进气温度传感器G42的作用是监控进气量,监测最终进气温度。

2个进气温度传感器的共同的重要作用就是控制冷却液循环泵,当2个温度传感器的温差小于8℃的时候,冷却液循环泵被激活。

当二者温差小于2℃的时候,OBD报警灯会点亮;而当二者同时失效的时候,会用默认值替代,此时增压压力和动力性都会下降。

冷却液循环泵安装位置如图5所示,它的运行条件比较复杂,除上述以外,还会在如下情况下运行:启动发动机后的短时间内;发动机停止工作后0~480s(依据具体情况而不同);输出扭矩持续在100N.m以上时;发动机每工作120s,冷却液循环泵工作10s;进气温度传感器G42持续超过50℃。

这里还要注意,在更换防冻液时,要使用专用工具VAS6096抽真空加注或使用专用诊断仪VAS5052A的引导功能驱动冷却液循环泵运转,以便为冷却系统排气,避免产生气阻。

汽车中冷器工作原理

汽车中冷器工作原理

汽车中冷器工作原理
汽车中冷器是一种用于调节车内温度的设备,它的工作原理基于热泵效应。

下面将详细介绍汽车中冷器的工作原理。

汽车中冷器主要由压缩机、冷凝器、膨胀阀和蒸发器四个主要部分组成。

首先,压缩机是汽车中冷器的核心部件。

它通过电动机驱动,将低温低压的制冷剂气体吸入,并通过压缩使其温度和压力升高,从而变为高温高压的制冷剂气体。

接下来,高温高压的制冷剂气体进入冷凝器。

在冷凝器中,制冷剂气体与冷却风或循环水接触,散发出大量的热量。

这样,制冷剂气体温度和压力就会降低,逐渐转化为高压液体。

然后,高压液体制冷剂通过膨胀阀进入蒸发器。

在蒸发器中,高压液体制冷剂迅速减压,形成低温低压的制冷剂液体和蒸发气体。

制冷剂液体吸收车内空气中的热量,逐渐蒸发转化为蒸发气体,从而使车内温度下降。

最后,蒸发器中的制冷剂蒸汽被压缩机再次吸入,循环往复,从而实现整个制冷循环。

总结来说,汽车中冷器的工作原理是通过压缩机将制冷剂气体压缩成高温高压气体,将其通过冷凝器散发热量,转变为高压液体,然后经过膨胀阀降压成低温低压液体,进入蒸发器,吸
收车内热量并转化为蒸发气体。

最后制冷剂蒸汽再被压缩机吸入,循环反复,实现车内温度的调节。

冷却系统系统设计指南

冷却系统系统设计指南

冷却系统系统设计指南1、概述:汽车发动机大多为内燃机,内燃机将燃料的化学能通过燃烧转化为机械能来驱动汽车行驶,工作时会产生大量热量,为确保发动机在一个合适的温度下有效的工作,需要对发动机本身,尤其是发动机缸体进行及时的冷却。

冷却系统中的散热器就承担着给发动机进行散热的任务。

对于大多数柴油机而言,都采用了增压器以改善发动机的燃烧和功率。

从增压器出来的空气温度是比较高的,不利于发动机的工作。

为此需要对进入发动机前的空气进行冷却。

冷却系统中的中冷器就起到了这样一个作用。

冷却系统设计的好坏直接影响发动机的性能和可靠性,从而影响整车的性能和可靠性。

2、冷却系统的作用冷却系统的功能是保证发动机保持在合适的温度环境中工作,提高发动机的性能和寿命。

3、冷却系统的组成冷却系统主要部件为散热器、中冷器、膨胀水箱和连接管路等,其设计质量直接影响着发动机的性能和可靠性。

4、冷却系统设计一、设计准则1、发动机冷却系统各部件匹配合理,以保证冷却系统的良好散热性能。

2、冷却系统安装方便、可靠。

二、冷却系统各种参数的确定1. 散热器和风扇之间距离的选择根据各车型的布置经验和发动机厂推荐的安装规范,风扇前端与散热器芯子距离选50~100mm较为合适,在这个范围之内尽量取大一些。

2.散热器的计算(1)首先要知道发动机的一些性能参数,如:额定功率Ne(kW)、额定功率时转速n(r/min)、最大扭矩Me(N.m)、最大扭矩时转速n1(r/min)等等。

(2)设计工况点的选择冷却系的设计要以额定功率点为设计点,以最大扭矩点作校核。

(3)发动机水套散热量Qw因无发动机水套散热量Qw的试验数据,现按经验公式计算QwQw=(0.5~0.7)×Ne(kW)(4)散热器的最大散热能力Qmax由于散热器使用一段时间后,散热能力一般下降10%左右;另外压力盖的泄漏以及气流分布不均等原因,也会造成散热器性能的下降,因此散热器的最大散热能力Qmax要比设计工况的水套散热量要高,最大散热量系数定为K,一般K 取1.15。

发动机中冷器工作原理

发动机中冷器工作原理

发动机中冷器工作原理
发动机中冷器是一种用于降低发动机进气温度的设备,其工作原理是通过利用空气冷却的特性来将高温的进气冷却到较低的温度,以增加发动机的效率和性能。

工作原理如下:
1. 进气道:发动机进气道中的空气首先经过滤空气进入中冷器。

2. 中冷器:中冷器是由一系列高效的冷却管组成的。

热空气在管道中流动时,与管道壁接触并传热。

冷却管外部的空气在冷却器中流动,与管道内部的热空气进行热交换。

这样,热空气会被冷却,降低其温度。

3. 减压器:中冷器之后,气流会进入减压器。

减压器的作用是减小进气流动的速度和压力,从而提供更大的时间和空间进行冷却。

4. 冷却效果:通过中冷器的作用,进气温度将显著下降。

降低进气温度有助于增加稠化燃油蒸汽,提高燃烧效率,并减少气缸燃烧过程中的热负荷。

同时,冷却后的气体密度增加,使得更多的氧气进入涡轮增压器,进一步提高发动机的输出功率和扭矩。

总体而言,发动机中冷器通过降低进气温度,提高压缩空气的密度,增加氧气含量,从而提高发动机的效率和动力输出。


使得发动机在工作过程中能够获得更多的能量,提高燃烧效率,进而提升整体性能。

制冷系统热气旁通的原理及应用

制冷系统热气旁通的原理及应用

制冷系统热气旁通的原理及应用1、制冷系统能量调节的方法及作用在制冷系统低负荷时,使用能量调节手段可以有效控制蒸发压力,并能防止:1、系统频繁启停2、压缩机在设计的回气压力以下运行3、蒸发盘管结霜当前,制冷系统主流的能量调节方法有以下5种:1. 多级压缩系统2.多个压缩机的单级系统3.变频压缩机4.压缩机卸载5.热气旁通在本文中,我们详细了解一下“热气旁通”。

2热气旁通作为能量调节一种手段,热气旁通,能够将高压端的高温气态制冷剂,旁通到系统的低压端;从而保证系统始终在一个给定的最小回气压力下运行。

热气旁通的两种方法:1. 直接旁通到回气端2.旁通到蒸发器的入口3热气旁通回气端原理一、直接旁通到回气端:使用电磁阀和热气旁通阀控制二、热气旁通阀的原理:1、热气旁通阀关闭:2、热气旁通阀开启:4旁通到回气端的弊端直接从压缩机的排气管旁通到吸气口,会导致吸气过热度增大,造成压缩机的过热。

压缩机排气温度的要求:1、制冷剂的温度达到150℃以上时会造成密封圈和活塞的磨损2、当温度达到170℃以上时压缩机彻底损坏,这时会产生各种杂质并且磨损也更为严重。

5如何防止压缩机过热可以采用喷液回路来降低压缩机的吸气过热度,从而防止压缩机过热;如下系统图:原理:从冷凝器出来的制冷剂液体,进入喷液电磁阀后经过膨胀阀的节流,温度降低,与热气旁通过来的气态制冷剂混合后,降低了制冷剂的温度;从而降低吸气过热度,防止压缩机过热。

6热气旁通到蒸发器的入口系统原理图如下:优点:1、提供一个额外的负荷2、空调系统中可以除霜3、可以将蒸发器作为直接的混合室4、使用最少的配件5、回油性能极佳(即使在蒸发器低于压缩机的情况下,在系统处于低负载时,旁通到蒸发器入口也能确保有适当的回油。

)下面看几个实际使用时的系统原理图,供参考:1、蒸发器入口的分液头:2、旁通到蒸发器入口:3、带EPR阀:7热气旁通阀的调整热气旁通阀的调整:1)启动系统并使之在正常的负荷下运转。

博士故障码闪码表

博士故障码闪码表

或连接错 (系统灯亮)
替代值:增加发动机的低怠 误
速到 900rpm)
限制:FID 对发动机扭矩进行
限制
Dfp_AFSCD_AirTemp 3 空气流量传感器的进气温度错 2-3-4 1

(系统灯不 亮)
Dfp_AFSCD_PlsDrft 4 进气量计量漂移的可靠性检测 2-3-4 1
错误
(系统灯不 亮)
2-2-1
2
功能丧失:作为关闭巡航控 制关闭的条件之一

电子系统 或连接错
(系统灯亮)
限制:FID 对发动机扭矩进行 误
限制
2-2-1
2
替代值:增加发动机的低怠
(系统灯亮)
-3-
油门踏板 2 的错误
9
Dfp_APSCD 大气压力传感器的错误
速到 900rpm 功能丧失:作为关闭巡航控 制关闭的条件之一 限制:FID 对发动机扭矩进行 限制
Dfp_AirHtStick 空气加热器常开错误
3-2-2 1
电子系统 或连接错 误
(系统灯不 亮)
15
Dfp_AirHt_Test1 进气加热器接通时错误
3-2-3 1
电子系统 或连接错 误
(系统灯不 亮)
16
Dfp_AirHt_Test2 进气加热器测试关闭时错误
3-2-3 1
Dfp_ArHt1 17 进气加热器 1 的执行器功率输 3-2-1 1
电子系统 或连接错 误
(系统灯不 亮)
61
Dfp_FTSCD 燃油温度传感器故障
2-1-5 3
电子系统 或连接错 误
(系统灯亮)
62
Dfp_FanCD 风扇执行器故障
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发动机中冷器旁通方式
发动机中冷器旁通方式是指在发动机工作时,通过控制冷却系统的流动路径,使冷却液能够绕过冷却器直接进入发动机,以提高发动机的工作效率和性能。

下面将介绍几种常见的发动机中冷器旁通方式。

1. 完全旁通方式:
完全旁通方式是指冷却液在发动机工作时完全绕过冷却器,直接进入发动机内部。

这种方式适用于发动机工作温度较低的情况,可以减少冷却器对冷却液的阻力,提高冷却效果。

但是在高温工况下,完全旁通方式可能会导致发动机过热,影响发动机的寿命和性能。

2. 部分旁通方式:
部分旁通方式是指冷却液在发动机工作时一部分绕过冷却器,一部分经过冷却器进行冷却。

这种方式可以在保证发动机冷却的同时,减少冷却器对冷却液的阻力,提高发动机的工作效率。

部分旁通方式一般通过调节冷却系统中的阀门或控制器来实现,可以根据不同工况下的需要进行调整。

3. 定时旁通方式:
定时旁通方式是指在发动机工作的不同阶段,冷却液通过冷却器和发动机内部的流动路径进行切换。

这种方式可以根据发动机的工作要求,灵活调整冷却系统的流动路径,以达到最佳的冷却效果。


时旁通方式一般通过控制系统中的定时器或传感器来实现,可以根据发动机的工作状态和温度进行自动调节。

4. 可调旁通方式:
可调旁通方式是指冷却液的流动路径可以根据需要进行调节和控制。

这种方式可以根据发动机的工作条件和温度变化,自动调整冷却系统的流动路径,以达到最佳的冷却效果。

可调旁通方式一般通过控制系统中的可调阀门或执行器来实现,可以根据发动机的工作状态和要求进行精确控制。

以上是几种常见的发动机中冷器旁通方式,每种方式都有其适用的工况和优缺点。

在实际应用中,需要根据发动机的具体要求和工作条件,选择合适的冷却系统旁通方式,以提高发动机的工作效率和性能。

同时,合理的冷却系统设计和调节也是保证发动机正常运行和延长寿命的重要因素之一。

相关文档
最新文档