3数值微分

合集下载

数值分析-第4章 数值积分和数值微分

数值分析-第4章  数值积分和数值微分

A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即

b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1

数 值 微 分

数 值 微 分
ቤተ መጻሕፍቲ ባይዱ
2!
3!
4!
5!
代入(6.17)得
G(h) f (a) h2 f (a) h4 f (5) (a) (6.18)
3!
5!
由此可知,从截断误差的角度来看,步长越小,计算结果
越准确。但从舍入误差角度, h越小, f (a h) 与 f (a h)
越接近,直接相减会造成有效数字的严重损失。就舍
(n 1)!
(n 1)! dx
式中
(x)
n
(x
xk
)。在这一余项公式中,由于
k 0
ξ和x是未知函数,因此无法对它的第二项作出
估计,但在插值节点xk处,由于上式右端的第二 项因式 (xk ) 等于零,因而在插值节点处的导数 余项为
f (x) P(x) f (n1) ( ) (x)
(n 1)!
平均值。上述三种方法的截断误差分别为 O(h) 、
O(h2) 和 O(h2 )
如右图所示,前述三种导数
A
T
的近似值分别表示弦线 AB, C
B
AC和BC的斜率,将这三条
通过A点的弦的斜率与切线
x0-h
x0
x0+h
AT的斜率进行比较后,可见弦BC的斜率更接近于切
线AT的斜率 f (x,0 )因此从精度方面看,用中心差商 近似代替导数值更可取,则称
f
( x0
)
G(
h 2
)
1 3
G(
h) 2
G(h)
由此可以看出,只要当二分前后的2个近似值G(h)和
G( h ) 2
很接近,就可以保证 G( h ) 的截断误差很小,大
2
致等于
1 3

数值计算基础实验报告(3篇)

数值计算基础实验报告(3篇)

第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。

二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。

(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。

(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。

(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。

2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。

(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。

(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。

3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。

(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。

第4节 数值微分

第4节  数值微分

对于
f ( n1) ( ) R1 ( xk ) n 1 ( x k ) ( n 1)!
由 n1 ( xk ) ( xk x0 )( xk xk 1 )( xk xk 1 )( xk xn )

可知
f ( n 1 ) ( x ) M , x [a , b ]
M M n R1 ( xk ) ( x n x0 ) (b a ) n ( n 1)! ( n 1)! 0, ( n )
可知当分点越多时,用如下公式求数值微商越精确
f ( xk ) Ln ( xk ),
k 0,1,, n
对于插值型数值微商公式
f ( xk ) Ln ( xk ),
得到一阶中心差商数值微分公式
f ( x0 ) f ( x0 h) f ( x0 h) 2h R1 ( x0 ) O( h2 )
误差为
二阶中心差商数值微分公式为 f ( x0 h) 2 f ( x0 ) f ( x0 h) ( x0 ) f h2 误差为 R2 ( x0 ) O( h2 )
3! dx ( ) 1 2 df (4h 6hf ( )) O( h) 6 dx ( ) 1 2 df R2 ( x1 ) ( h ) O ( h2 ) R2 ( x2 ) O( h) 6 dx
总结一下,两点、三点数值微商公式:
一阶两点微商公式
f ( x1 ) f ( x0 ) f ( x0 ) h f ( x1 ) f ( x0 ) ( x1 ) f h 一阶三点微商公式 1 f ( x0 ) L2 ( x0 ) [3 f ( x0 ) 4 f ( x1 ) f ( x2 )] 2h

数学的数值微分

数学的数值微分

数学的数值微分数值微分是数学中研究函数变化率的一部分,它主要通过近似计算来确定函数在某一点的导数值。

数值微分在实际问题中具有重要的应用价值,特别是在科学计算、工程技术和金融领域。

本文将介绍数学的数值微分的概念、计算方法及其应用。

一、概念数值微分是利用数值方法来计算一个函数在给定点的导数值。

导数描述了函数在特定点的变化率,它的计算可以帮助我们理解函数的性质和行为。

然而,有些函数很难通过解析方法直接计算出导数,这时就需要使用数值微分的方法来进行近似计算。

二、计算方法常见的数值微分方法包括有限差分法和插值法。

有限差分法是通过计算函数在给定点的前后两个点上的函数值来近似计算导数值。

其中,向前差分法使用函数在当前点和下一个点的差值来计算导数;向后差分法使用函数在当前点和上一个点的差值来计算导数;中心差分法使用函数在当前点前后两个点的差值来计算导数。

插值法通过将函数的曲线与一条或多条插值曲线拟合,然后计算插值曲线在给定点的导数值。

常用的插值方法有拉格朗日插值和牛顿插值。

三、应用数值微分在实际问题中有广泛的应用。

以下是一些实际应用场景:1. 科学计算:数值微分在科学计算中具有重要作用,如物理学、化学和生物学等领域。

在物理学中,数值微分可以帮助计算物体在某一时刻的速度和加速度;在化学中,可以用来计算反应速率;在生物学中,可以用来研究细胞生长速率等。

2. 工程技术:数值微分在工程领域中有广泛的应用,如电路设计、信号处理和计算机图形学等。

在电路设计中,可以用来分析电路中的电流和电压变化;在信号处理中,可以用来计算信号的频率和相位;在计算机图形学中,可以用来计算图像的变化率。

3. 金融领域:数值微分在金融领域中也有重要的应用,如金融衍生品定价和风险管理等。

在金融衍生品定价中,可以使用数值微分来计算期权的Delta值和Gamma值;在风险管理中,可以用来计算投资组合的价值变动率。

四、总结数值微分是数学中研究函数变化率的一部分,通过近似计算来确定函数在某一点的导数值。

数值分析与计算方法的基本原理

数值分析与计算方法的基本原理

数值分析与计算方法的基本原理数值分析与计算方法是一门涉及数学、计算机科学和工程学的学科,主要研究如何利用数值计算的方法解决实际问题。

本文将从数值分析和计算方法的基本原理两个方面进行论述。

一、数值分析的基本原理数值分析的基本原理是通过数学方法对实际问题进行近似计算,以获得问题的数值解。

它主要涉及数值逼近、数值积分、数值微分和数值代数等方面。

1. 数值逼近数值逼近是指通过一系列已知的数值来近似表示一个函数或者数值。

其中最常用的方法是插值和拟合。

插值是通过已知数据点构造一个函数,使得该函数在这些点上与原函数值相等;拟合是通过已知数据点构造一个函数,使得该函数在这些点上与原函数的差别最小。

插值和拟合可以用于曲线拟合、数据预测等问题。

2. 数值积分数值积分是指通过数值计算的方法对函数的积分进行近似计算。

常用的数值积分方法有梯形法则、辛普森法则和龙贝格法则等。

这些方法通过将积分区间划分成若干小区间,在每个小区间上用简单的数值计算方法来估计积分值,然后将这些估计值相加得到近似的积分值。

3. 数值微分数值微分是指通过数值计算的方法对函数的导数进行近似计算。

常用的数值微分方法有有限差分法和微分拟合法。

有限差分法通过计算函数在某一点的前后差值来估计导数的值;微分拟合法通过在某一点附近构造一个拟合函数,然后计算该函数的导数来估计原函数的导数。

4. 数值代数数值代数是指通过数值计算的方法解决线性代数方程组、非线性方程和矩阵特征值等问题。

常用的数值代数方法有高斯消元法、迭代法和特征值分解等。

这些方法通过将复杂的代数问题转化为简单的数值计算问题来求解。

二、计算方法的基本原理计算方法是指利用计算机进行数值计算的方法,它主要涉及数值计算软件、算法设计和计算机编程等方面。

1. 数值计算软件数值计算软件是指专门用于进行数值计算的软件工具,如MATLAB、Python的NumPy库和SciPy库等。

这些软件提供了丰富的数学函数和数值计算工具,方便用户进行各种数值计算操作。

第3章 数值积分和数值微分

第3章 数值积分和数值微分

数值分析
插值型求积公式的代数精度
若形如 ab f ( x)dx n的A求k f积( x公k 式) 至少有n k 0
次代数精度,则
b
n
a l k ( x)dx
A j l k ( x j ) Ak
j 0
因为
l k (x j ) δkj
1 0
k j k j
故此时求积公式是插值型的。
定理:形如
A0 f (x0 )
解:令f (x) 1, x,得方程组: 解之得
x0
1 (a b) 2
A0
x0
A0
(b
b
2
a a2
)
/
2
于是得求积公式为 b f (x)dx (b a) f (b a )
a
2
数值分析
用代数精度来构造求积公式
例3:给定形如
1 0
f
(x)dx
A0
f
(0)
A1
f
Ai
b
a li ( x)dx
b a
n
i0, ik
x xi dx xk xi
h
n
0
n
i0, ik
ti ki
dt
(b
a
)C
(n k
)
数值分析
§4.2 牛顿—柯特斯公式

中C
(n k
)为


斯(Cotes)系

C (n) k
(1)nk n k!(n k)!
n
0 t(t 1) (t k 1)(t k 1) (t n)dt
1 (1)nk
nn
( (t i))dt, (k 0, , n)

数值微分与数值积分

数值微分与数值积分

数值微分与数值积分数值微分和数值积分是数值分析中两个重要的概念和技术。

它们在数学与工程领域中都有着广泛的应用。

本文将介绍数值微分和数值积分的概念、原理和应用。

1. 数值微分数值微分是指通过数值计算方法来逼近函数的导数。

在实际计算中,我们常常需要求解某一函数在特定点的导数值,这时数值微分就能派上用场了。

一种常用的数值微分方法是有限差分法。

它基于函数在离给定点很近的两个点上的函数值来逼近导数。

我们可以通过选取合适的差分间距h来求得函数在该点的导数值。

有限差分法的一般形式可以表示为:f'(x) ≈ (f(x+h) - f(x))/h其中,f'(x)是函数f(x)在点x处的导数值,h是差分间距。

数值微分方法有很多种,比如前向差分、后向差分和中心差分等。

根据实际需求和计算精度的要求,我们可以选择合适的数值微分方法来进行计算。

2. 数值积分数值积分是指通过数值计算方法来近似计算函数的定积分。

在实际问题中,我们经常需要求解函数在某一区间上的积分值,而数值积分可以提供一个快速而准确的近似。

一种常见的数值积分方法是复合梯形法。

它将积分区间分割成若干个小区间,然后在每个小区间上应用梯形面积的计算公式。

最后将所有小区间上的梯形面积相加,即可得到整个积分区间上的积分值。

复合梯形法的一般形式可以表示为:∫[a, b] f(x)dx ≈ h/2 * [f(a) + 2∑(i=1 to n-1)f(x_i) + f(b)]其中,[a, b]是积分区间,h是分割的小区间宽度,n是划分的小区间个数,x_i表示第i个小区间的起始点。

除了复合梯形法,还有其他常用的数值积分方法,比如复合辛普森法、龙贝格积分法等。

根据被积函数的性质和计算精度要求,我们可以选择合适的数值积分方法来进行计算。

3. 数值微分和数值积分的应用数值微分和数值积分在科学研究和工程实践中具有广泛的应用。

以下是一些常见的应用领域:3.1 物理学在物理学中,我们经常需要对物体的位置、速度和加速度进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ' ' ( x0,1,2 ) [ f ( x0 ) 2 f ( x1 ) f ( x2 )]/ h2
9
数值微分
X y 2.5 12.1825 2.6 13.4637 2.7 14.8797 2.8 16.4446 2.9 18.1741
例: 用两点法和三点法求x=2.7处的一阶
h=0.2:两点=(14.8797-12.1825)/0.2=13.486 三点=(18.1741-12.1825)/0.4=14.979 h=0.1:两点=(14.8797-13.4637)/0.1=14.160 三点=(16.4446-13.4637)/0.2=14.9045 函数y=ex,精确解为14.87973,三点比两点好.
中心差商:
f (a h) f (a h) f (a ) f ' (a) 2h 2h
可以看出中心差商实际是向前向后差商的平均值,所以 精度较高,较常采用. h越小精度越高,但h太小f(a+h)和f(a-h)非常接近(避免 两接近数相减),误差增加
3
数值微分
例:求f(x)=sqr(x)在x=2的导数值 精确值f´(2)=0.353553
8
数值微分
b.三点公式(x0,x1=x0+h,x2=x0+2h)
f ' ( x0 ) [3 f ( x0 ) 4 f ( x1 ) f ( x2 )] / 2h f ' ( x1 ) [ f ( x0 ) f ( x2 )] / 2h (常用 )
f ' ( x2 ) [ f ( x0 ) 4 f ( x1 ) f ( x2 )] / 2h
课后作业:请使用C语言程序实现此求导!
5
数值微分
6
数值微分
7
数值微分
2.多点求导公式
已知若干个节点的函数值,求某一点的导数
a.两点公式:将两点连为一直线,直线方程:
x x0 x x1 P( x) f ( x0 ) f ( x1 ) x0 x1 x1 x0
P' ( x0,1 ) [ f ( x1 ) f ( x0 )]/( x1 x0 )
f ( a h) f ( a ) f ' (a) h h0
由此我们得到下面三种近似的求导方法
向前差商:
f (a h) f (a ) f (a ) f ' (a) h h
2
数值微分
向后差商:
f ( a ) f ( a h ) f ( a ) f ' (a) h h
分析:步长较大时,截断误差较大,步长太小舍入误差又增 大,必须选取一个合适的步长
f ' (a)
2h 2h 2h
4
数值微分
变步长机械求导法:
例:求f(x)=ex在x=1的导数值 精确值f´(1)=2.71828
分析:每次将步长h减半,直到两次计算结果的差小 于要求的精度(如0一个函数求导数,理论上讲都可以精确 求解,不存在计算微分时无法求解的情况.但 如果函数非常复杂,而我们只想知道在某点 的导数值;或者函数是由若干分散的数据点 给出,没有具体的函数表达式,我们无法求解. 这时就要用到数值求解的方法.
1
数值微分
1.机械求导法
根据微分的定义:我们知道导数就是差商:
10
相关文档
最新文档