紧致性与分离性公理

合集下载

点集拓扑教学大纲

点集拓扑教学大纲
了解内容:拓扑空间中的序列及其收敛性;边界;
重点:拓扑空间
难点:基与子基、邻域基
第一节:度量空间与连续映射
内容1度量空间的俄概念、n维欧氏空间Rn、Hilbert空间H、离散度量空间;
内容2邻域、开集;
内容3度量空间映射的连续性。
第二节:拓扑空间与连续映射
内容1拓扑空间定义
内容2平庸空间、离散空间、有限补空间、可数补空间;


教学内容:
第一章:集合论初步4(学时数)
掌握内容:集合的基本运算,映射及其性质。
理解内容:关系;可数集、不可数集、基数。
了解内容:选择公理。
重点:集合的基本运算,映射及其性质;
难点:基数;选择公理。
第一节:集合及其运算
内容1集合、集合之间的关系;
内容2集合的运算
第二节:映射
内容1关系、等价关系;
第二节:(有限)积空间
内容1积拓扑、拓扑积空间的概念;
内容2积空间的基、子基
内容3开映射;积空间到分空间投射的性质、积拓扑的性质。
第三节:商空间
内容1商拓扑及其性质;
内容2商映射及其性质;
内容3商空间。
第四章:连通性6(学时数)
掌握内容:连通空间;
理解内容:局部连通、道路连通;
了解内容:连通空间、局部连通、道路连通的关系;
内容3分离性公理的有限可积性。
第六节:可度量化空间
内容1、Urysohn嵌入定理;
内容2、Hilbert空间的可分性;

内容3、可分的度量化空间的等价空间第七章:紧致性 Nhomakorabea(学时数)
掌握内容:紧致空间和紧致空间的等价条件;紧致性与分离性的关系;
了解内容:可数紧致、列紧、序列紧,局部紧致空间,仿紧致空间及其之间的关系

拓扑学教案

拓扑学教案

, 不用 0 个集之交.
二. 关系
R 是集合 X 的一个关系, 即 R X X , (x, y) R 记为 xRy , 称 x 与 y 是 R 相关的. R 称为自反的, 若 x X , xRx;
R 称为对称的, 若 xRy, 则 yRx; R 称为传递的, 若 xRy, yRz, 则 xRz. 等价关系: 自反、对称、传递的关系.
X1 X 2 ... X n
X 1in i
X n
i1 i
{(x1, x2 ...xn ) xi
Xi,i
n}到第 i 个坐标集 X i
的投射 pi : X X i 定义为 p(x) xi , 其中 x (x1,.., xn ) .
对等价关系 R, 集合 X 到商集 X / R 的自然投射 p : X X / R 定义为 p(x) [x]R .
四. 集族
数列{x n } {x n }nZ , 有标集族{A } , 指标集 Γ, 与{A } 不同, 可记有标集族
A {A }A ; 类似地, 定义其并 A (或∪A)、交 A (或∩ A), 不定义 0 个集的交.
与有限集族有相同的运 算律, 如 De Morgan 律
A A ( A A ), A A A ,
记号: Z, Z+, R, Q 分别表示整数集, 正整数集, 实数集和有理数集.
教学重点:集合的基本概念、运算,映射的概念;教学难点:选择公理
一. 集合的运算
幂集 P ( X ) , 交∩ 、并∪、差-(补, 余 Ac , A/ ).
运算律: De Morgan 律: (1) A - (B C) (A - B) (A - C) .
定理 1.4.1 设 R 是非空集合 X 的等价关系, 则

拓扑学中的紧致流形与流形同胚

拓扑学中的紧致流形与流形同胚

拓扑学是数学中的一个分支,研究空间形态上的性质。

其中,流形是拓扑学中的一个关键概念。

流形是指在局部上与欧几里德空间同胚的空间。

而在拓扑学中,紧致性是一个非常重要的性质。

本文将介绍紧致流形以及流形同胚的相关概念和性质。

首先,我们来了解什么是紧致性。

在拓扑学中,紧致性是指一个空间在拓扑结构下没有无限序列的收敛子列逃逸到无穷远的性质。

简单来说,紧致性可以理解为一个空间有限而有界。

一个空间如果同时满足Hausdorff分离公理和紧致性公理,则称为紧致空间。

接下来,我们来讨论什么是流形。

流形是一个局部上与欧几里德空间同胚的空间,即对于流形上的每一点,都存在一个邻域与欧几里德空间中的开集同胚。

流形可以是有限维或无限维的。

有限维流形是我们日常生活中更容易理解的,比如曲线、曲面等。

而无限维流形则涉及到更高级的数学对象。

那么,紧致流形就是同时具备紧致性和流形性质的空间。

紧致流形在数学研究中扮演着十分重要的角色。

紧致性保证了有限性和有界性,使得我们能够更好地进行研究和分析。

同时,流形性质保证了空间的局部性质与欧几里德空间的同胚性,使得我们可以借助欧几里德空间中的工具和技术来研究流形。

除了紧致性和流形性质外,我们还可以讨论流形之间的同胚。

同胚是指两个空间之间存在一个一一对应的映射,并且这个映射以及它的逆映射都是连续的。

流形同胚的概念可以理解为两个流形之间存在一种相似性,即它们的结构和性质是等价的。

研究流形同胚的一个重要问题是如何判断两个流形是否同胚。

在低维流形中,常用的方法是通过刻画流形的拓扑不变量来进行判断。

比如,欧几里德空间中的拓扑不变量是欧拉数,对于一维流形即曲线,欧拉数是0;对于二维流形即曲面,欧拉数是2-2g,其中g是曲面上的洞的个数。

通过计算拓扑不变量,我们可以判断流形之间是否同胚。

然而,在高维流形中,判断同胚关系就更加困难了。

在拓扑学中,尚未找到适用于所有高维流形的拓扑不变量。

因此,从数学角度上讲,给出两个高维流形是否同胚的判断依据仍然是一个开放的问题。

拓扑学第四章 紧致性

拓扑学第四章 紧致性

第四章 紧致性紧致性是数学分析中的重要概念。

尽管这个概念出现的较早,但是,从本质上讲,它是一个拓扑概念,也是一个最基本的拓扑性质。

我们先回顾一下度量空间紧性(列紧性)概念(在实直线上,紧性是描述闭区间性质的,而在实分析中,闭区间具有良好的性质)。

§4-1 度量空间(,)X d 中紧性(简单复习)定义1 设A 是(,)X d 的一个子集。

如果A 中任一无穷点列有子列收敛于X 中的一点,则称A 是相对列紧的;如果A 中每个收敛子列的极限点都属于A ,则称A 是列紧的; 如果(,)X d 本身是列紧的,则称为列紧空间。

注释:这里的紧性之所以成为列紧,是因为用序列收敛描述的。

●下面的结论是显然的(由于都是过去的知识,所以不加证明的给出) (1) 有限子集总是列紧的。

(2) 列紧空间是完备的(但,完备空间未必是列紧的)。

(3) 若A 是(,)X d 的列紧子集,则A 是(,)X d 的有界闭集。

(4) 在一般度量空间中,(3)成立,反之未必;如果(,)X d 是列紧空间,则 A 列紧 ⇒ A 是闭集。

(5) 列紧的度量空间必是可分的。

●进一步分析:列紧性能用来刻画闭集,但是,它是利用“序列”形式刻画的。

人们找出了一种非序列刻画的方式。

定义2 设A 是(,)X d 的一个子集。

U 是X 的一族开集,满足U U A ∈⊃U,则称U 为A 在X中的开覆盖;若U 中只有有限个子集,称U 为有限开覆盖;若X 本身的每一开覆盖都有一有限子覆盖,则称X 为紧致空间(有的书成为紧空间) ★ 理论上可以证明:对于度量空间来说,列紧性与紧致性是等价的。

即列紧空间⇔紧致空间(这在泛函分析书中都有介绍)。

§4-2 拓扑空间的紧性在数学分析中,人们很早就注意的,实直线上闭区间[,]a b 具有某些极好的性质,它对于证明极大值定理、一致连续性定理等起着至关重要的作用。

但是,如何在拓扑空间上表述这个特性,长期不得而知。

拓扑学的基本概念与性质

拓扑学的基本概念与性质

拓扑学的基本概念与性质拓扑学是数学中的一个分支,研究的是空间的性质和结构。

在拓扑学中,最基本的概念就是拓扑空间和拓扑性质。

本文将介绍拓扑学的基本概念和一些常见的拓扑性质。

一、拓扑空间的定义拓扑空间是一个集合,其中包含了一些特定的集合,这些集合被称为开集。

拓扑空间必须满足以下三个条件:1. 空集和整个集合本身必须是开集;2. 任意多个开集的交集仍然是开集;3. 有限个开集的并集仍然是开集。

除此之外,还有一些其他等价的定义方式,比如闭集的定义。

二、拓扑性质1. 连通性:若一个拓扑空间不可表示为两个非空、不相交的开集的并集,则称该空间是连通的。

换句话说,连通性指的是空间中的点之间无阻隔,可以通过连续的曲线将它们连接起来。

2. 紧致性:若一个拓扑空间中的任意开覆盖都存在有限子覆盖,称该空间是紧致的。

紧致性是一种十分重要的性质,它保证了一些重要的性质,比如有界性和完备性。

3. Hausdorff性:若一个拓扑空间中的任意两个不同的点都存在不相交的开邻域,则称该空间是Hausdorff空间。

Hausdorff性保证了拓扑空间中的点之间具有良好的分离性。

4. 可度量性:若一个拓扑空间中存在一种度量,使得拓扑与度量空间的拓扑完全相同,则称该空间是可度量的。

可度量性是一种强大的性质,使得我们可以使用度量空间的工具来研究拓扑空间。

5. 分离公理:分离公理是指拓扑空间中的点之间可以根据各种条件进行分离。

常见的分离公理有T0、T1、T2(Hausdorff性),T3、T4等。

这些公理使我们能够将点之间的关系进行精细的划分和研究。

6. 等价性:两个拓扑空间在某种条件下具有相同的特征和性质,我们就称它们是等价的。

拓扑学作为一门独立的数学学科,研究的是空间的基本性质和结构。

通过对拓扑空间的定义和拓扑性质的研究,我们可以更加深入地理解空间之间的关系,从而应用于各种领域,比如物理学、工程学和计算机科学等。

总结起来,拓扑学的基本概念包括拓扑空间和拓扑性质。

点集拓扑讲义

点集拓扑讲义

连通性和道路连通性
连通性的定义:如果点集中的任意两点都可以通过点集中的一条路径相连则称该点集是连通的。
道路连通性的定义:如果存在一条路径使得点集中任意两点都可以通过这条路径相连则称该点集是道路连通的。
连通性与道路连通性的关系:如果一个点集是连通的那么它一定是道路连通的;反之则不一定成立。
连通性和道路连通性的应用:在几何学、图论等领域中连通性和道路连通性是重要的概念对于研究点集的拓扑性 质和结构具有重要意义。
定理和性质的应用
定理和性质在数学领域中 的应用
在物理问题中的具体应用
在计算机科学中的实际应 用
在其他领域中的应用和推 广
在几何学中的应用
拓扑不变性:点集拓扑学中的概念指在拓扑变换下保持不变的性质。 几何结构:研究几何对象的拓扑性质如连通性、紧致性等。 流形:在点集拓扑学中流形是一类特殊的拓扑空间可以用来研究几何对象的形状和结构。 组合几何:利用点集拓扑学中的方法研究几何形状的组合和构造。
添加标题
同胚:在点集拓扑中如果存在一个从拓扑空间到拓扑空间B的连续映射并且这个映射可以逆向地由一个 从拓扑空间B到拓扑空间的连续映射构成则称拓扑空间与拓扑空间B同胚。
分离公理和紧致性
分离公理:点集拓扑中的基本性质指对于任意两个 不同的点存在一个开邻域不包含另一个点。
紧致性:点集拓扑中的基本性质指一个点集是紧致 的当且仅当它的闭包等于自身。
基的概念:拓扑空间中一个重要的概念是用来定义空间的拓扑结构的。基由若干个开集组成 满足一定的性质。
基的分类:根据基的性质可以将基分为第一类基和第二类基。第一类基是可数的第二类基是 不可数的。
基的性质:基具有连通性、可数性、分离性等性质这些性质对于研究拓扑空间的性质和结构 非常重要。

半拓扑空间的S-分离性与S-紧致性

半拓扑空间的S-分离性与S-紧致性

开集 . 如 果 存 在 里 的开 集 . 使 得
的一 个 半 拓 扑 空 间 [ : , 3 _ .

全 体半 开集 族 记 为 S . 0 . ( X) , 并称 ( , S . 0 . ( X) ) 为 透过 半开集 。 并 由此 衍 生 了半 拓 扑 概 念 . 以 及 准 半 连续 映 射 . 特 别 是 半 拓 扑 性 质 的 引入 . 使 得 这 方 面 的研 究 有 了 进 一 步 的发 展 . 本 文 的 主 要 研 究 内容 是 S 一 紧致性与 S 一 分离性 . 以 及 在 此 基 础 上研 究 它 们 之 间 的关 系 .
2 S一 分 离性
本 小 节 的 主 要 内容 是 介 绍 半 拓 扑 空 间 的 S 一 分
往下给 出 . s 一 分 离 性 的一 些 性 质 . 定理 2 . 2 X是 S . 一 空 间铮 的单 点 集是 半 闭集 . 证明 : 必要性 : 取x , y∈X, 当y #x时 , 按定义 , 有 存 在 U∈5 . 0 . ( X) , 使 得 ∈U且 Y隹U . 所 以 隹( , , ) 一 .
广 东技 术 师范 学 院学报 ( 自然科 学 ) 2 0 1 3年第 1 2期
J o u na r l o f Gu a n g d o n g P o l y t e c h n i c No r ma l Un i v e r s i t y
半 拓扑空 间的 S 一 分 离性 与 S 一 紧 致 性
得 ∈U且 Y隹U 或 Y∈U且 岳U.则 称 拓 扑 空 间
( , 厂) 满足 . s 分 离 性 公 理 , 称( , ,) 为 | s 空 间.
( 2 ) 如果对 于 V , Y∈X, 如果 ] 、 V∈S . 0 . ( ) ,

(完整word版)《点集拓扑讲义》第七章 紧致性 学习笔记

(完整word版)《点集拓扑讲义》第七章 紧致性 学习笔记

第7章紧致性§7.1 紧致空间本节重点:掌握紧致子集的定义及判断一个子集是紧致子集的方法.(这些方法哪些是充要条件);掌握紧致性是否是连续映射可保留的,是否是可遗传的、有限可积的.在§5.3中,我们用关于开覆盖和子覆盖的术语刻画了一类拓扑空间,即Lindeloff空间.现在来仿照这种做法,即将Lindeloff空间定义中的“可数子覆盖”换成“有限子覆盖”,以定义紧致空间.读者在数学分析中早已见过的Heine-Borel定理断言:实数空间R的任何一个子集为有界闭集的充分必要条件是它的每一个开覆盖都有一个有限子覆盖.(在§7.3中我们将要推广这个定理.)因此我们现在作的事也应当在意料之中.定义7.1.1 设X是一个拓扑空间.如果X的每一个开覆盖有一个有限子覆盖,则称拓扑空间X是一个紧致空间.明显地,每一个紧致空间都是Lindeloff空间.但反之不然,例如包含着无限但可数个点的离散空间是一个Lindeloff空间,但它不是一个紧致空间.例7.1.1实数空间R不是一个紧致空间.这是因为如果我们设A={(-n,n)R|b∈Z+},则A的任何一个有限子族{ },由于它的并为(-max{},max{})所以不是R的一个子覆盖.因此R的开覆盖A没有任何一个有限子覆盖.定义7.1.2 设X是一个拓扑空间,Y是X中的一个子集,如果Y作为X的子空间是一个紧致空间,则称Y是拓扑空间X的一个紧致子集.根据定义,拓扑空间X中的一个子集Y是X的紧致子集意味着每一个由子空间Y中的开集构成的Y的开覆盖有一个有限子覆盖,这并不明显地意味着由X中的开集构成的每一个Y的覆盖都有有限子覆盖.所以陈述以下定理是必要的.定理7.1.1 设X是一个拓扑空间,Y是X中的一个子集.则Y是X的一(此个紧致子集当且仅当每一个由X中的开集构成的Y的覆盖都有有限子覆盖.定理表明开覆盖中的开子集可以是X的,也可以是Y的)证明必要性设Y是拓扑空间X中的一个紧致子集,A是Y的一个覆盖,它由X中的开集构成.则容易验证集族A}也是Y的一个覆盖,它由Y中的开集构成.因此A有一个有限子覆盖,设为{},于是A的有限子族覆盖Y.充分性,假定每一个由X的开集构成的Y的覆盖都有一个有限子覆盖.设A是Y的一个覆盖,它由Y中的开集构成.则对于每一个A∈A存在X中的一个开集使得A=∩Y.因此A}是由X中的开集构成的Y的一个覆盖,所以有一个有限子覆盖,设为{}此时易见A的子族{}覆盖Y.这证明Y是X的一个紧致子集.下面介绍关于紧致性的一个等价说法.定义7.1.3 设A是一个集族.如果A的每一个有限子族都有非空的交(即如果是A的一个有限子族,则),则称A是一个具有有限交性质的集族.定理7.1.2 设X是一个拓扑空间.则X是一个紧致空间当且仅当X中的每一个具有有限交性质的闭集族都有非空的交.证明:设X是一个紧致空间.用反证法.设F是X中的一个具有有限交性质的闭集族.设F≠.如果,则令A={∈F}.由于所以A是X的一个开覆盖.于是A有一个有限子覆盖,设为{}.从而这说明F 不具有有限交性质.矛盾.“”,设X中的每一个具有有限交性质的闭集族都有非空的交.为证明X是一个紧致空间,设A是X的一个开覆盖.我们需要证明A有一个有限子覆盖.如果A=,则,这蕴涵X=以及A的每一个子族都是X的覆盖.以下假定A≠.此时F={|A∈A}便是X中的一个非空闭集族,并且因此,它不具有有限交性质.也就是说,它有一个有限子族其交为空集.设F的这个有限子族为{},则是X的一个有限子覆盖.如果B是紧致空间X的一个基,那么由B中的元素构成的X的一个覆盖当然是一个开覆盖,因此有有限子覆盖.下述定理指出,为验证拓扑空间的紧致性,只要验证由它的某一个基中的元素组成的覆盖有有限子覆盖.定理7.1.3 设B*是拓扑空间X的一个基,并且X的由B*中的元素构成的每一个覆盖有一个有限子覆盖.则X是一个紧致空间.证明A*设是X的一个开覆盖.对于每一个A∈A*存在B*的一个子族使得令由于故是一个由B*的元素构成的X的一个覆盖,所以有一个有限子覆盖,设为,对于每一个,i=1,2,…,n,于是对于A*的有限于族{}有也就是说A*有一个有限子覆盖{ }.这证明X是一个紧致空间.定理7.1.4 设X和Y是两个拓扑空间,f:X→Y是一个连续映射.如果A 是X的一个紧致子集,则f(A)是Y的一个紧致子集.证明设C*是f(A)的一个覆盖,它由Y中的开集组成.对于每一个C∈C*,由于f是一个连续映射,(C)是X中的一个开集所以A={(C)|C∈C*}是A的一个开覆盖.由于A是X的一个紧致子集,所以A有一个有限子族,设为{},覆盖A即{}是C*的一个子族并且覆盖f(A).这证明f(A)是Y的一个紧致子集.由上述定理可见,拓扑空间的紧致性是连续映射所保持的性质,因此是拓扑不变性质,也是一个可商性质.由此可见,由于实数空间R不是紧致空间,而每一个开区间都是与它同胚的,所以每一个开区间(作为子空间)都不是紧致空间.定理7.1.5 紧致空间中的每一个闭子集都是紧致子集.证明设Y是紧致空间X中的一个闭子集.如果A是Y的一个覆盖,它由X中的开集构成.则是X的一个开覆盖.设B1是B的一个有限子族并且覆盖X.则B1-{ }便是A的一个有限子族并且覆盖Y.这证明Y是X 的一个紧致子集.定理7.1.6 每一个拓扑空间必定是某一个紧致空间的开子空间.证明:设(X,T)是一个拓扑空间.令∞为任何一个不属于X的元素.令X*=X∪{∞}T*=T∪∪{X*}其中={E X*|X*-E是拓扑空间(X,T)中的一个紧致闭集}首先验证T*是集合X*的一个拓扑.(略)其次.证明(X*,T*)是一个紧致空间:设C*是X*的一个开覆盖.则存在C∈C*使得∞∈C.于是C∈,因此X*-C 是紧致的,并且C*-{C}是它的一个开覆盖.于是C*-{C}有一个有限子族,设为C1,覆盖X*-C.易见C1∪{C}是C*的一个有限子族,并且覆盖X*.最后,我们指出拓扑空间(X,T)是拓扑空间(X*,T*)的一个开子空间.这是因为T =及X是X*的一个开集.在以上定理的证明中由拓扑空间(X,T)构造出来的紧致空间(X*,T*),通常称为拓扑空间(X,T)的一点紧化.由于非紧致空间(它是存在的)是它的一点紧化的一个子空间,因此紧致性不是可遗传的性质.但由定理7.1.5可知紧致性是闭遗传的.以下定理表明紧致性是可积性质.定理7.1.7设是n≥1个紧致空间.则积空间是一个紧致空间.证明(略)作业:P188 1.4.5.§7.2紧致性与分离性公理本节重点:掌握紧致空间中各分离性公理的关系;掌握Hausdorff空间中紧致子集的性质.在本节中我们把第六章中研究的诸分离性公理和紧致性放在一起进行考察、我们将会发现在紧致空间中分离性公理变得十分简单了.此外在本节的后半部分,我们给出从紧致空间到Hausdorff空间的连续映射的一个十分重要的性质.定理7.2.1 设X是一个Hausdorff空间.如果A是X的一个不包含点x∈X 的紧致子集,则点x和紧致子集A分别有开邻域U和V使得U∩V=.证明设A是一个紧致子集,x∈.对于每一个y∈A,由于X是一个Hausdorff空间,故存在x的一个开邻域和y的一个开邻域.集族{|y∈A}明显是紧致子集A的一个开覆盖,它有一个有限子族,设为 {},覆盖A.令,它们分别是点x和集合A的开邻域.此外,由于对于每一个i=1,2,…,n有:所以推论7.2.2 Hausdorff空间中的每一个紧致子集都是闭集.证明设A是Hausdorff空间X的一个紧致子集.对于任何x∈X,如果x A,则根据定理7.2.1可见x不是A的凝聚点.因此凡A的凝聚点都在A中,从而A是一个闭集.推论7.2.2 结合定理7.1.5可见:推论7.2.3 在一个紧致的Hausdorff空间中,一个集合是闭集的充分必要条件是它是一个紧致子集.为了加强读者对定理7.1.5,推论7.2.2和推论7.2.3中的几个简单而常用的结论的印象,重新简明地列举如下:紧致空间:闭集紧致子集Hausdorff空间:闭集紧致子集紧致的hausdorff空间:闭集紧致子集推论7.2.4 每一个紧致的Haudorff空间都是正则空间.证明设A是紧致的Hausdorff空间X的一个闭子集,x是X中的一个不属于集合A的点.由于紧致空间中的闭子集是紧致的(参见定理7.1.5),所以A是一个紧致子集.又根据定理7.2.1,点x和集合A分别有开邻域U和V 使得U∩V=.这就证明了X是一个正则空间.定理7.2.5 设X是一个Hausdorff空间.如果A和B是X的两个无交的紧致子集,则它们分别有开邻域U和V使得U∩V=.证明设A和B是X的两个无交的紧致子集.对于任何x∈A,根据定理7.2.1,点x和集合B分别有开邻域.集族{|x∈A}是紧致子集A的一个开覆盖,它有一个有限子族,设为{ },覆盖A.令由于对于每一个i=1,2,…,n有∩V=,所以U∩V=.由于Hausdorff空间的每一个闭子集都是紧致子集,所以根据定理7.2.5立即有:推论7.2.6 每一个紧致的Hausdorff空间都是的,这个结论也可以根据推论7.2.4和定理6.4.3直接推出.根据这个推论联系着表6.1并且留意到每一个紧致空间都是Lindeloff空间这一事实,我们可有图表7.1.从这个图表中可以看出,在紧致空间中分离性公理显得特别简单.图表7.1:紧致空间中的分离性公理定理7.2.7 设X是一个正则空间.如果A是X中的一个紧致子集,U是A的一个开邻域,则存在A的一个开邻域V使得.证明设A是正则空间X中的一个紧致子集,U是A的一个开邻域.对于任何x∈A,点x有一个开邻域使得集族{|x∈A}是紧致子集A的一个开覆盖,它有有限子族,设为{ },覆盖A.令,它是A的一个开邻域,并且根据这个定理立即可见,每一个紧致的正则空间都是正规空间.然而这并不是什么新结论,因为每一个紧致空间都是Lindeloff空间,所以它明显地蕴涵于定理6.4.3中.然而紧致的正规空间可以不是正则空间.例子见于例6.2.3.在那个正规而非正则空间的例子中的拓扑空间只含有有限多个点,当然会是紧致的.定理7.2.8 从紧致空间到Hausdorff空间的任何一个连续映射都是闭映射.证明设X是一个紧致空间,Y是一个Hausdorff空间,f:X→Y是一个连续映射.如果A是紧致空间X中的一个闭子集.则它是紧致的(参见定理7.1.5),因此它的象集f(A)是Hausdorff空间Y中的一个紧致子集(参见定理7.1.4),所以又是闭集(参见推论7.2.2).这证明f是一个闭映射.因为一个既单且满的开(或闭)的连续映射即是一个同胚,所以我们有:推论7.2.9 从紧致空间到Hausdorff空间的任何一个既单且满的(即—一的)连续映射都是同胚.作业:P192 1.2.§7.3n维欧氏空间中的紧致子集定义7.3.1 设(X,ρ)是一个度量空间,A X.如果存在实数M>0使得ρ(x,y)<M对于所有x,y∈A成立,则称A是X的一个有界子集;如果X本身是一个有界子集,则称度量空间(X,ρ)是一个有界度量空间.定理7.3.1 紧致度量空间是有界的.证明设(X,ρ)是一个紧致度量空间.由球形邻域构成的集族{B(x,1)|x∈X}是X的一个开覆盖,它有一个有限子覆盖,设为{B(x1,1),B(x2,1),…,B(xn,1)}.令M=rnax{ρ(xi,xj)|1≤i,j≤n}十2如果x,y∈X,则存在i,j,1≤i,j≤n,使得x∈B(xi,l)和y∈B(xj,l).于是ρ(x,y)<ρ(x,xi)+ρ(xi,xj)十ρ(xj,y)<M因此度量空间中的每一个紧致子集都是有界子集.特别n维欧氏空间的每一个紧致子集都是有界的.下面作为引理给出单位闭区间[0,1]是一个紧致空间的证明.尽管读者可能早已熟知这个结论.引理7.3.2 单位闭区间[0,1]是一个紧致空间.证明设A是[0,1]的一个开覆盖.令P={x∈[0,l]|A有一个有限子族覆盖[0,x]}它是[0,1]的一个子集.对于集合P,我们依次证明,(l)P.因为显然0∈P;(2)P是一个开集.设x∈P.则A有一个有限子族,设为{ },覆盖[0,x].当x=1时,易见P=[0,l],它是一个开集.因此x是P的一个内点.下设x<1.这时对于某一个i0,1≤i0≤n,有x∈.由于是[0,1]中的一个开集,所以存在实数ε>0使得[x,x+ε).于是[0,x+ε)..这蕴涵[0,x+ε)P.由于[0,x+ε)是[0,1]中的一个包含x的开集,所以x是P的一个内点.以上证明了集合P中的任何一个点都是P的内点,所以它是一个开集.(3)P是一个闭集.设x∈=[0,1]-P.根据集合P的定义可见,[x,1].另外根据(1)可见.0<x.选取选取A∈A使得x∈A.由于A是一个开集,所以存在实数ε>0使得(x-ε,x]A.假如(x-ε,x]∩P≠,设z∈(x-ε,x]∩P.则A有一个有限子族A1覆盖[0,z],因此A的有限子族A1∪{A}覆盖[0,x],这与x P矛盾.所以(x-ε,x]∩P=,即(x-ε,x],从而(x-ε,1],因此x是的一个内点.这证明是一个开集,即P是一个闭集.根据上述三条,P是[0,l]中的一个既开又闭的非空子集.由于[0,1]是一个连通空间,所以P=[0,1],特别,1∈P.这也就是说A有一个有限子族覆盖[0,1].以上证明了[0,1]的任何一个开覆盖有有限子覆盖,故[0,1]是一个紧致空间.任何一个闭区间[a,b](a<b),由于它和单位闭区间[0,1]同胚,所以是紧致的.并且作为紧致空间的积空间,可见n维欧氏空间中任何一个闭方体(a<b)也是紧致空间.定理7.3.3 设A是n维欧氏空间中的一个子集.则A是一个紧致子集当且仅当A是一个有界闭集.证明设ρ是n维欧氏空间的通常度量.“”:如果A是一个紧致子集,则根据定理7.3.1,它是有界的;由于是一个Hausdorff空间,根据推论7.2.2,它是一个闭集.“”:设A是一个有界闭集.如果A=,则A是紧致的.下设A.于是存在实数M>0使得对于任何x,y∈A有ρ(x,y)<M.任意选取x0∈A,并且令N=M十ρ(0,x0),其中0=(0,0,…,0)∈.容易验证(根据三角不等式)A.因此A作为紧致空间中的一个闭子集必定是紧致的.定理7.3.4 设X是一个非空的紧致空间,f:X→R是一个连续映射.则存在x0,x1∈X使得对于任意x∈X有f(x0)≤f(x)≤f(x1)换言之,从非空的紧致空间到实数空间R的任何一个连续映射都可以取到最大点与最小点.证明由于X紧致,故根据定理7.1.4可见f(X)是实数空间R中的一个紧致子集.由于R是一个Hausdorff空间,所以f(X)是一个闭集.设m和M 分别为集合f(X)的下,上确界,则m,M∈f(X).因此存在x0,x1∈X使得f(x0)=m和f(x1)=M.根据上,下确界的定义立即可见,对于任何x∈X有f (x0)≤f(x)≤f(x1).此外,由于m维单位球面是一个有界闭集,所以是紧致的,n维欧氏空间不是紧致的,而紧致性又是一个拓扑不变性质,所以:定理7.3.5 设m,n∈Z+.则m维单位球面与n维欧氏空间不同胚.这是通过拓扑不变性质区分不同胚的拓扑空间的又一个例子.作业:P196 1. 2.§7.4几种紧致性以及其间的关系本节重点:掌握新定义的几种紧致性的定义及它们之间的关系.读者已从数学分析的学习中知道了以下命题:实数空间中的一个子集A 如果满足以下条件(l)~(4)中的任何一条,则满足其他的几条.(l)A是一个有界闭集;(2)A的每一个开覆盖都有有限子覆盖;(3)A中的每一个无限子集都有凝聚点在A中;(4)A中的每一个序列都有收敛的子序列收敛于A中的点.这几个条件的重要意义,读者应当早就有所体会了.不难发现这四条中以惟有(l)中涉及的概念有赖于度量,其余(2),(3)和(4)三条中所涉及的概念都只是牵连到拓扑.我们当然希望在一般的拓扑空间中还能建立条件(2),(3)和(4)的等价性;假如不能,讨论在何种条件下它们等价也是一件有意义的事.本节我们研究这个问题.为了研究问题时的方便,引进以下条件(5)作为讨论的中间站.(5)A的每一个可数开覆盖都有有限子覆盖.定义7.4.l 设X是一个拓扑空间.如果X的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X是一个可数紧致空间.以下两个定理的证明十分容易,请读者自己补证.定理7.4.1 每一个紧致空间都是可数紧致空间.定理7.4.2 每一个Lindeloff的可数紧致空间都是紧致空间.定义7.4.2 设X是一个拓扑空间.如果X的每一个无限子集都有凝聚点,则称拓扑空间X是一个列紧空间.定理7.4.3 每一个可数紧致空间都是列紧空间.证明设X是一个可数紧致空间.为了证明它是一个列紧空间,我们只要证明它的每一个可数的无限子集都有凝聚点,现在用反证法来证明这一点.假设X有一个可数无限子集A没有凝聚点.首先这蕴涵A是一个闭集.此外对于每一个a∈A,由于a不是A的凝聚点,所以存在a的一个开邻域使得∩A={a}.于是集族{|a∈A}∪{}是X的一个开覆盖.由于X是可数紧致空间,它有一个有限子覆盖,不妨设为{} 由于与A无交,所以{}必定覆盖A.因此,A=()∩A={a1,a2,…an}是一个有限集.这是一个矛盾.定义7.4.3 设是一个由集合构成的序列,如果它满足条件:对于每一个i∈Z+成立,即则称序列是一个下降序列.在某一个拓扑空间中的一个由非空闭集构成的下降序列也叫做一个非空闭集下降序列.引理7.4.4 设X是一个拓扑空间.则拓扑空间X是一个可数紧致空间当且仅当由X中任何一个非空闭集下降序列,有非空的交,即证明设可数紧致空间X中的非空闭集下降序列使得于是是X的一个开覆盖,它有一个有限子覆盖,设为{}由此可得这是一个矛盾.另一方面,设拓扑空间X中的每一个非空闭集下降序列都有非空的交.如果X不是一个可数紧致空间,则X有一个可数开覆盖,设为{ },没有有限子覆盖.对于每一个i∈Z+,令则{}也是X的一个开覆盖,没有有限子覆盖,并且满足条件:因此是一个非空闭集下降序列,所以.由此可见.也就是说{}不是X的一个覆盖,这是一个矛盾.定理7.4.5 每一个列紧的空间都是可数紧致空间.证明设X是一个列紧的空间.如果X不是一个可数紧致空间,则根据引理7.4.4,X中有一个非空闭集下降序列,使得在每一个中选取一点,并且考虑集合A={}如果A是一个有限集,则必有一点x∈A和一个正整数的严格递增序列n1,n2,…使得于是对于任何i∈Z+有x∈.这是因为,于是x∈,这与反证假设矛盾.设A是一个无限集.由于X是一个列紧空间,所以A有一个凝聚点,设为y.由于X是一个空间(它的每一个有限子集都是闭集),易见对于每一个i∈Z+,点y也是集合的一个凝聚点;又由于.这也与反证假定矛盾.定义7.4.4 设X是一个拓扑空间.如果X中的每一个序列都有一个收敛的子序列,称拓扑空间X是一个序列紧致空间.定理7.4.6 每一个序列紧致空间都是可数紧致空间.证明设X是一个序列紧致空间,{}是X中的一个非空闭集下降序列.在每.对于每一个i∈Z+,.根据引理7.4.4X 是一个可数紧致空间.定理7.4.7 每一个满足第一可数性公理的可数紧致空间都是序列紧致空间.证明设X是一个满足第一可数性公理的可数紧致空间,设.对于每一个i∈Z+,令和.于是是拓扑空间X中的一个非空闭集下降序列,因此根据引理7.4.4,我们有.由于X满足第一可数性公理,根据定理5.1.8,在点x处有一个可数邻域基{ }满足条件:对于任意j∈Z+成立.令对于每一个i>l,令,于是是一个严格递增的正整数序列.并且对于每一个i∈Z+成立.我们来证明序列{}的子序列{}收敛于x:设U是x的一个邻域.存在某一个k∈Z+,使得,于是当i>k时我们有根据本节中的各个定理,我们可以得到图表7.2.根据这个表立即可以知:推论7.4.8 设X是一个满足第二可数性公理的空间,A是X的一个子集.则下列条件等价:(l)A的每一个开覆盖都有有限子覆盖;(2)A的每一个可数开覆盖都有有限子覆盖;(3)A中的每一个序列都有子序列收敛于A中的点;(4)A中的每一个无限子集都有凝聚点在A中.特别,对于n维欧氏空间的子集以上推论成立,并且推论中的每一个条件都等价于A是一个有界闭集.作业:P201 1§7.5度量空间中的紧致性本节重点:掌握度量空间中的紧致空间、可数紧致空间、序列紧致空间、列紧空间之间的关系.由于度量空间满足第一可数性公理,同时也是空间,所以上一节中的讨论(参见表7.2)因此我们,一个度量空间是可数紧致空间当且仅当它是列紧空间,也当且仅当它是序列紧致空间.但由于度量空间不一定就是Lindeloff空间,因此从定理7.4.2并不能断定列紧的度量空间是否一定就是紧致空间.本节研究这个问题并给出肯定的回答.定义7.5.1 设A是度量空间(X,ρ)中的一个非空子集.集合A的直径diam(A)定义为diam(A)=sup{ρ(x,y)|x,y∈A}若A是有界的diam(A)=∞ 若A是无界的定义7.5.2 设(X,ρ)是一个度量空间,A是X的一个开覆盖.实数λ>0称为开覆盖A的一个Lebesgue数,如果对于X中的任何一个子集A,只要diam(A)<λ,则 A包含于开覆盖A的某一个元素之中.Lebesgue数不一定存在.例如考虑实数空间R的开覆盖{(-∞,1)}∪{(n-1/n,n+1+1/n) |n∈Z+}则任何一个正实数都不是它的Lebesgue数.(请读者自补证明.)定理7.5.1[Lebesgue数定理] 序列紧致的度量空间的每一个开覆盖有一个Lebesgue数.证明设X是一个序列紧致的度量空间,A是X的一个开覆盖.假若开覆盖A没有Lebesgue 数,则对于任何i∈Z+,实数1/i不是A的Lebesgue数,所以X有一个子集E,使得diam(E)<1/i并且Ei不包含于A的任何元素之中.在每一个之中任意选取一个点,由于X是一个序列紧致空间,所以序列有一个收敛的子序列.由于A是X的一个开覆盖,故存在A∈A使得y∈A,并且存在实数ε>0使得球形邻域B(y,ε)A.由于,所以存在整数M>0使得当i>M时.令k为任意一个整数,使得k>M+2/ε,则对于任何有ρ(x,y)≤ρ(x,)+ρ(,y)<ε这证明A与的选取矛盾.定理7.5.2 每一个序列紧致的度量空间都是紧致空间.证明设X是一个序列紧致的度量空间,A是X的一个开覆盖.根据定理7.5.1,X的开覆盖A有一个Lebesgue数,设为λ>0.令B={B(x,λ/3)}.它是X的一个开覆盖.我们先来证明B有一个有限子覆盖.假设B没有有限子覆盖.任意选取一点∈X.对于i>1,假定点已经取定,由于不是X的覆盖,选取.按照归纳原则,序列已经取定.易见对于任何i,j∈Z+,i≠j,有ρ()>λ/3.序列没有任何收敛的子序列.(因为任何y∈X的球形邻域B(y,λ/6)中最多只能包含这个序列中的一个点.)这与X是序列紧致空间相矛盾.现在设{}是开覆盖B的一个有限子覆盖.由于其中每一个元素的直径都小于λ,所以对于每一个i=1,2,…,n存在使得B(,λ/3).于是{}是A的一个子覆盖.因此,根据定理7.5.2以及前一节中的讨论可见:定理7.5.3 设X是一个度量空间.则下列条件等价:(1)X是一个紧致空间;(2)X是一个列紧空间;(3)X是一个序列紧致空间;(4)X是一个可数紧致空间.我们将定理7.5.3的结论列为图表7.3以示强调.作业:P205 1.本章总结:(1)重点是紧致性、紧致性与分离性的关系.(2)度量空间(特别是)中的紧致性性质要掌握.(3)紧致性是否是连续映射所能保持的、可积的、可遗传的?证明时牵涉到的闭集要注意是哪个空间的闭集.§7.6局部紧致空间,仿紧致空间本节重点:掌握局部紧致空间、仿紧致空间的定义.性质;掌握局部紧致空间、仿紧致空间中各分离性公理空间之间的关系;掌握局部紧致空间、仿紧致空间与紧致空间之间的关系.定义7.6.1 设X是一个拓扑空间,如果X中的每一个点都有一个紧致的邻域,则称拓扑空间X是一个局部紧致空间.由定义立即可见,每一个紧致空间都是局部紧致空间,因为紧致空间本身便是它的每一个点的紧致邻域.n维欧氏空间也是局部紧致空间,因为其中的任何一个球形邻域的闭包都是紧致的.定理7.6.1 每一个局部紧致的空间都是正则空间.证明设X是一个局部紧致的Hausdorff空间,设x∈X,U是x的一个开邻域.令D是x的一个紧致邻域,作为Hausdorff空间X的紧致子集,D是X中的闭集.由推论7.2.4,D作为子空间是一个紧致的Hausdorff空间,所以是一个正则空间.是x在子空间D中的一个开邻域,其中是集合D在拓扑空间X中的内部.从而x在子空间D中有一个开邻域V使得它在子空间D中的闭包包含于W.一方面V是子空间D中的一个开集,并且又包含于W,因此V 是子空间W中的一个开集,而W是X中的一个开集,所以V也是X中的开集.另一方面,由于D是X的闭集,所以V在D中的闭包便是V在X中的闭包因此点x在X中的开邻域V使得.因此X是一个正则空间.定理7.6.2 设X是一个局部紧致的正则空间,x∈X,则点x的所有紧致邻域构成的集族是拓扑空间X在点x处的一个邻域基.证明设U是x∈X的一个开邻域.令D为x的一个紧致邻域,则是x的一个开邻域.因为X是正则空间,所以存在x的开邻域V使得.闭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理7.2.1
定理7.2.5
作业
§7.2紧致性与分离性公理
本节重点:
掌握紧致空间中各分离性公理的关系;
掌握Hausdorff空间中紧致子集的性质.
在本节中我们把第六章中研究的诸分离性公理和紧致性放在一起进行考察、我们将会发现在紧致空间中分离性公理变得十分简单了.此外在本节的后半部分,我们给出从紧致空间到Hausdorff空间的连续映射的一个十分重要的性质.
定理7.2.1 设X是一个Hausdorff空间.如果A是X的一个不包含点x∈X的紧致子集,则点x和紧致子集A分别有开邻域U和V使得U∩V=.
证明设A是一个紧致子集,x∈.对于每一个y∈A,由于X是一个Hausdorff空间,故存在x的一个开邻域和y的一个开邻域.集族{|y∈A}明显是紧致子集A的一个开覆盖,它有一个有限子族,设为 {},覆盖A.令
,它们分别是点x和集合A的开邻域.此外,由于对于每一个i=1,2,…,n有:
所以
推论7.2.2 Hausdorff空间中的每一个紧致子集都是闭集.
证明设A是Hausdorff空间X的一个紧致子集.对于任何x∈X,如果x A,则根据定理7.2.1可见x不是A的凝聚点.因此凡A的凝聚点都在A中,从而A是一个闭集.
推论7.2.2 结合定理7.1.5可见:
推论7.2.3 在一个紧致的Hausdorff空间中,一个集合是闭集的充分必要条件是它是一个紧致子集.
为了加强读者对定理7.1.5,推论7.2.2和推论7.2.3中的几个简单而常用的结论的印象,重新简明地列举如下:
紧致空间:闭集紧致子集
Hausdorff空间:闭集紧致子集
紧致的hausdorff空间:闭集紧致子集
推论7.2.4 每一个紧致的Haudorff空间都是正则空间.
证明设A是紧致的Hausdorff空间X的一个闭子集,x是X中的一个不属于集合A的点.由于紧致空间中的闭子集是紧致的(参见定理7.1.5),所以A是一个紧致子集.又根
据定理7.2.1,点x和集合A分别有开邻域U和V使得U∩V=.这就证明了X是一个正则空间.
定理7.2.5 设X是一个Hausdorff空间.如果A和B是X的两个无交的紧致子集,则它们分别有开邻域U和V使得U∩V=.
证明设A和B是X的两个无交的紧致子集.对于任何x∈A,根据定理7.2.1,点x
和集合B分别有开邻域.集族{|x∈A}是紧致子集A的一个开覆盖,它有一个有限子族,设为{ },覆盖A.令
由于对于每一个i=1,2,…,n有∩V=,所以U∩V=.
由于Hausdorff空间的每一个闭子集都是紧致子集,所以根据定理7.2.5立即有:
推论7.2.6 每一个紧致的Hausdorff空间都是的,
这个结论也可以根据推论7.2.4和定理6.4.3直接推出.根据这个推论联系着表6.1
并且留意到每一个紧致空间都是Lindeloff空间这一事实,我们可有图表7.1.从这个图表中可以看出,在紧致空间中分离性公理显得特别简单.
图表7.1:紧致空间中的分离性公理
定理7.2.7 设X是一个正则空间.如果A是X中的一个紧致子集,U是A的一个开邻域,则存在A的一个开邻域V使得.
证明设A是正则空间X中的一个紧致子集,U是A的一个开邻域.对于任何x∈A,点x有一个开邻域使得集族{|x∈A}是紧致子集A的一个开覆盖,它有有限子族,设为{ },覆盖A.令,它是A的一个开邻域,并且
根据这个定理立即可见,每一个紧致的正则空间都是正规空间.然而这并不是什么新结论,因为每一个紧致空间都是Lindeloff空间,所以它明显地蕴涵于定理6.4.3中.
然而紧致的正规空间可以不是正则空间.例子见于例6.2.3.在那个正规而非正则空间的例子中的拓扑空间只含有有限多个点,当然会是紧致的.
定理7.2.8 从紧致空间到Hausdorff空间的任何一个连续映射都是闭映射.
证明设X是一个紧致空间,Y是一个Hausdorff空间,f:X→Y是一个连续映射.如果A是紧致空间X中的一个闭子集.则它是紧致的(参见定理 7.1.5),因此它的象集f(A)是Hausdorff空间Y中的一个紧致子集(参见定理7.1.4),所以又是闭集(参见推论
7.2.2).这证明f是一个闭映射.
因为一个既单且满的开(或闭)的连续映射即是一个同胚,所以我们有:
推论7.2.9 从紧致空间到Hausdorff空间的任何一个既单且满的(即—一的)连续映射都是同胚.
作业:
P192 1.2.。

相关文档
最新文档