风机变桨控制系统简介

合集下载

FD82B风机变桨系统介绍

FD82B风机变桨系统介绍
电压能满足系统紧急回桨时候的能量需求。
●电流互感器: 电流互感器的作用是检测变桨电机的运行电流。
●A、B编码器: 每台变桨电机都要安装一个A编码器,每个桨叶的变桨轴
承内都要安装一个B编码器,因此1套变桨系统共有3个A编 码器和3个B编码器。
●限位开关
保证变桨模 式的准确, 可靠顺浆停 车,确保风 机的可靠运 行及安全 性。
●变桨控制器的主要控制流程 1、蓄电池充电控制流程; 2、超速保护控制流程; 3、桨叶调整控制流程;
●变桨控制器端口图:
E1、E2、E3、E4为数字量输入端口;E5为PT100输入端口;E6为0-20ma 与0-10V输入端口;A1、A2、A3、为数字量与模拟量输出端口;Z1、Z2、 Z3为编码器输入端口。
●变桨控制器的操作面板图
●变桨控制器的面板实现3个蓄电池柜充电功能,输入电压 220VAC、频率50HZ,输出电压244VDC,输出电流1.08A。 充电器外形图如下:
●变桨系统充电回路控制继电器 变桨系统充电器回路共有三个继电器,通过 它们按照控制要求切换来完成变桨系统三个 后备电源的循环充电工作。
4、系统的原理:
●变桨控制系统作为风力发电机组控制系统的重要组成部分, 通过调节叶片角度使风机达到最大的风能利用率,并在各 种风况下控制功率与转速的平衡,同时在大风情况下能及 时回桨,保证风机的安全。
● 变桨控制系统的主要目的是在风机主控制系统的协调控 制下,接收风机主控系统的变桨控制指令。在低于风机额 定风速的情况下使桨叶稳定控制在0°附近,保持风能的最 大可利用率。在风速高于额定风速的情况下,调整叶片角 度大于0°,保持风机功率为额定值,同时保持风机稳定可 靠地运行。当风速超过切出风速时能按照主控系统的指令 及时回桨。

风机控制系统-变桨

风机控制系统-变桨
Байду номын сангаас
1、驱动故障 2、接触器故障 3、编码器溢出 4、通讯故障 5……
4、带照明灯、手机、对讲机
5……
18
问题讨论
1、变桨同步误差过大;(机械问题,反馈问题)
2、驱动器超温;(自然环境、电气环境) 3、电机超温;(电机本身、负载??)
19
谢谢!
9
工作原理
电动变桨系统
10
工作原理
11
工作原理
12
原理图示意
13
各部件介绍
变桨电机(选型、相关计算)
优点 缺点?
14
变桨电机
15
各部件介绍
驱动器、编码器、限位开关、电池(超级电容)
光电转换
轴承
安装
光栅码盘 16
部件介绍
存放 维护 检测
17
变桨常见故障
常见故障以及处理方式: 安全操作: 1、风速一般不超过12米/s 2、主轴锁定销必须锁定 3、系安全带,挂安全绳
液压系统
7
变桨的构成-电动变桨
系统组成: 驱动器、电机、编码器、减速机、限位开关。
优点:组合灵活、技术成熟、环境适应能力强、防沙尘、腐蚀
缺点:容量增加时电机体积变大
8
工作原理
液压变桨 变桨距伺服控制系统的原理图如图1所示。变桨距控制系统由信 号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、 执行机构和反馈回路组成。
者停机时,调节桨叶作为机组第一刹车制动。
2
变桨的类型
按照工作方式可分为:统一变桨和独立变桨; 按照动力类型可分为:液压变桨和电动变桨;(上海电气、Vestas、歌美飒、 西门子、北重……DEWIND)

风机变桨系统结构、原理及典型故障处理

风机变桨系统结构、原理及典型故障处理
当风速超过额定风速时,通过控制叶片角度 来控制风机的转速和功率维持在一个最优的水平;
当风速低于额定风速时,通过调整叶片角度 从风中吸收更多的风能,得到最佳的发电功率;
当安全链被打开时,叶片转到顺桨位置,可 作为空气动力制动装置使机组安全停机;
利用风和叶轮的相互作用,减小摆动从而将 机械负载最小化。
顺桨位置
采用变桨矩调节,风机的启动性好、刹车机构 简单,叶片顺桨后风轮转速可以逐渐下降、额定点 以前的功率输出饱满、额定点以后的输出功率平滑、 风轮叶根承受的动、静载荷小。变桨系统作为基本 制动系统,可以在额定功率范围内对风机转速进行 控制。
变桨系统的构成
变桨系统包括三个主要部件,变桨轴承、变 桨驱动装置-变桨电机和变桨齿轮箱、变桨控制 柜。如果一个驱动装置发生故障,另两个驱动装 置可以安全地使风机停机。
变桨系统如何实现变桨控制
从站PLC控制操作
电气变桨系统,3 个变桨变频器控 制的变桨电机间 接变速装置(伺 服电机)
机舱内的电池系 统
变桨系统的Leabharlann 点变桨控制系统是通过改变叶片角度,实现功率 变化来进行调节的。通过在叶片和轮毂之间安装的 变桨驱动装置带动变桨轴承转动从而改变叶片角度, 由此控制叶片的升力,以达到控制作用在风轮叶片 上的扭矩和功率的目的。
电机连接 工作时间
动态工作
用一个风扇强制风冷
一个内置在定子绕组中的 Pt-100
变频器操作,增加 du/dt 值,增加铁心损耗,增加电 压峰值
单传动, 闭合环路
100 %,当制动器有飞轮 时,电机必须持续保持叶 片在工作位置
最大加速度125 1 rpm/s
扭矩限制 电缆长度 使用寿命
工作位置
变桨系统原理

风电 变桨系统简介

风电   变桨系统简介
2014-2-28
• 独立变桨系统结构示意图
变桨驱动装置
变 桨 轴 承
2014-2-28
• 变桨驱动装置
2014-2-28
2014-2-28
• 定速变桨距调节
2014-2-28
• 变速变桨调节
2014-2-28
2014-2-28谢谢观赏2Fra bibliotek14-2-28
• (2)偏航 偏航的定义是航空器的实际飞行路线(航迹 线)偏离预定航线的现象。 偏航系统是风力发电机组特有的控制系统。 偏航控制系统主要由偏航测量、偏航驱动 传动部分、纽缆保护装置三大部分组成。 主要实现两个功能:一是使机舱跟踪变化稳 定的风向;二是由于偏航的作用导致机舱内 部电缆发生缠绕而自动解除缠绕
2014-2-28
• 轴控箱
2014-2-28
• 电池柜
每个叶片分配一个电池箱。在供电故障或 EFC 信号(紧急顺桨控制信号) 复位的情况下,电池供电控制每个叶片转动到顺桨位置。
2014-2-28
• 轮毂内变桨构成实物图
2014-2-28
• 滑环实物图
2014-2-28
• 编码器
每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电 机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承 内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部 编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨 系统应用冗余编码器的信号。
2014-2-28
• 限位开关:进行变桨调节时,为了预防桨距角超过设定
值,在设定值处安装了限位开关,当齿轮转到限位开关处, 限位开关的撞杆会把信号通过电缆传递给控制柜,提示变 桨轴承已经处于极限工作位置,对变桨电机刹车抱闸。

变桨系统介绍

变桨系统介绍

变桨系统介绍一、变桨系统变桨距是指风力发电机安装在轮毂上的叶片借助控制技术和动力系统改变桨距角的大小改变叶片气动特性,使桨叶在整机受力状况大为改善。

变桨距机构就是在额定风速附近(以上),依据风速的变化随时调节浆距角,控制吸收的机械能,一方面保证获取最大的能量(与额定功率对应)。

同是减少风力对风力机的冲击。

在并网过程中,还可以实现快速无冲击并网。

变桨距控制与变速恒频技术相配合,最终提高了整个风力发电系统的发电效率和电能质量。

电动变桨距系统就是可以允许3个浆叶独立实现变桨,它提供给风力发电机组功率输出和足够的刹车制动能力。

这样可以避免过载对风机的破坏。

我们都知道我们的每个变桨盘都有一个超级电容和伺服电机放置在轮毂处,每支桨叶一套,当然超级电容放置在变桨控制柜里。

控制柜放置在轮毂与叶片连接处。

整个系统的通信总线和电缆靠滑环与主控连接。

主控与变桨盘通过现场总线通讯,达到控制3个独立的变将装置的目的。

主控根据风速,发电机功率和转速等,把命令值发送到变桨距控制系统,并且电动变桨距系统把实际值和运行状况反馈到主控器。

还有就是电动变桨系统必须能够满足快速响应主控的命令。

有独立工作的变桨距系统,高性能的同步机控制,安全可靠的要求。

下面就从机械和伺服驱动2个部分介绍一下电动变桨距系统。

二、机械部分不同与液压驱动变桨系统。

电动变桨距系统采用3个桨叶分别带有独立的电驱动变桨系统,机械部分包括回转支承,张紧轮齿形带。

回转支承的内环安装在叶片上,叶片轴承的外环固定在轮毂上。

当电驱动变桨距系统上电以后,电动机带动小齿旋转,而小齿带动齿型带,从而带动变桨盘的内环与叶片一起旋转。

实现了改变桨距的目的。

电动变桨距一般包括伺服电动机,伺服驱动器(也就是我们所说的NG5),超级电容,齿型盘,齿型带,传感器等部分组成。

三、伺服驱动部分矢量控制技术解决了交流电动机在伺服驱动中的动态控制问题,使交流伺服驱动系统得性能可与直流驱动系统相媲美。

风机变桨系统的组成

风机变桨系统的组成

风机变桨系统的组成风机变桨系统是指用于调节风机桨叶角度以控制风机输出功率的一套系统。

它由多个组成部分构成,包括主控制器、传感器、执行器和电源等。

一、主控制器主控制器是风机变桨系统的核心部件,它负责接收传感器的信号,并根据信号来控制风机桨叶的角度。

主控制器通常采用微处理器或者专用的控制芯片,具有高性能和稳定性。

主控制器还可以通过通信接口与上位机或者监控系统进行数据交互,实现远程监控和控制。

二、传感器传感器是风机变桨系统的重要组成部分,用于感知风机的工作状态和环境参数。

常见的传感器包括风速传感器、风向传感器、温度传感器和加速度传感器等。

风速传感器用于测量风机所处的风速,风向传感器用于测量风机所处的风向,温度传感器用于测量风机的工作温度,加速度传感器用于测量风机的振动情况。

传感器将测量到的参数信号传递给主控制器,供其进行处理和控制。

三、执行器执行器是风机变桨系统的另一个重要组成部分,主要用于调节风机桨叶的角度。

常见的执行器包括液压执行器和电动执行器。

液压执行器通过液压系统来控制桨叶的角度,具有调节速度快、承载能力强的优点;电动执行器通过电机和传动装置来控制桨叶的角度,具有结构简单、可靠性高的优点。

执行器接收主控制器发送的控制信号,并将其转化为相应的动作,从而实现对桨叶角度的调节。

四、电源电源是风机变桨系统的能量来源,用于为主控制器、传感器和执行器等提供工作电压。

电源可以采用交流电源或者直流电源,根据实际情况选择合适的电源类型。

在风力发电系统中,通常使用直流电源,可以通过接入风力发电机的输出端来获取电能。

电源还需要具备一定的稳定性和可靠性,以确保整个系统的正常运行。

风机变桨系统的组成部分相互配合,共同完成对风机桨叶角度的控制。

主控制器接收传感器的信号,根据信号来判断风机的工作状态,并生成相应的控制信号。

执行器根据主控制器发送的控制信号来调节桨叶的角度,从而实现对风机输出功率的调节。

电源为整个系统提供工作电压,保证系统的正常运行。

变桨系统介绍范文

变桨系统介绍范文

变桨系统介绍范文变桨系统是风力发电机组中的重要组成部分,主要用于调节和控制风力发电机的桨叶角度,以实现风力发电机的最佳风能捕捉和发电效率。

本文将详细介绍变桨系统的工作原理、组成部分、类型和应用。

一、工作原理变桨系统的主要工作原理是根据风力发电机的工作状态和风速的变化来调整桨叶角度,从而确保风能的最大化转换和最佳发电效率。

当风速较低时,变桨系统会调整桨叶角度使风能更好地捕捉并转化为机械能;当风速较高时,变桨系统会调整桨叶角度以减小风力对发电机组的影响,保证发电机组的安全运行。

二、组成部分1.桨叶:桨叶是变桨系统的核心部分,主要由复合材料制成,具有轻质、高强度和耐腐蚀的特点。

桨叶的角度调节直接影响到风能捕捉和发电效率。

2.变桨机构:变桨机构是用于调整桨叶角度的装置。

常见的变桨机构有液压变桨机构、电动变桨机构和气动变桨机构等。

液压变桨机构是目前应用最广泛的一种,可以通过液压系统实现桨叶角度的快速调整。

3.桨叶角度传感器:桨叶角度传感器用于测量桨叶的实际角度,并将数据传输给变桨控制系统,以实现对桨叶角度的准确控制。

4.变桨控制系统:变桨控制系统是整个变桨系统的核心,负责接收和处理来自桨叶角度传感器的数据,并根据风速和发电机组的工作状态来调整桨叶角度。

三、类型1.常规变桨系统:常规变桨系统通过调整桨叶角度来响应风速变化,以实现风能捕捉和发电效率的最大化。

常见的常规变桨系统包括液压变桨系统和电动变桨系统。

2.主动变桨系统:主动变桨系统是基于外部风速信息来主动调整桨叶角度的变桨系统。

通过接收来自气象站或其他风速监测设备的风速信息,主动变桨系统可以根据实时风速变化来调整桨叶角度,以实现最佳风能捕捉和发电效率。

3.响应变桨系统:响应变桨系统是基于发电机组内部状态变化来调整桨叶角度的变桨系统。

它通过监测发电机组的负载情况和发电机组的机械振动等指标,调整桨叶角度以保证发电机组的安全稳定运行。

四、应用变桨系统广泛应用于风力发电机组中。

FD82B风机变桨系统介绍

FD82B风机变桨系统介绍

1.3内部检查:大梁、粘合面等(每年) 打开叶片人孔盖板, 进入叶片内部外观检查大梁、粘合面等是否有玻璃钢表面发 白、
分层、粘合面开裂、透光等情况。 若有则做好相关记录,同时拍照存档,并 进行相关 汇报和处理。
注意事项:在对轮毂部分进行维护保养前,首先应注意安全。将主轴前端两侧的轴 锁锁住,然后将主 控 柜 上 的叶片维护开关打到“ 1”位置,此时,机 组刹车程 序200,同时变桨控制柜内 L+B 操作面板即可使用 。在取出盖板时将固定螺钉按顺 序放好,防止掉入轮毂中,进入叶片中必须带口罩。
出油量25mlmin油泵设置为12min6h105加注润滑油脂油脂型号以风场实际为准检查润滑油泵内油脂油位给油缸内加注润滑油脂使用注油枪对油泵注油口进行加注油脂到达缸体上所标注的上限位置即可若油脂消耗量太少则必须检查整个系统查明原因并进行处理注脂时必须从润滑油泵底部的注油口处注油严禁打开上部盖子注油
2、系统的构成: 整个变桨系统的包括:7个柜体(1个中控柜、3个轴控柜、3个
电池柜)、3台直流变桨电机及其它相关的附件。 ●中控柜(BVL) 变桨控制系统的指挥机构,放置变桨控制器。 外部电源进入后通过一系列开关和变压器分配给轴控柜和电池柜。
●轴控柜(BVU) 变桨动作的实际执行机构,按照变桨控制器指令进行变桨动作。 放置一系列变桨控制需要的器件,其中伺服驱动为轴控柜内的主要 部件之一。
任意一支叶片由于故障不能正常变桨的情况下,其它两支叶片也能按系统控制 要求进行变桨,具有冗余保护的效果。
4)变桨控制系统具有冗余电源保护功能,机组在正常运行条件下采用风机系统 提供的外部交流电源进行供电控制。当电网故障或系统电源断电时,系统将自 动切换到后备蓄电池供电模式,直接由蓄电池提供动力和控制电流,保证风机 能及时安全回桨。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电机组变桨系统介绍一.风力发电机组概述双馈风机1.风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。

风轮是风力机最关键的部件,是它把空气动力能转变成机械能。

大多数风力机的风轮由三个叶片组成。

叶片材料有木质、铝合金、玻璃钢等。

风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。

组装风轮时要注意叶片的旋转方向,一般都是顺时针。

固定扭矩要符合说明书的要求。

风轮的工作原理:风轮产生的功率与空气的密度成正比﹑与风轮直径的平方成正比﹑与风速的立方成正比.风力发电机风轮的效率一般在0.35—0.45之间(理论上最大值为0.593)。

贝兹(Betz)极限2.发电机与齿轮箱双馈异步发电机变频同步发电机同步发电机---风力发电机中很少采用(造价高﹑并网困难)(同步发电机在并网时必须要有同期检测装置来比较发电机侧和系统侧的频率﹑电压﹑相位,对风力发电机进行调整,使发电机发出电能的频率与系统一致;操作自动电压调压器将发电机电压调整到与系统电压相一致;同时,微调风力机的转速,从周期检测盘上监视,使发电机的电压与与系统的电压相位相吻合,就在频率﹑电压﹑相位同时一致的瞬间,合上断路器,将风力发电机并入电网.)永磁发电机---是一种将普通同步发电机的转子改变成永磁结构的发电机.组.异步发电机---是异步电机处于发电状态,从其激励方式有电网电源励磁(他励)发电和并联电容自励(自励)发电两种情况.电网电源励磁(他励)发电是将异步电机接到电网上, 电机内的定子绕组产生以同步转速转动的旋转磁场,再用原动机拖动,使转子转速大于同步转速,电网提供的磁力矩的方向必定与转速方向相反,而机械力矩的方向则与转速方向相同,这时就将原动机的机械能转化为电能. 异步电机发出的有功功率向电网输送,同时又消耗电网的有功功率作励磁,并供应定子与转子漏磁所消耗的无功功率,因此异步发电机并网发电时,一般要求加无功补偿装置,通常用并联电容补偿的方式.异步发电机的起动﹑并网很方便,且便于自动控制﹑价格低﹑运行可靠﹑维修便利﹑运行效率也较高,因此在风力发电机并网机组基本上都是采用异步发电机,而同步发电机则常用于独立运行.3.偏航控制系统风力机的偏航系统也称对风装置.其作用在于当风速矢量的方向变化时,能够快速平稳地对准风向,以便风轮获得最大的风能.大中型风力机一般采用电动的偏航系统来调整风轮并使其对准风向. 偏航系统一般包括感应风向的风向标, 偏航电机, 偏航行星齿轮减速器,回转体大齿轮等.解缆大多数风机的发电机输出功率的同轴电缆在风力机偏航时一同旋转,为了防止偏航超出而引起的电缆旋转,应该设置解缆装置,并增加扭缆传感器以监视电缆的扭转状态.4. 变桨控制系统5. 变流器6. 塔架风机四种不同的控制方式:1.定速定桨距控制(Fixed speed stall regulated)发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制2.定速变桨距控制(Fixed speed pitch regulated)发电机直接连到恒定频率的电网,在大风时桨距控制用于调节功率3.变速定桨距控制(Variable speed stall regulated)变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平. 4.变速变桨距控制(Variable speed pitch regulated)变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,保持力矩, 桨距控制用于调节功率.二.基本知识三. 风力发电机组的信号(一) 机组状态参数检测1.转速风力发电机组转速的测量点有两个:即发电机转速和风轮转速。

转速测量信号用于控制风力发电机组并网和脱网,还可用于起动超速保护系统,当风轮转速超过设定值n1或发电机转速超过设定值n2时,超速保护动作,风力发电机组停机。

风轮转速和发电机转速可以相互校验。

如果不符,则提示风力发电机组故障。

2.温度有8个点的温度被测量,用于反映风力发电机组系统的工作状况。

这8个点包括:①齿轮箱油温;②高速轴承温度;③大发电机温度;④小发电机温度;⑤前主轴承温度;⑥后主轴承温度;⑦控制盘温度(主要是晶闸管的温度);⑧控制器环境温度。

由于温度过高引起风力发电机组退出运行,在温度降至允许值时,仍可自动起动风力发电机组运行。

3.机舱振动为了检测机组的异常振动,在机舱上应安装振动传感器。

传感器由一个与微动开关相连的钢球及其支撑组成。

异常振动时,钢球从支撑它的圆环上落下,拉动微动开关,引起安全停机。

重新起动时,必须重新安装好钢球。

机舱后部还设有桨叶振动探测器(TAC84系统)。

过振动时将引起正常停机。

4.电缆扭转由于发电机电缆及所有电气、通信电缆均从机舱直接引入塔筒,直到地面控制柜。

如果机舱经常向一个方向偏航,会引起电缆严重扭转因此偏航系统还应具备扭缆保护的功能。

偏航齿轮上安有一个独立的记数传感器,以记录相对初始方位所转过的齿数。

当风力机向一个方向持续偏航达到设定值时,表示电缆已被扭转到危险的程度,控制器将发出停机指令并显示故障。

风力发电机组停机并执行顺或逆时针解缆操作。

为了提高可靠性,在电缆引入塔筒处(即塔筒顶部),还安装了行程开关,行程开关触点与电缆相连,当电缆扭转到一定程度时可直接拉动行程开关,引起安全停机。

为了便于了解偏航系统的当前状态,控制器可根据偏航记数传感器的报告,以记录相对初始方位所转过的齿数显示机舱当前方位与初始方位的偏转角度及正在偏航的方向。

5.机械刹车状况在机械刹车系统中装有刹车片磨损指示器,如果刹车片磨损到一定程度,控制器将显示故障信号,这时必须更换刹车片后才能起动风力发电机组。

在连续两次动作之间,有一个预置的时间间隔,使刹车装置有足够的冷却时间,以免重复使用使刹车盘过热。

根据不同型号的风力发电机组,也可用温度传感器来取代设置延时程序。

这时刹车盘的温度必须低于预置的温度才能起动风力发电机组。

6.油位风力发电机的油位包括润滑油位、液压系统油位。

(二)电力参数的监测风力发电机组需要持续监测的电力参数包括电网三相电压、发电机输出的三相电流、电网频率、发电机功率因数等。

这些参数无论风力发电机组是处于并网状态还是脱网状态都被监测,用于判断风力发电机组的起动条件、工作状态及故障情况,还用于统计风力发电机组的有功功率、无功功率和总发电量。

此外,还根据电力参数,主要是发电机有功功率和功率因数来确定补偿电容的投入与切出。

1.电压测量电压测量主要检测以下故障:(1)电网冲击相电压超过450V 0.2s。

(2)过电压相电压超过433V 50s。

(3)低电压相电压低于329V 50s。

(4)电网电压跌落相电压低于260V 0.1s。

(5)相序故障。

对电压故障要求反应较快。

在主电路中设有过电压保护,其动作设定值可参考冲击电压整定保护值。

发生电压故障时风力发电机组必须退出电网,一般采取正常停机,而后根据情况进行处理。

电压测量值经平均值算法处理后可用于计算机组的功率和发电量的计算。

2.电流测量关于电流的故障有:(1)电流跌落0.1s内一相电流跌落80%。

(2)三相不对称三相中有一相电流与其他两相相差过大,相电流相差25%,或在平均电流低于50A时,相电流相差50%。

(3)晶闸管故障软起动期间,某相电流大于额定电流或者触发脉冲发出后电流连续0.1s为0。

对电流故障同样要求反应迅速。

通常控制系统带有两个电流保护即电流短路保护和过电流保护。

电流短路保护采用断路器,动作电流按照发电机内部相间短路电流整定,动作时间。

0~0.5s。

过电流保护由软件控制,动作电流按照额定电流的2倍整定,动作时间1~3s。

电流测量值经平均值算法处理后与电压、功率因数合成为有功功率、无功功率及其他电力参数。

电流是风力发电机组并网时需要持续监视的参量,如果切人电流小于允许极限,则晶闸管导通角不再增大,当电流开始下降后,导通角逐渐打开直至完全开启。

并网期间,通过电流测量可检测发电机或晶闸管的短路及三相电流不平衡信号。

如果三相电流不平衡超出允许范围,控制系统将发出故障停机指令,风力发电机组退出电网。

3.频率电网频率被持续测量。

测量值经平均值算法处理与电网上、下限频率进行比较,超出时风力发电机组退出电网。

电网频率直接影响发电机的同步转速,进而影响发电机的瞬时出力。

4.功率因数功率因数通过分别测量电压相角和电流相角获得,经过移相补偿算法和平均值算法处理后,用于统计发电机有功功率和无功功率。

由于无功功率导致电网的电流增加,线损增大,且占用系统容量。

因而送人电网的功率,感性无功分量越少越好,一般要求功率因数保持在0.95以上。

为此,风力发电机组使用了电容器补偿无功功率。

考虑到风力发电机组的输出功率常在大范围内变化,补偿电容器一般按不同容量分成若干组,根据发电机输出功率的大小来投入与切出。

这种方式投入补偿电容时,可能造成过补偿。

此时会向电网输入容性无功。

电容补偿并未改变发电机运行状况。

补偿后,发电机接触器上电流应大于主接触器电流。

(三)风力参数监测1.风速风速通过机舱外的数字式风速仪测得。

计算机每秒采集一次来自于风速仪的风速数据;每10min计算一次平均值,用于判别起动风速(风速v>3m/s时,起动小发电机,v>8m/s起动大发电机)和停机风速(v>25m/s)。

安装在机舱顶上的风速仪处于风轮的下风向,本身并不精确,一般不用来产生功率曲线。

2.风向风向标安装在机舱顶部两侧,主要测量风向与机舱中心线的偏差角。

一般采用两个风向标,以便互相校验,排除可能产生的误信号。

控制器根据风向信号,起动偏航系统。

当两个风向标不一致时,偏航会自动中断。

当风速低于3m/s时,偏航系统不会起动。

(四)各种反馈信号的检测控制器在以下指令发出后的设定时间内应收到动作已执行的反馈信号:①回收叶尖扰流器;②松开机械刹车;③松开偏航制动器;④发电机脱网及脱网后的转速降落信号。

否则将出现相应的故障信号,执行安全停机。

四.控制系统系统工程实例1.控制箱2.轴箱3.蓄电池箱轮毂中变桨控制柜实际照片,周边三个兰色的是变桨伺服电机变桨系统连线示意图将电池柜、配电柜用支架固定在图中所示的位置编码器变桨角度限位开关带加热装置的超声波矢量风速风向仪,侧面为航空警示灯。

风电设备项目浇铸式滑环系统具有高转速、结构精巧,尤其是可行的执行件和外直径的比例优化以及耐振性强等特性。

浇铸式滑环系统有碳弹簧丝和金弹簧丝两种型号可供选用。

结构精巧基础上的高度集成是带有金弹簧丝刷的滑环系统的显著特点。

通常应用于机床设备、绞线机和风电系统中。

相关文档
最新文档