生物电子等排体在药物设计中的应用
(医疗药品)基于生物电子等排体的药物设计

基于生物电子等排体的药物设计1.生物电子等排体的概念生物电子等排体的概念脱胎于物理化学家Langmuir在1919年提出的化学电子等排体的概念。
狭义的电子等排体是指原子数、电子总数以及电子排列状态都相同的不同分子或基团。
如N2与CO;CH2=C=O与CH2=N=N等。
广义的电子等排体是指具有相同数目价电子的不同分子或基团,不论其原子及电子总数是否相同。
如-F、-OH、-NH2;-O-、-CH2-、-NH-等。
近代生物电子等排体的概念认为:生物电子等排体不仅应具有相同总数外层电子,还应在分子大小、形状(键角、杂化度)、构象、电子分布(极化度、诱导效应、共轭效应、电荷、偶极等)、脂水分布系数、pKa、化学反应性(代谢相似性)和氢键形成能力等方面存在相似性。
这些参数并不要求完全相似,仅在某些重要参数上相似即可。
2.生物电子等排体的分类1970年,AlfredBurger等人将生物电子等排体分为经典的生物电子等排体与非经典的生物电子等排体两大类。
经典的生物电子等排体包括,一价原子和基团(如-OH与-NH2)、二价原子与基团(如-CH2-与-O-)、三价原子与基团(如=N-与=CH-)、四价原子与基团(如=C=与=Si=)。
非经典的生物电子等排体包括,环与非环结构、可交换的基团(如羧基与四氮唑)、基团反转(如-COOR与-OCOR)。
非经典的生物电子等排体,即前述的近代生物电子等排体概念,它不是简单地满足经典生物电子等排体的立体性和电性规则。
3.生物电子等排体在药物设计中的应用举例3.1一价原子或基团的取代在抗炎药的研究过程中,人们一直致力于寻找选择性的环氧合酶-2(COX-2)抑制剂。
先导化合物SC-58125(化合物1)具有很高的COX-2选择性和抑酶活性,但其半衰期却超过200小时,将其结构中的-CH3用-NH2取代,-F用-CH3取代,得到化合物celecoxib(化合物2),于1999年由辉瑞/西尔公司引入巴西市场,用于治疗类风湿性关节炎和其他炎症,成为第一个选择性的非甾体抗炎药,且无胃刺激性的副作用。
生物电子等排体

生物电子等排原理在药学设计中的应用敬娟(西南交通大学生命科学与工程学院,四川成都610031)摘要:生物电子等排原理在药物设计和结构修饰中起着重要作用。
本文介绍了生物电子等排体的概念,分类以及常见的生物电子等排体在药物优化中应用。
关键词:生物电子等排体;药物设计;结构修饰中图分类号:R97Applications of Bioisosterism in Pharmaceutical DesignJingJuan(School of Life Science and Engerring,Southwest Jiaotong Universty,Chengdu,Sichuan,610031)Abstract: Bioisostere principle plays an important role in drug design and structural modification. Concepts and classifications of bioisosteres and applications of common bioisostere in drug optimization have been introduced in this paper.Key word: Bioisostere; drug design; structure modification我国医药生产多年来以仿制为主,为保障我国人民健康做出来出色贡献。
可是,随着我国经济的日益开放,我们必须将立足点逐渐转移到自己创制新药上来。
创制新药的战术,应先易后难。
将已有的药物或活性物质进行局部化学结构改造,一方面较易从事,另方面保持高效,开发另具特色新药的可能性较大[1]。
在药物结构改造中,生物电子等排体发挥着决定性的作用。
生物电子等排体除了常见的一价、二价、三价和四价原子与基团外,还包括环与非环结构、可交换的基团、基团反转。
生物电子等排原理在药学设计中的应用

局麻药普鲁卡因酯基中的-0-被其电子等排体-S-和-NH取代,得到了硫卡因和普鲁卡因胺。其中,硫卡因的局 麻作用比普鲁卡因大2倍,而普鲁卡因胺的局麻作用仅 为普鲁卡因的1%,目前主要用于治疗心律不齐。
2.3三价生物电子等排体 毛果芸香碱是胆碱神经M受体激动剂。由于它是内酯结构, 易水解,不稳定。将环上的 -CH=改换成电子等排体-N=, 变成氨基甲酸内酯结构。氨基甲酸醋本比甲酸酯更为稳 定,改变后药物的稳定性增强。
4.结论
生物电子等排原理在药物结构的修饰和优化中虽发 挥着重要作用,但是用生物电子等排体修饰后的药 物分子,虽已达到了预定的改造目的,但这种局部 结构的修饰往往使整个分子的性质亦随之发生改变。 例如,某个经电子等排体改造后获得的分子,可能脂 溶性降低或增加, pKa或极性改变,因而影响该药 物的吸收、转运、排泄,最终影响临床疗效。
基团反转是常见的一种非经典电子等排类型,是同一功能基 团间进行的电子等排。-C0R 与R0C-都是酯,在原来的羧酸 和醇的结构差别不大的情况下,这两种酯的空间效应和电性 效应亦较近似,所以这种酯基反转常可作为电子等排体应用。 镇痛药哌替啶是哌啶羧酸的酯, 而安那度尔是哌啶醇的酯, 两者具有相似的溶解度,药理作用相同,但安那度儿的镇痛 作用是哌替啶的16倍。
3.2可交换的基团
抗菌药磺胺类药物的发现可以说是可交换基团作为电子等排 原理运用到药物设计的里程碑。研究表明,对氨基苯磺酸与 对氨基苯甲酸不仅电子分布和构型方面相似,在pKa、logP 等理化性质方面也很相似。所以,-SO2NH2和-COOH可以说是 具有真正意义上的生物电子等排体。
3.3基团反转
生物电子等排原理在药学设计中的应用
1206 王苗
学号: 2012140619
第四章 生物电子等排体原理

H N
SN
H
S
OO
H N
SN
H
O
甾体的环(B、C环)打开,也得到了几个具有生物活性的化合 物,如从雌二醇开环到己烯雌酚,以及其它与之有关的非环化合物, 有的具有雌甾烷的活性。
OH OH
HO
HO
OH
HO
OH
OH
HO
HO
三环化合物环打开或开环化合物的关环在新药设计中也有较 大的应用。例如,下面的两个药物,环打开或关闭后得到的化合 物,其药理作用是不同的。开环化合物为抗抑郁药物,具有理想 的情感松弛剂活性;而环闭合后的化合物则具有显著的抗胆碱解 痉活性。
组胺药安体根和新安体根。同样,抗胆碱类解痉药的三环酯基,
通过-CH2-与-O-之间的交换,也得到了成功。
•
丁咪胺侧链的-CH2-用-S-取代,得到了甲咪硫胺,更有利于
对改善H2抗组胺活性所要求的电子和构象的效应。同时,对硫胺
部分进一步采用电子等排体进行修饰,由甲咪硫胺变为胍,得到
了西咪替丁。
X
NMe2
第四章 生物电子等排体原理 在新药设计中的应用
第一节 概论
一、生物电子等排体的概念
狭义的电子等排体概念——原子数及电子总数均相等, 而且电子排布状态也相同的不同分子或原子团。按照这种定义, 只有少数分子或原子团满足该条件——N2--CO、N2O-CO2、 CH2=C=O--CH2=N=N、N3--NCO。
例如,在一个药物中含有-CH3基团,当用-NH2代替时,可能会引入不对 称因素,使其连接的碳成为手性原子。
再如,当用碘代替氢时,两者的体积相差悬殊,所有的这些因素,都有 可能对所设计的新药的生物活性产生影响。
Friedman于1951年引用了生物电子等排体的术语,认为 生物电子等排体不仅应具有相同的价电子数,而且在分子大 小、形状(键角、杂化度)、构象、电子分布(极化度、诱 导效应、共轭效应、电荷、偶极等)、脂水分布、pKa、化 学反应性(代谢相似性)和氢键形成能力等方面的相似性。
基于生物电子等排体的药物设计

基于生物电子等排体的药物设计生物电子等排体(Bioelectronics platforms)是一种集成微电子技术与生物学技术的交叉学科,它利用电子学和微电子学的原理来研究和应用生物学系统的电子特性和行为。
药物设计在药物研究和开发中起着至关重要的作用,而基于生物电子等排体的药物设计是利用生物电子等排体技术来改善和优化药物设计的过程。
本文将探讨基于生物电子等排体的药物设计的背景、原理和应用。
背景传统的药物设计通常基于大量的试验和研究,需要较长的时间和高昂的成本。
然而,利用生物电子等排体技术,可以更快速、高效地进行药物设计。
生物电子等排体是一种可以仿真和模拟生物体内电子特性和行为的技术,可以用来研究药物在体内的运输、释放和作用机制,从而优化药物设计和研发过程。
原理基于生物电子等排体的药物设计的原理主要包括模拟和仿真技术、微电子传感器和生物芯片技术。
模拟和仿真技术可以模拟和预测药物在生物体内的动力学行为和药理学效应。
微电子传感器可以测量和监测药物的生物活性和效应,包括药物的释放速率、分布和代谢过程。
生物芯片技术可以模拟和研究药物的作用机制和药理学效应,以及药物与生物体细胞和组织的相互作用。
应用基于生物电子等排体的药物设计可以应用于各个领域,包括新药研发、老药优化和个性化药物治疗。
在新药研发方面,可以通过生物电子等排体技术来进行药物筛选和优化,从而提高药物的疗效和安全性。
在老药优化方面,可以利用生物电子等排体技术来研究和改进药物的释放和药理学特性,以提高药物的效果和降低药物的副作用。
在个性化药物治疗方面,可以通过生物电子等排体技术来研究和预测个体对药物的反应和耐受性,从而实现个体化的药物治疗。
总结基于生物电子等排体的药物设计是一种结合微电子技术和生物学技术的新兴领域,它可以模拟和优化药物在生物体内的动力学行为和药理学效应,从而提高药物的疗效和安全性。
该技术在新药研发、老药优化和个性化药物治疗方面有着广阔的应用前景。
07章基于生物电子等排原理的药物设计

疏水性参数
R
P CnC8H17OH CH2O
X
取代基
母体
πx = logPx - logPH
一、生物电子等排体的提出与发展
疏水性参数
πH =0 π>0 疏水性大于 H,疏水性基团 π<0 疏水性小于 H,亲水性基团 加和性: Σπ
取代基
Br CH3 H COOH NH2
π 0.86 0.56 0 -0.32 -1.23
径的制剂。(注:改变剂型但不改变给药途径,以及增 加新适应症的注册申请获得批准后不发给新药证书;靶 向制剂、缓释、控释制剂等特殊剂型除外。)
6. 已有国家药品标准的原料药或者制剂。(仿制药)
第三节 Me-Too 药物
一、注册分类(中药) 1.未在国内上市销售的从植物、动物、矿物等物质 中提取的有效成份及其制剂。(注:单一成份的含量应 当占总提取物的90%以上) 2.新发现的药材及其制剂。 3.新的中药材代用品。(注:替代国家药品标准中 药成方制剂处方中的毒性药材或处于濒危状态药材的未 被法定标准收载的药用物质) 4.药材新的药用部位及其制剂。
第三节 Me-Too 药物
一、注册分类(中药,续2) 7.改变国内已上市销售中药、天然药物给药途径的 制剂。 8.改变国内已上市销售中药、天然药物剂型的制剂。 9.仿制药。
1~6类为新药,7~8类按新药程序申报。
Me-Too 药物举例
NH CH3 NH
S N
N CN
S O
N
CH3
H
H3C
N CH3
NH
OH
CH2
NH2
CH3
一、生物电子等排体的提出与发展
等疏水性电子等排体 等电性电子等排体 等立体性电子等排体 等疏水性-等电性电子等排体 等疏水性-等立体性电子等排体 等电性-等立体性电子等排体 等疏水性-等电性-等立体性电子等排体
生物电子等排及其在新药研究中的应用

生物电子等排及其在新药研究中的应用摘要:探索生物电子等排原理在新药研究中应用的规律,推动新药研究的进展;通过查阅文献资料,阐述生物电子等排的定义及各类生物电子等排的特点、使用范围、典型事例;运用生物电子等排原理所产生的新化合物优于、近于或拮抗原来药物,因而具有投资少、风险小、成功率高的特点。
应用生物电子等排体进行新药设计,尤其适合我国制药工业中现有的实际情况。
本文简述了生物电子等排的概念、发展、分类及其在药物设计中的应用。
关键词:生物电子等排、结构改造、药物设计随着数学、物理学、化学、分子生物学、细胞生物学、计算机图形学等相关学科的发展,新药的研究开发已进入一个崭新的时代,成为一门新型的多学科交叉的边缘性学【1~3】。
当今,药物合成高速发展,先导化合物的优化是新药研究的有效方法,“生物电子等排取代(bioisosteric replacement)”即为对先导化合物进行合理优化的有效策略之一。
这种方法是利用生物电子等排体(bioisosteres)原理取代先导化合物中的某些结构单元,以提高其活性及选择性,并降低毒性等。
近年来,“生物电子等排取代”方法在药物先导化合物优化中得以广泛应用【4】,实践证明,运用生物电子等排原理进行药物先导化合物优化可大大加快药物先导物到药物候选物的转化【5~6】。
且运用生物电子等排原理所产生的新化合物优于、近于或拮抗原来药物,因而具有投资少、风险小、成功率高的特点。
尤其适合我国制药工业中现有的实际情况。
生物电子等排原理为设计新药提供了一条相当有实用价值的研究途径,并取得了一定的成效。
1 生物电子等排概念的提出及其发展“生物电子等排”概念最初应回溯到1919年,生物等排取代中应用到的一个重要概念就是“生物等排体”,它是由早期的“电子等排体(isosetre)”这一概念发展和引申而来的。
Langmuir提出“电子等排体”概念,当时是用它来描述那些具有相同原子数和价电子数的分子或离子,如O2-、F-和Ne,N2和CO,N2O和CO2,N3和NCO,以及NO3-与CO32-等。
生物电子等排原理在药物先导化合物优化中的应用

The application of the bioisosterism in lead optimization
CUI Yong-Mei, NAN Fa-Jun*
(National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of CAS, Shanghai 201203, China)
图1 经典环等同体
苯环、噻吩的相互替换一直以来都是生物电子 等排替换中比较经典的例子之一。苯与噻吩的相似 性是二价硫 -S- 和 1,2- 亚乙烯基 -CH=CH- 交换的结 果。在药物先导化合物优化中有许多运用此策略的 报道,如在研究 NO 合成酶抑制剂过程中[10],以 NO 合成酶抑制剂 11 为起点,利用苯环与噻吩的生物电 子等排性,设计并合成了一系列化合物 12 及 13, 活性测试结果表明,12a 与 13a 的活性相差不大,这 说明噻吩环 S 原子对活性并非起着关键作用。
随着人类基因组计划的实施和分子生物学技术 的快速发展,越来越多的药物作用靶点被认知,一 些新颖重要的酶和受体成为研制独特作用机理的药 物新靶点。相应地,高通量药物筛选( HTS ) 技术以 及组合化学技术的快速发展为寻找药物先导化合物 提供了新途径。然而,由于先导化合物只提供一种 具有特定药理作用的新结构类型,往往由于在药 理、药效学、药代动力学等方面的缺点或不足而不 能直接用于临床。因此,需要对先导化合物进行化 学结构改造或修饰,以期优化上述特性。“生物电 子等排取代”即为对先导化合物进行合理优化的有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物电子等排体在药物设计中的应用船本11级药学1班谢海潭20119830144【前言】生物电子等排概念最初应回溯到1919 年。
当时Langmuir 用它解释具有相同原子数和相同价电子数的分子或离子在理化性质方面的相似性, 如O2-、F- 和Ne, N2和CO, N2O 和CO2, N3和NCO, 以及NO3-与CO32-等。
在这些相似分子和离子的基础上, 他确定了21 组电子等排体, 进一步推断这些分子的电子数目和排列状况也相同, 提出了电子等排体( isostere) 的概念, 即凡是具有相同数目的原子和相同数目电子, 并且电子排列状况也相同的分子、原子或基团( 离子) 称为电子等排体。
1925 年, Grimm结合了Hinsbeng 和Huckel 的环等价部分概念并加以扩展, 提出氢化物替代规律( hydride displacement law ) , 它的内容是: 从元素周期表中第Ⅳ主族起, 任何一种元素与一个或几个氢原子结合形成的分子或基团称为假原子( pseudoatom) , 即某一元素与一个或两个氢原子结合形成的假原子的性质与比它高1 族或2 族的元素相似。
1932 年, ERLENMEYER 将GRIMM定义的电子等排体进一步扩展到外围电子数目相等的原子、离子和分子, 并首先把电子等排概念与生物活性联系起来, 应用其解释电子等排体生物活性的相似性。
1947 年, Hansch 提出, 凡在同一标准的实验系统中能引起相似生化或药理作用的化合物均是电子等排体。
1951 年, Friendman 把有些分子或基团的理化性质与生物活性联系起来, 提出了生物电子等排及生物电子等排等新概念。
至此,电子等排体已经突破了应用在医药化学领域中的传统内涵。
1971 年, Arins 指出生物电子等排应是在许多类型化合物中可以相互替换的基团。
1979年, Thornber 综合了电子等排体的概念, 提出凡具有相似理化性质且由其产生广泛的相似生物活性的分子或基团都应是生物电子等排体[1]。
【摘要】随着生物电子等排原理的广泛应用, 生物电子等排体的范围逐渐扩大, 研究者把生物电子等排体分为2 类, 即经典和非经典的生物电子等排体。
经典的生物电子等排体包括Grimm的氢化物替代规律及Erlenmeyer 定义所限定的电子等排体。
取代基团的形状、大小和外层电子构型大致相同,组成基团的原子数、价键数、不饱和程度及芳香性等方面极其相似, 按照Erlenmeyer 氢化物取代规律可分为一价、二价、三价、四价及环内等价5 种类型。
非经典的生物电子等排体不符合Erlenmeyer 的电子等排定义,基团的原子数可以不同,形状和大小变化亦较大,但保留了原药效团的pKa值、静电势能、最高占据分子轨道和最低空轨道等性能,因而仍显示相应的生物活性,如—CO —和—SO2—以及—SO2NH2和—PO( OH) NH2等[2]。
【关键词】生物电子等排原理药物设计生物活性药效团1.经典生物电子等排体在药物设计中的应用1.1一价生物电子等排体单价原子或基团一价生物电子等排体在药物先导化合物优化中的例子很多,主要包括F 替代H, NH2替代OH,SH替代OH,F 、OH、NH2、CH3 (Grimm 的氢化物取代规律) 之间的相互替换和C l 、B r 、S H 、O H(Erlenmeyer 对Grimm的氢化物取代规律的扩展)之间的相互替换等。
F 取代H 为一价生物电子等排替换中最常用的。
由于氟在卤素中的特殊性,它与氢原子更为类似。
空间大小上更像H,两者范德华力半径分别为1.2 Å及1.35 Å。
其次,氟为卤素中电负性最强的原子,与碳形成非常稳定的键,这一特点可解释氟衍生物对代谢降解更稳定的原因。
另外,由于氟没有空的 d 轨道,因此不能与电子供体形成共振效应。
正是由于氟原子的上述特殊性,在药物设计中经常用F 取代H 以提高其代谢稳定性[3,4]。
利用电子等排体进行药物设计,所得的化合物的生物活性没有规律性,活性可以增加,也可能减弱,有时甚至得到生理作用相拮抗的化合物。
一般同一主族元素的相互置换,生物活性不会发生质的变化,如F、Cl、Br、I相互置换活性往往相似。
在化合物中引入Cl、Br、I代替氢原子均可增加其脂溶性,而氟原子在芳香族化合物中可增加脂溶性,在脂肪等族化合物中则降低脂溶性。
卤素主要是吸电子诱导效应,以氯和溴作用最强、碘次之,氟的作用最弱。
不同卤素取代后对单胺氧化酶抑制作用的影响[6](图1.1)X ONHIC50X=H 1200X=CF3 100X=SO2CF3 27X=Br 115图1.1艾格福公司开发的含三唑基团的喹唑啉类杀菌剂fluquinconazole ( 2) 是用F 替代quinconazole( 1) 中的H 而得[1]。
见图1.2N NOCl ClN N NNNOCl ClNNNFquinconazole( 1) fluquinconazole ( 2)图1.2大部分二苯醚类除草剂的开发是以CF3替代已知化合物分子中的Cl, 经结构优化而得; 苯甲酰脲类杀虫剂的开发是用 F 替代先导化合物化学结构中的Cl 而得;磺酰脲类除草剂如CGA136872( 4)是用OCHF2替代先导化合物( 3)中OCH3而得。
OCHF2替代先导化合物A 中OCH3而得; DPX- 66037( 6) 是用OCH2CF3替换DPXA7881( 5)化学结构中的OCH2CH3并经进一步优化而得[1]。
见 图1.3CO 2CH 3SO 2NHCONHNNOCH 3OCH 3CO 2CH 3SO 2NHCONHNNOCHF 2OCHF 2( 3) ( 4)CO 2CH 3SO 2NHCONHNN NNHCH 3OCH 2CH 3CO 2CH 3SO 2NHCONHNNNNOCH 2CF 3CH 3H 3C( 5) ( 6) 图1.3杀菌剂氟酰胺( 8)是用 CF 3 替换灭锈胺(7)化学结构中的CH 3 而得。
化工部沈阳化工研究院开发的杀菌剂 SYPL190 是在杀菌剂CME151 的基础上,以 F 替代 Cl 得到,其生物活性特别是治疗活性高于CME151[1]. 见图1.4CH 3ONH OCH 3CF 3ONHOCH 3(7) (8) 图1.4毛春晖以二芳酰肼类昆虫生长调节剂 ANS118( 9)为先导, 运用生物电子等排的分子设计思想,将其分子结构中苯并二氢吡喃环的苯环上的甲基换成氯原子,设计合成了一系列N5-氯苯并二氢吡喃-6 -甲酰基-N-叔丁基-N-取代苯( 杂) 甲酰肼类衍生物( 10) 。
生测结果显示上述化合物绝大多数活性优于RH5849。
见图1.5OCH 3ONH NOOCl ONH NOR( 9) ( 10) 图1.5从磺胺类药物发现的口服降血糖药氨磺丁脲的芳氨基用甲基取代得到甲苯磺丁脲,降血糖活性明显增加,以后用卤素取代其中的甲基,并将丁基改成丙级,得到的氯磺丙脲,半衰期延长,毒副作用大为减小[6]。
见图1.6RSNH OOONHCH 3R=CH3R=Cl氨磺丁脲甲苯磺丁脲氯磺丙脲R=NH2图1.61.2二价电子等排体最常见的二价电子等排体有—O —、—S —、—NH —、—CH 2—,由于他们的键角的相似性导致立体相似性,但疏水性相差较大,因此在化合物结构中相互替代时,生物活性将会发生变化,如酯和酰胺,在酯化合物中,C — O — C 键的旋转受到共扼和脂烃取代基的影响 ,脂肪族酸酯以顺式占优势,酰胺亦处于类似平面结构,占优势的构型也是顺式。
因此含有相似结构组份的酯基和酰胺基具有相似的生物活性。
如普鲁卡因和普鲁卡因酰胺 ,都具有局麻作用 ,但前者活性强,这是因为酯羰基碳原子上的电子云密度最低 ,与受体产生偶极吸引而产生药效 。
哌替啶类似物中多数均强于哌替啶,只有—S —置换后活性较弱,可能在体内被氧化为亚砜或砜基使极性增加而致[6]。
见图1.7NOOCH 3XX相对镇痛作用—HONHS11220801.5图1.7用—CH2CH2—取代氯丙嗪杂环中的—S —,得到有价值的抗抑郁药丙咪嗪和阿米替林,换中的—CH2—再分别用—O —、—S —、—NH —代替,得到系列抗精神病药物,其中多塞平已经用于临床。
见图1.8SNN NN NO氯丙嗪 丙咪嗪 多塞平图1.8苯氧基代替( 11) 中的苄基( 相当氧取代亚甲基) ,可得到苯醚菊酯。
苯醚菊酯在光照下, 在大多数有机溶剂和无机矿物稀释剂中稳定, 而且活性高、 合成容易。
用氯取代苯醚菊酯中的甲基得到氯菊酯。
氯菊酯的光稳定性比除虫菊酯和早期合成的除虫菊酯要高得多[1]。
见图1.9CH 2PhOOOPhOO( 11) 苯醚菊酯OPhOOClCl氯菊酯 图1.9HONG 等人利用生物电子等排原理设计合成了一系列酚妥拉明类似物。
用N 原子替换酚妥拉明上与环相连的C 原子, 合成了化合物和,新化合物对小鼠肾上腺素受体的活性分别是酚妥拉明的1. 6倍和4. 1 倍。
见图1.10NOHNH NN ORHNNH N化合物12 R=CH3 化合物13 R=H酚妥拉明 酚妥拉明类似物 图1.10 1.3三价电子等排体在开链结构中三价生物电子等排体应用较少,应用最多的为 —CH=与—N=的环内互换。
例如乙二胺类的抗过敏药用—CH=代替—N=得到丙胺类化合物,其抗过敏作用比前者有所增强。
用吡啶替换苯苄胺的苯环可以得到抗组胺药美吡拉敏。
由于吡啶氮原子上的孤对电子能与水形成氢键,增加药物的亲水性,从而增加了对抗组胺的活性。
将新安替根分子侧链中的—N=用—CH=代替,苯环上的用替代而得到的氯苯那敏是一个镇静副作用较小的抗组胺药。
见图1.11NNOCH 3NNOCH 3N安替根 美吡拉敏NClN氯苯那敏 图1.11吲哚美辛具有极好的抗炎作用,但有严重的胃肠道副反应。
用—N=C 替换—C=C 其5—OCH 3用—F 替换。
将—Cl 用CH 3SO —取代得舒林酸,有极强的抗炎活性。
F 原子增强药效, CH 3SO —增加溶解度, 改善药物动力学性质,抗炎活性显著。
CH 3SO 也由于—S +—›O -键的形成构成一个手性中心。
舒林酸是一个D 和L 型的消旋体混合物, 二者有等同的活性。
见图1.12N H 3COCH 2OOHC=OClFCH 2OOHSOH 3C吲哚美辛 舒林酸图1.12选择性磷酸二酯酶Ⅳ抑制剂 (PDE —4),4—甲氧基—3—环己基—苯甲胺(IC 50 =2.6μmol/L )。
将与氨基相的苯基用电子等排体吡啶取代形成2,6—二氯吡啶—4—胺。
有较好的治疗哮喘的作用, 活性增强1倍以上(IC 50 =1μmol/L ),现正处于临床试验阶段。