3.2 质点系的动量定理 动量守恒定律
质点系的动量定理和动量守恒定律

质点系的动量定理和动量守恒定律
动量定理和动量守恒定律是力学学科中最重要的定律,其定义了显式或隐式的实体响应,有助于我们对物体性质,如形状及运动特性的深入理解。
在物理学中,力学在研究质点系统中被广泛应用,而动量定理与动量守恒定律可以被认为是这一课程的基本元素。
动量定理是从第一定律出发,它引申出了物体的动量保持不变的现象,是物体的运动规律的基本思想。
物体的动量(动量)是指物体的质量和其在空间的运动量的乘积。
具体而言,动量定理指的是物体的外力(外力)与其总变化率的乘积(变化数)之和等于0。
此外,动量守恒定律要求一个物体动量的变化率等于该物体所受的外力之和。
物体运动过程中,动量守恒定律比动量定理更容易证明。
动量定理和动量守恒定律在物理学研究中起着重要作用,并且在研究质点系统中被广泛应用。
它们不仅有助于研究物体的运动特性,而且能够为有关力学问题提供有用的信息,使得我们能够更深入地理解物体的性质。
它们的应用可以追溯到古代物理学家如亚里士多德,而今天也是物理学中研究质点系统不可或缺的重要元素。
动量定理动量守恒定律-文档资料

n个质点:
t t0
( F外 i )d t
i 1
n
n
i1
m iv
i
n
i1
m iv i0
n
p p 或 I 0
i 1
质点系动量定理
( F t d ( m iv i) d p 外 i )d
i 1
n
二、系统的动量守恒定律
质点系动量定理 ( F t d ( m iv i) d p 外 i )d
质量分别为mA和mB(mA>mB)的两质点A和B,受到 相等的冲量作用.则 (A)A比B的动量增量少;(B)A比B的动量增量多; (C)A、B动量增量相等; (D)A、B动能增量相等.
烟火总质量为M+2m, 从离地面高h处自由下落到
h/2时炸开,并飞出质量均为m的两块。它们相对于
烟火体的速度大小相等,方向为一上一下。爆炸后
'
与水的阻力相平衡
f
' 为船的动力 //
质量为m的铁锤竖直落下,打在木桩上并停下.设打击时间 为Δt,打击前铁锤速率为v,则在打击木桩的时间内,铁锤所受 平均合外力的大小为 铁锤所受平均冲力的大小为 (A) mv/Δt. (B) (mv/Δt)-mg. (C) (mv/Δt)+mg. (D) 2mv/Δt.
t 0 2 2 1 22 22 0
t 1 2 t 0 1 1 2 2
质点系
m1:
m 2 :
F1
F2 1 F 12
m1
F2
m
2
(m2 m2 ) 系统: 因为内力 F F 0 ,故 12 21
( F F ) d t ( m v m v ) ( mm v v )
质点动力学的三个基本定律

质点动力学的三个基本定律
质点动力学的三个基本定律分别是:牛顿运动定律,动量定理和动量守恒定律,角动量定理和角动量守恒定律。
牛顿运动定律第一定律(惯性定律):任何质点如不受力的作用,则将保持原来静止或匀速直线运动状态。
第二定律:质点的质量与加速度的乘积等于作用于质点的力的大小,加速度的方向与力的方向相同。
第三定律:对应每个作用力必有一个与其大小相等、方向相反且在同一直线上的反作用力。
物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为:
I=FΔt=Δp=mΔv=mv2-mv1
式中F指物体所受的合外力,mv1与mv2为发生Δt的初末态动量。
该式为矢量式,列式前一定要规定正方向!
动量守恒定律是现代物理学中三大基本守恒定律之一,若一个系统不受外力或所受合外力为零时,该系统的总动量保持不变。
角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质
点和质点系围绕该点(或轴)运动的普遍规律。
角动量守恒定律是对于质点,角动量定理可表述为质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
质点系动量定理

普通物理学教案
例题2 :
子弹穿过第一木块时, 两木块速度相同均为v1
子弹穿过第二木块后,第二木块速度变为v2
再结合 式,可得结果。
考虑到动量定理的意义,冲量仅决定于始末两个状态。
例题3:
普通物理学教案
如图示,悬绳突然断开,猴子以多大的加速度相对杆上爬,才能看上去不下落?
这一速度小于第一宇宙速度(7.9km/s), 所以用单级火箭不可能把人造地球卫星或其它航天器送入地球轨道。
由于技术上的原因,多级火箭一般是三级。
有效载荷
第三级火箭
第二级火箭
第一级火箭
制导与控制系统
动力系统
01
04
02
03
N1 = 16;vr = 2.9km/s;
N2 = 14;vr = 4km/s
推广到多质点系统,动量定理表达式为:
其意为:
质点系总动量的增量 等于作用于该系统合外力的冲量
例题1* (自学用)
普通物理学教案
矿砂从传送带A落入B ,其速度4m/s , 方向与竖直方向成 30º角,而B 与水平方向成15º角,其速度2m/s。传送带的运送量为 20kg/s 。 求:落到 B上的矿砂所受到的力。
卫星支架(卫星分配器)
长征二号E
长征二号F 运载火箭是在长二捆火箭的基础上,按照发射神舟载人飞船的要求,以提高可靠性确保安全性为目标研制的运载火箭。火箭上加装了逃逸塔,是目前我国所有运载火箭中起飞质量最大、长度最长的火箭。
震天雷 神火飞鸦 火龙出水 原始火箭 虎头木牌 一 窝 蜂
解:
15º
30º
A
B
v1
v2
15º
30º
作矢量图
在Δt 内落在传送带B上的矿砂质量为: 这些矿砂的动量增量为: 由动量定理: 15º 30º
3.2质点系的动量定理

v0
dm 时间内的火箭受喷射燃料的 火箭受喷射燃料的推进力 dt 时间内的火箭受喷射燃料的推进力 F = u dt
3.2 质点系的动量定理及动量守恒 3.2质点系的动量定理及动量守恒
神舟六号待命飞天
注:照片摘自新华网
3.2 质点系的动量定理及动量守恒 3.2质点系的动量定理及动量守恒
神舟六号点火升空
要增大v 需要提高火箭的质量比 要增大v:需要提高火箭的质量比 或增大喷气速度u 推动力:以喷出的燃料d 2 推动力:以喷出的燃料dm为研究对象 时间内的动量变化率为燃料受火箭力 dt 时间内的动量变化率为燃料受火箭力
dm[(υ − u ) − υ ] dm F= = −u dt dt
m0 火箭速度v v m dm ∫v0 d v = − u ∫m0 m
3.2 质点系的动量定理及动量守恒 3.2质点系的动量定理及动量守恒
6.当质点之间有相对运动时, 6.当质点之间有相对运动时,应运用伽利 当质点之间有相对运动时 略速度变换建立相对于同一惯性系的动量 定理。 定理。 7.质点系的动量守恒定律是自然界一切物理 7.质点系的动量守恒定律是自然界一切物理 质点系的动量守恒定律是 过程的基本定律, 最普遍、 过程的基本定律,是最普遍、最基本的定律 之一.在宏观和微观领域均适用。 之一.在宏观和微观领域均适用。
v v t′ 所以: 所以:I = ∫ ( ∑ Fi )dt = ∑
t i i
∫
t′
t
v v Fi dt = ∑ I i
i
质点所受外力的总冲量等于各分力冲量之和
3.2 质点系的动量定理及动量守恒 3.2质点系的动量定理及动量守恒
t2 r r 再看内力冲量之和 ∑∫ Fint,tdt = ∫ (∑Fint,t )dt i t1 t1 i r 因为内力之和为零: 因为内力之和为零:∑ Fint,t = 0 i t2 r 结论 内力的冲量之和为零 ∑ ∫ Fint,t dt = 0 t2
3-2质心运动定理、角动量守恒

L
O
●
rA r
●
A α m
●
v
证明: 不受外力,质点将做 匀速直线运动。 m在某一时刻经过A点时, 其对固定点O的角动量为
L rA mv rAmvsin r m v
固定点O到轨迹直线的垂直距离只有一 个值,所以角动量的大小恒定。 而角动量的方向恒垂直于固定点O和运动 轨迹所决定的平面。 所以m对任意固定点的角动量矢量保持不变。
力矩的大小:
力矩的方向: 角动量定理:
M r F rF sin
也由右螺旋法则确定。
dL M dt
质点所受的合外力矩等于它的角动量对时间的 变化率。 M 注意:定理中的力矩和角 动量是对惯性系中地同一 固定点而言的。
o
●
r
F
r
α
m
§3.7 角动量守恒定律
给上式两边同时乘以系统质量m
rC
mi ri
i
则:
mvc mi vi p
dvc dp p mvc 两边求导得: m mac dt dt dp F m a c dt
——质心运动定理
i
不管物体的质量如何分布,也不管外力作用在 物体的什么位置上,质心的运动就象是物体的质量 全部都集中于此,而且所有外力也都集中于此的一 个质点的运动一样。 实际上在质心位置处可能既无质量,又未受力。
i 1
m
' rC
0
两边求导:
'0 mv i i
N i 1
z
z'
x'
o
rC
' ri
大学物理第2章-质点动力学基本定律
势能的绝对值没有意义,只关心势能的相对值。 势能是属于具有保守力相互作用的系统 计算势能时必须规定零势能参考点。但是势能差是一定的,与零点的选择无关。 如果把石头放在楼顶,并摇摇欲坠,你就不会不关心它。 一块石头放在地面你对它并不关心。
重力势能:以地面为势能零点
01
万有引力势能:以无限远处为势能零点
m
o
θ
设:t 时刻质点的位矢
质点的动量
运动质点相对于参考原点O的角动量定义为:
大小:
方向:右手螺旋定则判定
若质点作圆周运动,则对圆心的角动量:
质点对轴的角动量:
质点系的角动量:
设各质点对O点的位矢分别为
动量分别为
二.角动量定理
对质点:
---外力对参考点O 的力矩
力矩的大小:
力矩的方向:由右手螺旋关系确定
为质点系的动能,
令
---质点系的动能定理
讨论
内力和为零,内力功的和是否为零?
不一定为零
A
B
A
B
S
L
例:炸弹爆炸,过程内力和为零,但内力所做的功转化为弹片的动能。
内力做功可以改变系统的总动能
例 用铁锤将一只铁钉击入木板内,设木板对铁钉的阻力与铁钉进入木板之深度成正比,如果在击第一次时,能将钉击入木板内 1 cm, 再击第二次时(锤仍以第一次同样的速度击钉),能击入多深? 第一次的功 第二次的功 解:
(1)重力的功
重力做功仅取决于质点的始、末位置za和zb,与质点经过的具体路径无关。
(2) 万有引力的功
*
设质量M的质点固定,另一质量m的质点在M 的引力场中从a运动到b。
M
a
b
质点系的动量定理 动量守恒定律
m(vx V ) MV = 0
解得
பைடு நூலகம்
vx =
m+M V m
设m在弧形槽上运动的时间为t,而m相对于M在水平方向移动距离为R, 故有 t M+m t R = ∫ vx dt = Vdt 0 m ∫0 于是滑槽在水平面上移动的距离
S = ∫ Vdt =
0 t
m R M+m
§3.动量守恒定律 / 二、注意几点及举例 动量守恒定律
若x方向 ∑ Fx = 0 , 则∑ mivi 0 x = ∑ mivix 方向 若y方向 ∑ Fy = 0 ,则∑ mivi 0 y = ∑ miviy 方向 4.自然界中不受外力的物体是没有的,但 自然界中不受外力的物体是没有的, 自然界中不受外力的物体是没有的 如果系统的内力 外力, 内力>>外力 如果系统的内力 外力,可近似认为动量 守恒。 守恒。 如打夯、 如打夯、火箭发 射过程可认为内力 内力>> 射过程可认为内力 外力, 外力,系统的动量守 恒。
Fdt=(m+dm)v-(mv+dm0)=vdm=kdt v
则
F = kv = 200 × 4 = 8 ×102 N
一、动量守恒 由质点系的动量定理: 由质点系的动量定理:
∫ ( ∑ Fi外 )dt = P P0 = P
t t0
动量守恒条件: 动量守恒条件:
P P0 = 0
当 ∑ Fi外 = 0 时
第四节 质点系的动 量定理
一、质点系的动量定理 两个质点组成的质点系, 两个质点组成的质点系, 对两个质点分别应用 质点的动量定理: 质点的动量定理: t ∫t ( F1 + f12 )dt = m1v1 m1v10
0
3.2质点系的动量定理动量守恒定律
t2
内力冲量之和
fidt
同样,由于每个质点的
i t1
受力时间dt 相同,
t2
t2
fidt ( fi )dt
因为内力之和为零:
i t1
t1 i
fi 0
fi
mi
质点系
Fi
i
所以有结论:
t2
fidt 0
i t1
内力的冲量 之和为零
质点系的重要结论之二
则,质点系的动量定理
t2
F外dt P P0 (积分形式)
第2步,对所有 质点求和:
i
(
t2 t1
Fidt
t2 t1
fidt)
i
(Pi Pi0 )
第3步,化简上式: 外力冲量之和 内力冲量之和
先看外力冲量之和
由于每个质点的受力
时间dt 相同,所以:
i
t2 t1
Fidt
( t2
t1
i
Fi )dt
t2 t1
F外dt
2
第三章动量与角动量
开始时,下端与地面的距离为 h , 当链
条自由下落在地面上时,
Lm
求 链条下落在地面上的长度为 l ( l<L )时,
地面所受链条的作用力。
解设
ml
l
ml L
链条在此时的速度 v 2g(l h)
h
dm dl dt
根据动量定理 fdt 0 (vdt)v
f vdt v v 2 2m(l h)g
dt
L
f'
地面受力
F
f
' ml g
m (3l L
2h)g
10
第三章动量与角动量
动量定理与动量守恒定律
质点系总动量不随时间改变 P
p
i 1
N
i
常矢量
——质点系动量守恒定律
注意 1. 区分外力和内力
内力仅能改变系统内某个物体的动量,但不能改变系 统的总动量。
第4章 动量和角动量
2.5 动量定理与动量守恒定律
2. 合外力沿某一方向为零: 该方向上的动量守恒
(尽管总动量不守恒)
p const.
第4章 动量和角动量
2.5 动量定理与动量守恒定律
例 质量分别为 和 的小孩在光滑的平面 上通过一条轻绳彼此拉对方。设他们开始时静止, 相距为l,问他们在何处相遇?
解 设t=0时刻,两小孩分别处于 和 。 在水平方向上,系统不受外力作用,因此水平方向上动 量守恒,即 由此得
第4章 动量和角动量
2.5 动量定理与动量守恒定律
F
i 1 i i 1 j i
N
N
dpi d N fij pi dt i 1 i 1 dt
N
第4章 动量和角动量
2.5 动量定理与动量守恒定律
三 动量守恒定律
i
tf
ti
Fi dt Pf Pi
i i
若(1)质点系所有质点不受外力; (2)质点系所受合外力为零;
2.5 动量定理与动量守恒定律
一 质点的动量定理
Fdt dp
定义冲量
力在时间上的积累效应 力 F 在 t t+dt 时间内 给质点的冲量.
dI Fdt
在有限时间内
Pf P i
tf dP Fdt
ti
ti
tf Pf P i I= Fdt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t1
fi
质点系 Fi
t2 Fidt f idt ) (Pi Pi 0 )
t1 i
Pi mii Pi 0 mii 0
10 第三章动量与角动量
Mv mu (M m)v
例4 质量为 m 的匀质链条,全长为 L,
开始时,下端与地面的距离为 h , 当链 条自由下落在地面上时, 求 链条下落在地面上的长度为 l ( l<L )时, 解 设 地面所受链条的作用力。 h L m
链条在此时的速度 根据动量定理
解得
9
Ft1 Ft2 v2 m1 m2 m2
第三章动量与角动量
例3 如图所示,两部运水的卡车 A 、 B 在水平面上沿同 一方向运动,B的速度为u ,从B上以6kg/s的速率将水抽至 A上,水从管子尾部出口垂直落下,车与地面间的摩擦不 计,时刻 t 时,A车的质量为M,速度为v 。 求 时刻 t ,A 的瞬时加速度。
20 第三章动量与角动量
l
(法二) 类似火箭飞行的方法求解 系统是 已提升的质量(主体) m 和将要提升的质量dm
t
t dt
m0 0 m0 0 dm
x
F
x o
( F mg )dt dm0
dm F mg 0 dt m0 2 m0 F 0 xg l l
此例中方法2更简便些
变质量问题(低速,v << c)有两类:
▲粘附 — 主体的质量增加(如滚雪球) ▲抛射 — 主体的质量减少(如火箭发射) 还有另一类变质量问题是在高速(v c)情况下, 这时即使没有粘附和抛射,质量也可以改变— 随速度 变化 m = m(v),这是相对论情形,不在本节讨论之列。
下面以火箭飞行原理为例,讨论变质量问题。
V dV
速度 V
M
V
u
---喷气速度(相对火箭体)
第三章动量与角动量
17
根据动量定理列出原理式:
(M dM )(V dV ) dm(u V dV ) MV Fdt
假设在自由空间发射, M dV 注意到:dm = - dM, 按图示,可写出分量式,稍加整理为:
i
5
常矢量 P=mv
P= mivi 常矢量
第三章动量与角动量
讨论
1.动量守恒定律是牛顿第三定律的必然推论。 2. 动量定理及动量守恒定律只适用于惯性系。质点 系内各质点的速度必须是相对同一惯性参照系而言。 3. 动量若在某一惯性系中守恒,则在其他 一切惯性系中 均守恒。 4. 若某个方向上合外力为零,则该方向上动量守恒,尽管 总动量可能并不守恒 5. 当外力<<内力且作用时间极短时(如碰撞) 可认为动量近似守恒。 6. 动量守恒定律比牛顿定律更普遍、更基本 , 在宏观和 微观领域均适用。
Fdt (m dm)(v dv ) (mv dmu )
略去二阶无穷小量得
Fdt mdv v r dm
dm dv F vr m dt dt
15
Fdt mdv (v u )dm
vr u v
dm 与 m 合并前 相对于m 的速度
(密歇尔斯基方程)
第三章动量与角动量
11
例5 在恒星系中,两个质量分别为 m1 和 m2 的星球,原来 为静止,且相距为无穷远,后在引力的作用下,互相接近 ,到相距为 r 时,它们之间的相对速率为多少? 解 由动量守恒,机械能守恒
m1
x O 1 1 m1m2 2 2 m1v1 m2v 2 G 0 2 2 r 2G 2G v 2 m1 解得 v1 m2 (m1 m2 )r (m1 m2 )r
磁感强度的方向垂直
纸面向里 。
13
第三章动量与角动量
三、火箭飞行原理——变质量问题
“神州”号飞船升空
14 第三章动量与角动量
1. 变质量问题
设质点在 t 时刻的质量为 m,速度为v,由于外力 F 的作用 和质量的并入,到 t +dt 时刻,质点质量变为 m+dm,速度
变为 v+dv 。在 dt时间内,质量的增量为 dm,如 dm与 m 合并前的速度为 u,根据动量定理有
7.系统的内力可以改变系统内部各质点的动量,但不会引 起系统动量的改变,揭示了物体间的相互作用及机械运 动发生转移的规律。
6 第三章动量与角动量
思考:卫星绕地球作匀速圆周运动,动量是否 守恒?
Fn
地
动量不守恒。因为 Fn 作用,即 F外 0。
7
第三章动量与角动量
例1 炮车放在光滑地面上。炮车质量为 M,炮弹质量 为m。起始时静止当炮弹以 v ' 相对于炮车射出,求: 炮车在 x 方向的反冲速度 u 。 解: 动量定律在惯性系成立。射炮时, 炮车有加速度,为非惯性系。
时间各为 t1, t2
,设子弹在木块中所受的阻力为恒力F
求 子弹穿过后, 两木块各以多大速度运动 解 子弹穿过第一木块时,两木块速
度相同,均为v1
Ft1 m1 m2 v1 0
子弹穿过第二木块后,第二木块速度变为v2
Ft2 m2v 2 m2v1
Ft1 v1 m1 m2
m ml l l L
v 2 g(l h)
dm dl dt
fdt 0 (vdt )v v dt 2m(l h)g 2 f v v dt L
m F f ' ml g (3l 2h)g L 第三章动量与角动量
f '
地面受力
V
udM 0
M
M dV udM 0
M0 V V0 u ln M
提高火箭速度的途径有二: 第一条是提高火箭喷气速度u 第二条是加大火箭质量比M0/M
18 第三章动量与角动量
dM dV u M V0 M0
M0 火箭的质量比 N M
对应的措施是: 选优质燃料 采取多级火箭t14源自第三章动量与角动量t2
F外dt P P0
t1
微分形式?
动量定理
某段时间内,质点系动量的增量,等于 作用在质点系上所有外力在同一时间内 dP 的冲量的矢量和 F ——质点系动量定理
可以写成
F ma 吗?
注意后面的 讲解。
dt
质点动量守恒定律: F外 0 质点系动量守恒定律: Fi外 0
i
质点系
F
质点系中的重要结论之一 外力 external force 系统外部对质点系内部质点的作用力 约定:系统内任一质点受力之和写成
内力之和
Fi fi
外力之和
2 第三章动量与角动量
二、 质点系的动量定理 动量守恒定律 方法:对每个质点分别使用牛顿定律,然后利用质点系内力 的特点加以化简 获最简形式。
21 第三章动量与角动量
mg
0
m0 m x l
dm m0 dx dt l dt dx 0 dt
相对速率
mv1 mv 2 0
v1
v2
m2
v12 v1 v 2 m2
2G 2G m1 (m1 m2 )r (m1 m2 )r
12
第三章动量与角动量
两个质子发生二维的完全弹性碰撞
两个质子在盛有 液态氢的容器中发生 弹性碰撞 . 一个质子 从左向右运动, 与另 一个静止质子相碰撞, 碰撞后, 两个质子的 运动方向相互垂直 。
t1
mi
第2步,对所有 质点求和: 第3步,化简上式: 先看外力冲量之和 由于每个质点的受力 时间dt 相同,所以:
3
(
i
t2
t1
外力冲量之和 内力冲量之和
i
t2
t1
t2 t2 Fidt ( Fi )dt F外dt
t1 i t1
第三章动量与角动量
内力冲量之和 同样,由于每个质点的 受力时间dt 相同, 因为内力之和为零: 所以有结论:
v : 炮弹对地速度, v ' : 炮弹对车速度 u u : 车相对地的速度
Mu mv 0
N
y
v'
O
mg
mv 'cos u M m
x
v v 'cos u m(v 'cos u) Mu 0
8 第三章动量与角动量
例2 一粒子弹水平地穿过并排静止放置在光滑水平面上的 木块,已知两木块的质量分别为 m1, m2 ,子弹穿过两木块的
t 时刻, 火箭质量为 M,速度为 v
如果不计空气阻力,只计重力,则
Mdv dM Mg vr dt dt
dm dv F vr m dt dt
v 0
t 0
gdt
dM dv v r M0 M
M
M0 v v r ln gt M
19 第三章动量与角动量
例6 柔软的绳盘在桌面上,总质量为m0 , 总长度l 质量均匀分布,均匀地以速度v0 提绳。 求:绳子被拉上任一段后,绳端的拉力F。 解:(法一) 取整个绳子为研究对象
t2
i t1
t2
f i dt
i t1
t2
t2 fidt ( f i )dt
fi
mi
质点系
i
fi 0
t1
i
Fi
i t1
f i dt 0
内力的冲量 之和为零 质点系的重要结论之二