概率统计与随机过程 3.2
北邮概率论与随机过程笔记

北邮概率论与随机过程笔记北邮概率论与随机过程笔记第一章绪论1.1 概率论的起源与发展1.2 概率的基本概念1.3 概率论的应用领域1.4 随机过程的起源与发展1.5 随机过程的基本概念1.6 随机过程的应用领域第二章概率论的基本概念2.1 随机试验与随机事件2.2 频率与概率2.3 古典概型2.4 贝叶斯概型2.5 随机变量2.6 随机变量的函数及其分布2.7 条件概率与条件分布2.8 独立性第三章随机变量及其分布3.1 离散型随机变量及其分布3.2 连续型随机变量及其分布3.3 随机变量的数学期望3.4 随机变量的方差与标准差3.5 随机变量的矩与生成函数3.6 概率母函数与特征函数3.7 大数定律与中心极限定理第四章多维随机变量及其分布4.1 多维随机变量及其分布函数4.2 联合分布函数与边缘分布函数4.3 多维离散型随机变量的分布4.4 多维连续型随机变量的密度4.5 条件分布与独立性4.6 随机变量的矩与协方差矩阵4.7 多维随机变量的生成函数与特征函数第五章数理统计基本概念5.1 数理统计的概念与作用5.2 参数估计与假设检验5.3 点估计与区间估计5.4 最大似然估计5.5 矩估计5.6 假设检验5.7 重要的假设检验第六章随机过程基本概念6.1 随机过程的概念与分类6.2 随机过程的样本函数与轨道6.3 随机过程的数学描述6.4 平稳性与各态平衡性6.5 随机过程的独立增量性与平稳增量性第七章随机过程的数学描述7.1 随机过程的数学描述7.2 随机过程的分布函数、密度函数与生成函数7.3 平稳随机过程的均值序列与相关函数7.4 广义平稳随机过程7.5 随机过程的协方差函数与自相关函数7.6 平稳随机过程的功率谱第八章马尔可夫链8.1 马尔可夫链的概念8.2 马尔可夫链的数学描述8.3 长期行为与不可约性8.4 平稳分布与转移概率矩阵8.5 极限分布与转移概率8.6 马尔可夫链的细致平衡方程第九章扩散过程9.1 扩散过程的概念与分类9.2 布朗运动与维纳过程9.3 平稳扩散过程与布朗桥9.4 非平稳扩散过程9.5 随机微分方程及其应用第十章随机过程的数值计算10.1 随机过程的模拟方法10.2 马尔可夫链模拟10.3 扩散过程的数值模拟第十一章随机过程的应用11.1 队列论与排队模型11.2 信道容量与信息论11.3 金融工程与随机过程11.4 生物与生态系统中的随机过程11.5 电力系统中的随机过程第十二章最优控制问题12.1 动态规划问题与最优控制12.2 马尔可夫控制问题12.3 黑塞矩阵与二次型控制问题第十三章随机过程的其他扩展13.1 小波分析与随机过程13.2 分数阶随机过程13.3 非高斯与非马尔可夫随机过程总结:北邮的概率论与随机过程课程涵盖了概率论和随机过程的基础知识和应用,对于理解随机现象和建立数学模型具有重要的意义。
概率统计和随机过程_南京邮电大学中国大学mooc课后章节答案期末考试题库2023年

概率统计和随机过程_南京邮电大学中国大学mooc课后章节答案期末考试题库2023年
1.设随机过程【图片】【图片】, 其中【图片】是常数,【图片】,且【图片】
与【图片】相互独立. 则随机过程【图片】 (填是/不是)平稳过程;且平均功率= .
参考答案:
是,2.8
2.将2个红球4个白球任意放入两个罐子中,其中每个罐子中有3个球.每一次
我们从两个罐子中都随机抽取一个球并交换它们.用【图片】表示经过【图
片】次交换后左边罐子中白球的个数, 则【图片】是一齐次马氏链, 概率【图片】等于( )
参考答案:
16/135
3.设【图片】是参数为2的维纳过程, 则【图片】的自相关函数【图片】( ).
参考答案:
4
4.设随机过程【图片】其中【图片】为常数,【图片】与【图片】相互独立,
且【图片】【图片】.则随机过程【图片】 (填是/不是)平稳过程;均值(填具有/不具有)各态历经性.
参考答案:
是,具有。
概率统计与随机过程 边界值

概率统计与随机过程边界值1. 引言概率统计与随机过程是数学中的一个重要分支,它研究的是不确定性现象和随机事件的规律性。
在实际应用中,我们经常需要对边界值进行分析和处理,以确保系统的稳定性和可靠性。
本文将从概率统计与随机过程的角度出发,探讨边界值的定义、特点以及在实际问题中的应用。
2. 边界值的定义与特点2.1 定义边界值是指一个变量或者一组变量所能取到的最小值或最大值。
在概率统计与随机过程中,边界值常常用于描述一个系统或者一个随机事件所能达到的极限情况。
2.2 特点•边界值是极端情况下的取值,通常对应于系统或事件发生了某种异常情况。
•边界值对于系统稳定性和可靠性具有重要意义。
•边界值通常是通过概率统计方法得出的,在实际应用中具有一定的不确定性。
3. 概率统计与随机过程在边界值分析中的应用3.1 边界值检测在实际应用中,我们经常需要对系统的输入和输出进行边界值检测,以确保系统能够正确处理极端情况。
例如,在软件开发中,对于输入数据的边界值进行测试可以帮助发现潜在的错误和漏洞。
概率统计与随机过程提供了一些方法和技术来进行边界值检测。
例如,使用概率分布函数可以计算出一个变量取到某个边界值的概率,从而评估系统在该极端情况下的性能。
3.2 边界值分析边界值分析是指通过对系统或事件可能出现的边界情况进行分析,来评估系统或事件的性能和可靠性。
在这个过程中,概率统计与随机过程提供了一些工具和方法来预测系统在不同边界条件下的行为。
例如,在金融领域中,我们经常需要对股票价格、利率等变量进行边界值分析,以评估投资组合在市场波动剧烈时的风险水平。
通过使用概率统计与随机过程模型,我们可以计算出投资组合在不同市场情景下的价值分布,并进一步评估其风险水平。
3.3 边界值优化边界值优化是指通过调整系统或事件的边界条件,来改善系统或事件的性能和可靠性。
在这个过程中,概率统计与随机过程提供了一些方法和技术来确定最优的边界条件。
例如,在工程设计中,我们经常需要确定某些参数的取值范围,以确保系统能够在各种不确定情况下正常运行。
第3章 随机过程及答案

互相关函数 R (t1 , t 2 ) E[ (t1 )(t 2 )]
式中 (t) 和 (t) 分别表示两个随机过程。 R(t1, t2)又称为自相关函数。
10
3.2 平稳随机过程 3.2.1 平稳随机过程的定义
12
数字特征:
E (t ) x1 f1 ( x1 )dx1 a
R( t1 , t 2 ) E[ ( t1 ) ( t1 )]
x1 x2 f 2 ( x1 , x2 ; )dx1dx2 R( )
可见,(1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔 有关。
P ( f ) 0
P ( f ) P ( f )
这与R()的实偶性相对应。
23
例题
[例3-2] 求随机相位余弦波(t) = Acos(ct + )的功率谱密度。 [解] 在[例3-1]中,我们已经考察随机相位余弦波是一个平稳 过程,并且求出其相关函数为
1 (t ) 2 (t )
n (t )
0
t
3
角度2:随机过程是随机变量概念的延伸。
在一个固定时刻t1上,不同样本的取值{i (t1), i = 1, 2, …, n} 是一个随机变量,记为 (t1)。
样本空间
随机过程是在时间进程中处于不同时刻的随机变量的集合。
S1 x1(t)
t
T /2
T / 2
x( t ) x( t )dt
aa R( ) R( )
第十二章随机过程及其统计描述概率论与数理统计

20
当n充分大时, n维分布函数族能够近似地描 述随机过程的统计特性. 显然, n取得越大, 则 n维分布函数族描述随机过程的特性也越趋 完善. 一般, 可以指出(科尔莫戈罗夫定律):有 限维分布函数族, 即{FX(x1,x2,...,xn, n=1,2,...,t1, t2, ...,tn), tiT}完全地确定了随机过程的统计 特性.
4
随机过程可看作多维随机变量的延伸. 随机过 程与其样本函数的关系就象数理统计中总体 与样本的关系一样. 因此, 热噪声电压的变化过程{V(t), t0}是一 随机过程, 它的状态空间是(-, +), 一次观 测到的电压-时间函数就是这个随机过程的一 个样本函数. 在以后的叙述中, 为简便起见, 常以X(t), tT 表示随机过程. 在上下文不致混淆的情况下, 一般略去记号中的参数集T.
13
随机过程的不同描述方式在本质上是一致的. 在理论分析时往往以随机变量族的描述方式 作为出发点, 而在实际测量和数据处理中往往 采用样本函数族的描述方式. 这两种描述方式 在理论和实际两方面是互为补充的. 随机过程可依其在任一时刻的状态是连续型 或离散型随机变量而分成连续型随机过程和 离散型随机过程. 热噪声电压, 例2和例3是连 续型随机过程, 例1, 例4和例5是离散型随机过 程.
12
工程技术中有很多随机现象, 例如, 地震波幅, 结构物承受的风荷载, 时间间隔(0, t]内船舶甲 板"上浪"的次数, 通讯系统和自控系统中的 各种噪声和干扰, 以及生物群体的生长等等变 化过程都可用随机过程这一数学模型来描绘. 不过, 这些随机过程都不能象随机相位正弦波 那样, 很方便, 很具体地用时间和随机变量(一 个或几个)的关系式表示出来, 其主要原因是 自然界和社会产生随机因素的机理极为复杂, 甚至不可能观察到, 因此只有通过分析样本函 数才能掌握它们的规律性.
概率论与随机过程考点总结

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()( 2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差两个随机变量Y X ,:EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数两个随机变量Y X ,:DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关;独立⇒不相关⇔0=ρ4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k)( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞===0)()(k kk kzp z E z g!)0()(k g p k k =)1()('g X E =2''")]1([)1()1()(g g g X D -+=5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N XT n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ⨯=)(正定协方差阵3.随机向量的变换 二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程;简记为{}T t t X ∈),(;含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性;另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的;当t 固定时,),(e t X 是随机变量;当e 固定时,),(e t X 时普通函数,称为随机过程的一个样本函数或轨道;分类:根据参数集T 和状态空间I 是否可列,分四类; 也可以根据)(t X 之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等; 2.随机过程的分布律和数字特征用有限维分布函数族来刻划随机过程的统计规律性;随机过程{}T t t X ∈),(的一维分布,二维分布,…,n 维分布的全体称为有限维分布函数族;随机过程的有限维分布函数族是随机过程概率特征的完整描述;在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代;1均值函数)()(t EX t m X = 表示随机过程{}T t t X ∈),(在时刻t 的平均值; 2方差函数2)]()([)(t m t X E t D X X -=表示随机过程在时刻t 对均值的偏离程度; 3协方差函数)()()]()([))]()())(()([(),(t m s m t X s X E t m t X s m s X E t s B X X X X X -=--= 且有)(),(t D t t B X X =4相关函数)]()([),(t X s X E t s R X = 3和4表示随机过程在时刻s ,t 时的线性相关程度;5互相关函数:{}T t t X ∈),(,{}T t t Y ∈),(是两个二阶距过程,则下式称为它们的互协方差函数;)()()]()([))]()())(()([(),(t m s m t Y s X E t m t Y s m s X E t s B Y X Y X Y X -=--=,那么)]()([),(t Y s X E t s R XY =,称为互相关函数;若)()()]()([t m s m t Y s X E Y X =,则称两个随机过程不相关; 3.复随机过程 t t t jY X Z += 均值函数tt Z jEY EX t m +=)( 方差函数]))(())([(|])([|)(2t m Z t m Z E t m Z E t D Z t Z t Z t Z --=-=协方差函数)()(][]))(())([(),(t m s m Z Z E t m Z s m Z E t s B Z Z t s Z t Z s Z -=--=相关函数][),(t s Z Z Z E t s R =4.常用的随机过程1二阶距过程:实或复随机过程{}T t t X ∈),(,若对每一个T t ∈,都有∞<2)(t X E 二阶距存在,则称该随机过程为二阶距过程;2正交增量过程:设{}T t t X ∈),(是零均值的二阶距过程,对任意的T t t t t ∈<<<4321,有0]))()(())()([(3412=--t X t X t X t X E ,则称该随机过程为正交增量过程;其协方差函数)),(m in(),(),(2t s t s R t s B XX X σ== 3独立增量过程:随机过程{}T t t X ∈),(,若对任意正整数2≥n ,以及任意的T t t t n ∈<<< 21,随机变量)()(,),()(),()(13412----n n t X t X t X t X t X t X 是相互独立的,则称{}T t t X ∈),(是独立增量过程; 进一步,如{}T t t X ∈),(是独立增量过程,对任意t s <,随机变量)()(s X t X -的分布仅依赖于s t -,则称{}T t t X ∈),(是平稳独立增量过程;4马尔可夫过程:如果随机过程{}T t t X ∈),(具有马尔可夫性,即对任意正整数n 及T t t t n ∈<<< 21,0))(,,)((1111>==--n n x t X x t X P ,都有{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P ,则则称{}T t t X ∈),(是马尔可夫过程;5正态过程:随机过程{}T t t X ∈),(,若对任意正整数n 及T t t t n ∈,,,21 ,)()(),(21n t X t X t X 是n 维正态随机变量,其联合分布函数是n 维正态分布函数,则称{}T t t X ∈),(是正态过程或高斯过程; 6维纳过程:是正态过程的一种特殊情形;设{}∞<<-∞t t W ),(为实随机过程,如果,①0)0(=W ;②是平稳独立增量过程;③对任意t s ,增量)()(s W t W -服从正态分布,即0),0(~)()(22>--σσs t N s W t W ;则称{}∞<<-∞t t W ),(为维纳过程,或布朗运动过程;另外:①它是一个Markov 过程;因此该过程的当前值就是做出其未来预测中所需的全部信息;②维纳过程具有独立增量;该过程在任一时间区间上变化的概率分布独立于其在任一的其他时间区间上变化的概率;③它在任何有限时间上的变化服从正态分布,其方差随时间区间的长度呈线性增加; 7平稳过程:严狭义平稳过程:{}T t t X ∈),(,如果对任意常数τ和正整数n 及Tt t t n ∈,,,21 ,Tt t t n ∈+++τττ,,,21 ,)()(),(21n t X t X t X 与)()(),(21τττ+++n t X t X t X 有相同的联合分布,则称{}T t t X ∈),(是严狭义平稳过程;广义平稳过程:随机过程{}T t t X ∈),(,如果①{}T t t X ∈),(是二阶距过程;②对任意的T t ∈, 常数==)()(t EX t m X ;③对任意T t s ∈,,)()]()([),(s t R t X s X E t s R X X -==,或仅与时间差s t -有关;则满足这三个条件的随机过程就称为广义平稳过程,或宽平稳过程,简称平稳过程;第三章 泊松过程一.泊松过程的定义两种定义方法1,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}T t t X ∈),(是具有参数λ的泊松过程;①(0)0X =;②独立增量过程,对任意正整数n ,以及任意的T t t t n ∈<<< 21)()(,),()(),()(12312----n n t X t X t X t X t X t X 相互独立,即不同时间间隔的计数相互独立;③在任一长度为t 的区间中,事件A发生的次数服从参数0t λ>的的泊松分布,即对任意,0t s >,有{}()()()0,1,!ntt P X t s X s n en n λλ-+-===[()]E X t t λ=,[()]E X t tλ=,表示单位时间内时间A发生的平均个数,也称速率或强度;2,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}(),0X t t ≥是具有参数λ的泊松过程;①(0)0X =;②独立、平稳增量过程;③{}{}()()1()()()2()P X t h X t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩; 第三个条件说明,在充分小的时间间隔内,最多有一个事件发生,而不可能有两个或两个以上事件同时发生,也称为单跳性; 二.基本性质1,数字特征 ()[()][()]X m t E X t t D X t λ=== (1)(,)(1)X s t s t R s t t s s tλλλλ+<⎧=⎨+≥⎩(,)(,)()()min(,)X X X X B s t R s t m s m t s t λ=-= 推导过程要非常熟悉2,n T 表示第1n -事件A发生到第n 次事件发生的时间间隔,{},1n T n ≥是时间序列,随机变量n T 服从参数为λ的指数分布;概率密度为,0()0,0t e t f t t λλ-⎧≥=⎨<⎩,分布函数1,0()0,0n t T e t F t t λ-⎧-≥=⎨<⎩均值为1n ET λ=证明过程也要很熟悉 到达时间的分布 略 三.非齐次泊松过程 到达强度是t 的函数①(0)0X =;②独立增量过程;③{}{}()()1()()()()2()P X t h X t t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩; 不具有平稳增量性;均值函数0()[()]()tX m t E X t s ds λ==⎰定理:{}(),0X t t ≥是具有均值为0()()tX m t s ds λ=⎰的非齐次泊松过程,则有 四.复合泊松过程设{}(),0N t t ≥是强度为λ的泊松过程,{},1,2,k Y k =是一列独立同分布的随机变量,且与{}(),0N t t ≥独立,令()1()N t kk X t Y==∑ 则称{}(),0X t t ≥为复合泊松过程;重要结论:{}(),0X t t ≥是独立增量过程;若21()E Y <∞,则1[()]()E X t tE Y λ=,21[()]()D X t tE Y λ=第四章 马尔可夫链泊松过程是时间连续状态离散的马氏过程,维纳过程是时间状态都连续的马氏过程;时间和状态都离散的马尔可夫过程称为马尔可夫链;马尔可夫过程的特性:马尔可夫性或无后效性;即:在过程时刻0t 所处的状态为已知的条件下,过程在时刻0t t >所处状态的条件分布与过程在时刻0t 之前所处的状态无关;也就是说,将来只与现在有关,而与过去无关;表示为{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P一.马尔可夫链的概念及转移概率1.定义:设随机过程{},∈n X n T ,对任意的整数∈n T 和任意的011,,,n i i i I +∈,条件概率满足{}{}11001111,,,n n n n n n n n P X i X i X i X i P X i X i ++++=======,则称{},∈n X n T 为马尔可夫链;马尔可夫链的统计特性完全由条件概率{}11n n n n P X i X i ++==所决定;2.转移概率 {}1n n P X j X i +==相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到j 的概率;记为()ij p n ;则()ij p n {}1n n P X j X i +===称为马尔可夫链在时刻n 的一步转移概率;若齐次马尔可夫链,则()ij p n 与n 无关,记为ij p ;[],1,2,ij P p i j II =∈= 称为系统的一步转移矩阵;性质:每个元素0ij p ≥,每行的和为1;3.n 步转移概率()n ij p ={}m n m P X j X i +== ;()()[],1,2,n n ij P p i j II =∈=称为n步转移矩阵;重要性质:①()()()n l n l ij ik kj k Ip p p -∈=∑ 称为C K -方程,证明中用到条件概率的乘法公式、马尔可夫性、齐次性;掌握证明方法:{}{}{}{}{}{}{}{}{}()()()()(),,,,,,,()()m m n n ijm nm m m m l m n k Tm m m l m n m m l k Tm m l m n l l l n l kj ik ik kj k Ik IP X i X j p P X j X i P X i P X i X k X j P X i P X i X k X j P X i X k P X i X k P X i p m l p m p p ++++∈+++∈+--∈∈==================⋅====+⋅=⋅∑∑∑∑②()n n P P = 说明n 步转移概率矩阵是一步转移概率矩阵的n 次乘方;4.{},∈n X n T 是马尔可夫链,称{}0j p P X j ==为初始概率,即0时刻状态为j 的概率;称{}()j n p n P X j ==为绝对概率,即n 时刻状态为j 的概率;{}12(0),,T P p p =为初始概率向量,{}12()(),(),T P n p n p n =为绝对概率向量;定理:①()()n j i ij i Ip n p p ∈=∑矩阵形式:()()(0)T T n P n P P =②()(1)j i ij i Ip n p n p ∈=-∑定理:{}111122,,,n n n n i iii i i IP X i X i X i p p p -∈====∑ 说明马氏链的有限维分布完全由它的初始概率和一步转移概率所决定; 二.马尔可夫链的状态分类1.周期:自某状态出发,再返回某状态的所有可能步数最大公约数,即{}():0n ii d GC D n p ⋅⋅=>;若1d >,则称该状态是周期的;若1d =,则称该状态是非周期的;2.首中概率:()n ij f 表示由i 出发经n 步首次到达j 的概率; 3.()1n ij ij n f f ∞==∑表示由i 出发经终于迟早要到达j 的概率;4.如果1ii f =,则状态i 是常返态;如果1ii f <,状态i 是非常返滑过态;5.()1n i ii n nf μ∞==∑表示由i 出发再返回到i 的平均返回时间;若i μ<∞,则称i 是正常返态;若i μ=∞,则称i 是零常返态;非周期的正常返态是遍历状态; 6.状态i 是常返充要条件是()0iin n p∞==∞∑;状态i 是非常返充要条件是()11iin n iip f ∞==-∑; 7.称状态i 与j 互通,,i j i j j i ↔→→即且;如果i j ↔,则他们同为常返态或非常返态,;若i ,j 同为常返态,则他们同为正常返态或零常返态,且i ,j 有相同的周期;8.状态i 是遍历状态的充要条件是()1lim 0n iin ip μ→∞=>;一个不可约的、非周期的、有限状态的马尔可夫链是遍历的;9.要求:熟悉定义定理,能由一步转移概率矩阵画出状态转移图,从而识别各状态; 三.状态空间的分解1.设C 是状态空间I 的一个闭集,如果对任意的状态i C ∈,状态j C ∉,都有0ij p =即从i 出发经一步转移不能到达j ,则称C 为闭集;如果C 的状态互通,则称C 是不可约的;如果状态空间不可约,则马尔可夫链{},∈n X n T 不可约;或者说除了C 之外没有其他闭集,则称马尔可夫链{},∈n X n T 不可约;2.C 为闭集的充要条件是:对任意的状态i C ∈,状态j C ∉,都有()0ijn p =;所以闭集的意思是自C 的内部不能到达C 的外部;意味着一旦质点进入闭集C 中,它将永远留在C 中运动;如果1ii p =,则状态i 为吸收的;等价于单点{}i 为闭集;3.马尔可夫链的分解定理:任一马尔可夫链的状态空间I ,必可唯一地分解成有限个互不相交的子集12,,,nD C C C 的和,①每一个n C 都是常返态组成的不可约闭集;②n C 中的状态同类,或全是正常返态,或全是零常返态,有相同的周期,且1ij f =;③D 是由全体非常返态组成; 分解定理说明:状态空间的状态可按常返与非常返分为两类,非常返态组成集合D ,常返态组成一个闭集C ;闭集C 又可按互通关系分为若干个互不相交的基本常返闭集12,,nC C C ; 含义:一个马尔可夫链如果从D 中某个非常返态出发,它或者一直停留在D 中,或某一时刻进入某个基本常返闭集n C ,一旦进入就永不离开;一个马尔可夫链如果从某一常返态出发,必属于某个基本常返闭集n C ,永远在该闭集n C 中运动;4.有限马尔可夫链:一个马尔可夫链的状态空间是一个有限集合;性质:①所有非常返态组成的集合不是闭集;②没有零常返态;③必有正常返态;④状态空间12n I D C C C =++++,D 是非常返集合,12,,n C C C 是正常返集合;不可约有限马尔可夫链只有正常返态;四.()n ij p 的渐近性质与平稳分布 1.为什么要研究转移概率()n ij p 的遍历性研究()n ij p 当n →∞时的极限性质,即{}0n P X j X i ==的极限分布,包含两个问题:一是()lim n ij n p →∞是否存在;二是如果存在,是否与初始状态有关;这一类问题称作遍历性定理;如果对,i j I ∈,存在不依赖于i 的极限()lim n ijn p →∞0j p =>,则称马尔可夫链具有遍历性; 一个不可约的马尔可夫链,如果它的状态是非周期的正常返态,则它就是一个遍历链; 具有遍历性的马尔可夫链,无论系统从哪个状态出发,当转移步数n 充分大时,转移到状态j 的概率都近似等于j p ,这时可以用j p 作为()n ij p 的近似值;2.研究平稳分布有什么意义判别一个不可约的、非周期的、常返态的马尔可夫链是否为遍历的,可以通过讨论()lim n ij n p →∞来解决,但求极限时困难的;所以,我们通过研究平稳分布是否存在来判别齐次马尔可夫链是否为遍历链;一个不可约非周期常返态的马尔可夫链是遍历的充要条件是存在平稳分布,且平稳分布即极限分布()lim n ij n p →∞=1,jj I μ∈;3.{},0≥n X n 是齐次马尔可夫链,状态空间为I ,一步转移概率为ij p ,概率分布{},j j I π∈称为马尔可夫链的平稳分布,满足1j i iji Ijj Ip πππ∈∈==∑∑4.定理:不可约非周期马尔可夫链是正常返的充要条件是存在平稳分布,且此平稳分布就是极限分布1,jj I μ∈; 推论:有限状态的不可约非周期马尔可夫链必存在平稳分布;5.在工程技术中,当马尔可夫链极限分布存在,它的遍历性表示一个系统经过相当长时间后达到平衡状态,此时系统各状态的概率分布不随时间而变,也不依赖于初始状态;6.对有限马尔可夫链,如果存在正整数k ,使()0k ij p >,即k 步转移矩阵中没有零元素,则该链是遍历的;第六章 平稳随机过程一.定义第一章严平稳过程:有限维分布函数沿时间轴平移时不发生变化;宽平稳过程:满足三个条件:二阶矩过程2[()]E X t <∞;均值为常数[()]E X t =常数;相关函数只与时间差有关,即(,)()()()X X R t t E X t X t R τττ⎡⎤-=-=⎣⎦;宽平稳过程不一定是严平稳过程,而严平稳过程一定是宽平稳过程; 二.联合平稳过程及相关函数的性质1.定义:设{}(),X t t T ∈和{}(),X t t T ∈是两个平稳过程,若它们的互相关函数()()E X t Y t τ⎡⎤-⎣⎦及()()E Y t X t τ⎡⎤-⎣⎦仅与时间差τ有关,而与起点t 无关,则称()X t 和()Y t 是联合平稳随机过程;即,(,)()()()XY XY R t t E X t Y t R τττ⎡⎤-=-=⎣⎦ (,)()()()YX YX R t t E Y t X t R τττ⎡⎤-=-=⎣⎦当然,当两个平稳过程联合平稳时,其和也是平稳过程;2.相关函数的性质:①(0)0X R ≥;②()()X X R R ττ≥,对于实平稳过程,()X R τ是偶函数;③()(0)X X R R τ≤④非负定;⑤若()X t 是周期的,则相关函数()X R τ也是周期的,且周期相同;⑥如果()X t 是不含周期分量的非周期过程,()X t 与()X t τ+相互独立,则||()lim X X X R m m ττ→∞=;联合平稳过程()X t 和()Y t 的互相关函数,()(0)(0)XY X Y R R R τ≤,()(0)(0)YX X Y R R R τ≤;()()XY YX R R ττ-=;()X t 和()Y t 是实联合平稳过程时,则,()()XY YX R R ττ-=;三.随机分析 略四.平稳过程的各态历经性 1.时间均值1()..()2TTT X t l i mX t dt T-→∞=⎰时间相关函数1()()..()()2TTT X t X t l i mX t X t dt Tττ-→∞-=-⎰2.如果()[()]()X X t E X t m t ==以概率1成立,则称均方连续的平稳过程的均值有各态历经性;如果()()[()()]()X X t X t E X t X t R τττ-=-= 以概率1成立,则称均方连续的平稳过程的相关函数有各态历经性;如果均方连续的平稳过程的均值和相关函数都有各态历经性,则称该平稳过程是各态历经的或遍历的;一方面表明各态历经过程各样本函数的时间平均实际上可以认为是相同的;另一方面也表明[()]E X t 与[()()]E X t X t τ-必定与t 无关,即各态历经过程必是平稳过程;3.讨论平稳过程的历经性,就是讨论能否在较宽松的条件下,用一个样本函数去近似计算平稳过程的均值、协方差函数等数字特征,即用时间平均代替统计平均; 只在一定条件下的平稳过程,才具有各态历经性;4.均值各态历经性定理:均方连续的平稳过程的均值具有各态历经的充要条件是5.相关函数各态历经性定理:均方连续的平稳过程的相关函数具有各态历经的充要条件是第七章 平稳过程的谱分析 一.平稳过程的谱密度 推导过程:随机过程{}(),X t t -∞<<∞为均方连续过程,作截尾处理(),()0,T X t t TX t t T ⎧≤⎪=⎨>⎪⎩,由于()T X t 均方可积,所以存在FT,得(,)()()Tj tj t T TF T X t edt X t e dt ωωω∞---∞-==⎰⎰,利用paserval 定理及IFT 定义得2221()()(,)2TT TX t dt X t dt F T d ωωπ∞∞-∞--∞==⎰⎰⎰该式两边都是随机变量,取平均值,这时不仅要对时间区间[,]T T -取,还要取概率意义下的统计平均,即 定义221()2lim TTT E X t dt Tψ-→∞⎡⎤=⎢⎥⎣⎦⎰为{}(),X t t -∞<<∞平均功率;21()(,)2limX T s E F T T ωω→∞⎡⎤=⎣⎦为{}(),X t t -∞<<∞功率谱密度,简称谱密度; 可以推出当{}(),X t t -∞<<∞是均方连续平稳过程时,有 21()2X s d ψωωπ∞-∞=⎰说明平稳过程的平均功率等于过程的均方值,或等于谱密度在频域上的积分;2.平稳过程的谱密度和相关函数构成FT 对;若平稳随机序列{},0,1,2,n X n =±±,则其谱密度和相关函数构成FT 对二.谱密度的性质1.①()X s ω是()X R τ的FT;()()j X X s R e d ωτωττ∞--∞=⎰如果{}(),X t t -∞<<∞是均方连续的实平稳过程,有()()X X R R ττ=-,()X s ω是也实的非负偶函数,则②()X s ω是ω的有理分式,分母无实根;2.谱密度的物理含义,()X s ω是一个频率函数,从频率域来描绘()X t 统计规律的数字特征,而()X t 是各种频率简谐波的叠加,()X s ω就反映了各种频率成分所具有的能量大小;3.计算 可以按照定义计算,也可以利用常用的变换对()1t δ↔ 12()πδω↔ 2220a ae a a τω-↔>+22τω↔-00()()j X X R e s ωττωω⋅↔- ()()j T X X R T s e ωτω+↔⋅001,sin 0,ωωωτωωπτ⎧<⎪↔⎨≥⎪⎩等 三.窄带过程及白噪声过程的功率谱密度1.窄带随机过程:随机过程的谱密度限制在很窄的一段频率范围内;2.白噪声过程:设{}(),X t t -∞<<∞为实值平稳过程,若它的均值为零,且谱密度在所有的频率范围内为非零的常数,即0()X s N ω=,则称{}(),X t t -∞<<∞为白噪声过程; 是平稳过程;其相关函数为0()()X R N τδτ=;表明在任意两个时刻1t 和2t ,1()X t 和2()X t 不相关,即白噪声随时间的变换起伏极快,而过程的功率谱极宽,对不同输入频率的信号都有可能产生干扰;四.联合平稳过程的互谱密度互谱密度没有明确的物理意义,引入它主要是为了能在频率域上描述两个平稳过程的相关性;1.互谱密度与互相关函数成FT对关系 2.性质()()XY XY s s ωω= ()XY s ω的实部是ω的偶函数,虚部是ω的奇函数,()YX s ω也是; 2()()()XY X Y s s s ωωω≤;若()X t 和()Y t 相互正交,有()0XY R τ=,则()()0XY YX s s ωω== ;五.平稳过程通过线性系统1.系统的频率响应函数()H ω也可以写成()H j ω一般是一个复值函数,是系统单位脉冲响应的FT;2.系统输入()X t 为实平稳随机过程,则输出()Y t 也是实平稳随机过程;即输出过程的均值为常数,相关函数是时间差的函数;且有()()()()()()Y XY X R R h R h h ττττττ=*-=**-说明输出过程的相关函数可以通过两次卷积产生;()()()XY X R R h τττ=*的应用:给系统一个白噪声过程()X t ,可以从实测的互相关资料估计线性系统的未知脉冲响应;因为0()()X R N τδτ=,00()()()()()()XY X R R h N u h u du N h τττδττ∞-∞=*=-=⎰,从而3.输入输出谱密度之间的关系 2()()()Y X s H s ωωω=2()()()H H H ωωω=称为系统的频率增益因子或频率传输函数;有时,采用时域卷积的方法计算输出的相关函数比较烦琐,可以先计算输出过程的谱密度,然后反FT 计算出相关函数;2()()()()()X Y X Y R s H s R τωωωτ→=→另外()()()XY X R R h τττ=*,所以()()()XY X s H s ωωω= ,()()()YX X s H s ωωω= 补充:排队轮平均间隔时间=总时间/到达顾客总数 平均服务时间=服务时间总和/顾客总数平均到达率=到达顾客总数/总时间 平均服务率=顾客总数/服务时间总和一.当顾客到达符合泊松过程时,顾客相继到达的间隔时间T 必服从负指数分布;对于泊松分布,λ表示单位时间平均到达的顾客数,所以1λ表示顾客相继到达的平均间隔时间;服务时间符合负指数分布时,设它的概率密度函数和分布函数分别为()(){}[]1tttt t tf t e F t P T t e dt d e e μμμμμμ----==≤==-=-⎰⎰ 其中μ表示单位时间能够服务完的顾客数,为服务率;而1μ表示一个顾客的平均服务时间; 二.排队模型的求解把系统中的顾客数称为系统的状态;若系统中有n 个顾客,则称系统的状态是n ;瞬态和稳态:考虑在t 时刻系统的状态为n 的概率,它是随时刻t 而变化的,用()n P t 表示,称为系统的瞬态;求瞬态解是很不容易的,求出也很难利用;因此我们常用稳态概率n P ,表示系统中有n 个顾客的概率; 各运行指标:1队长:把系统中的顾客数称为队长,它的期望值记作s L ,也叫平均队长,即系统中的平均顾客数;而把系统中排队等待服务的顾客数称为排队长队列长,它的期望值记作q L ,也叫平均排队长,即系统中的排队的平均顾客数; 显然有 队长=排队长+正被服务的顾客数;2逗留时间:一个顾客从到达排队系统到服务完毕离去的总停留时间称为逗留时间,它的期望值记作s W ;一个顾客在系统中排队等待的时间称为等待时间,它的期望值记作q W ;逗留时间=等待时间+服务时间;3忙期:从顾客到达空闲服务机构起,到服务台再次变为空闲为止; 4顾客损失率:由于服务能力不足而造成顾客损失的比率;5服务强度服务机构利用率:指服务设备工作时间占总时间的比例; 三.几种典型的排队模型1.//1//M M ∞∞:单服务台,系统容量无限,顾客源无限;λ到达率,μ服务率,λρμ=服务强度; 状态转移图 , 稳态概率方程 得 系统中无顾客的01P ρ=- 系统中有n 个顾客的概率0(1)n n n P P ρρρ=-=且必有s q L L uλ=+qq L W λ=1s q W W μ=+2.//1//M M N ∞:单服务台,系统容量为N 说明若到了系统最大容量,顾客将不能进入系统,顾客源无限;λ到达率,μ服务率,λρμ=服务强度;☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆状态转移图 , 稳态概率方程 得 系统中无顾客的0111N P ρρ+-=- 系统中有n 个顾客的概率0n n P P ρ= 3.//1//M M m ∞:单服务台,系统容量无限,顾客源m;λ到达率,μ服务率;状态转移图 , 稳态概率方程 得 系统中无顾☆客的001!()!()mii P m m i λμ==-∑系统中有n 个顾客的概率0!()()!n n m P P m n λμ=-1n m ≤≤0(1)s L m P μλ=--;00()(1)(1)q s P L m L P λμλ+-=-=--01(1)s m W P μλ=--1q s W W μ=-4. ////M M c ∞∞:多服务台,系统容量无限,顾客源无限;λ到达率,μ服务率,c λρμ=服务强度; 状态转移图 , 稳态概率方程 得☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆系统中无顾客的110011!!1k c c k P k c λλμμρ--=⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪ ⎪-⎝⎭⎝⎭⎢⎥⎣⎦∑系统中有n 个顾客的概率001()!1()!nn n n c P n c n P P n c c cλμλμ-⎧≤⎪⎪=⎨⎪>⎪⎩。
(高等数学)概率统计与随机过程
λk
k!
e −λ
式中 λ = np。
二、
随机变量与分布函数
[随机变量及其概率分布函数]
每次试验的结果可以用一个变量 ξ 的数值来表示,这个变量的
取值随偶然因素而变化,但又遵从一定的概率分布规律,这种变量称为随机变量,用 ξ ,η ,···表示。 它是随机现象的数量比。 给定随机变量 ξ ,它的取值不超过实数 x 的事件的概率 P( ξ ≤ x)是 x 的函数,称为 ξ 的概率分 布函数,简称分布函数,记作 F(x) ,即 F(x)=P( ξ ≤ x ) [分布函数的基本性质] 1° lim F ( x ) = 0 lim F ( x ) = 1
f ( xk ) ≤ x
∑p
k
当 ξ 是连续型随机变量时 ,其分布密度为 p(x),则 G(x)=
∫
f ( y )≤ x
p( y) d y
[随机矢量的联合分布函数与边缘分布函数]
如果 ξ1 , ξ 2 , ···, ξ n 联系于同一组条件下的 n 个随机
变量,则称 ξ (ξ1 , ξ 2 , ···, ξ n )为 n 维随机变量或随机矢量。 若(x1 , x2 ,···,xn)是n维实数空间Rn上的一点,则事件“ ξ1 ≤ x1 , ξ 2 ≤ x2 , ···, ξ n ≤ x n 的概率 F ( x1 , x 2 , L, x n ) = P(ξ 1 ≤ x1 , ξ 2 ≤ x 2 , L , ξ n ≤ x n ) 作为x1 , x2 ,···, xn的函数,称为随机矢量 ξ (ξ1 , ξ 2 , ···, ξ n ) 的联合分布函数。 设 ( ξ i1 , ξ i2 , ···, ξ im ) 是 ( ξ1 , ξ 2 , ···, ξ n ) 中任意取出 m(m ≤ n) 个分量构成的 m 维随机变量,则称 ( ξ i1 , ξ i2 , ···, ξ im ) 的联合分布函数为( ξ1 , ξ 2 , ···, ξ n ) 的 m 维边缘分布函数。 这 时 , 如 果 分 别 记 ( ξ1 , ξ 2 , ···, ξ n ) 与 ( ξ i1 , ξ i2 , ···, ξ im ) 的 分 布 函 数 为 F(x1,x2,···,xn) 与
概率统计随机过程-期末试卷-参考答案
7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4
即
152
2 15 S 2 (15) 知 D 2 2 15
D S 2 2 15
2
得 D S
2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}
概率统计与随机过程 系杆
概率统计与随机过程摘要:本文将对概率统计与随机过程进行全面、详细、完整且深入的探讨。
首先介绍概率统计的基本概念和原理,包括概率、随机变量、概率分布、参数估计等。
然后深入讨论随机过程的概念、特性以及常见的随机过程模型。
在介绍完基本理论后,将分别从概率统计和随机过程的应用角度,探讨它们在实际问题中的具体应用,如风险分析、金融市场建模、信号处理等。
最后对未来概率统计与随机过程的发展进行展望,并指出可能的研究方向。
一、概率统计的基本概念和原理1.1 概率的定义和性质•概率的基本概念:事件、样本空间、样本点•概率的公理化定义:古典概型、几何概型、统计概型•概率的性质:加法公式、乘法公式、全概率公式、贝叶斯公式1.2 随机变量与概率分布•随机变量的定义和分类:离散随机变量、连续随机变量•概率质量函数(PMF)与概率密度函数(PDF)•常见的离散分布:伯努利分布、二项分布、泊松分布等•常见的连续分布:均匀分布、正态分布、指数分布等1.3 参数估计•极大似然估计法•贝叶斯估计法•矩估计法二、随机过程的概念与特性2.1 随机过程的定义•随机过程的定义和分类:离散时间随机过程、连续时间随机过程•随机过程的样本函数和随机函数2.2 马尔可夫性质•马尔可夫过程的定义和特性•马尔可夫链的稳定分布•应用:隐马尔可夫模型(HMM)2.3 随机过程的独立性•无记忆性•平稳性•应用:泊松过程、布朗运动2.4 随机过程的相关性•相关性的定义和度量•自相关函数与互相关函数•应用:自回归过程(AR)、移动平均过程(MA)三、概率统计与随机过程的应用3.1 风险分析与控制•金融市场风险分析:价值-at- risk(VaR)•保险行业风险评估3.2 金融市场建模•资产价格模型:随机游走模型、几何布朗运动模型•期权定价模型:布莱克-斯科尔斯模型、孤立波动率模型3.3 信号处理与模式识别•时序信号分析•模式识别与分类四、概率统计与随机过程的未来发展4.1 大数据与机器学习•利用大数据分析提升模型预测准确性•应用机器学习算法改进概率统计与随机过程模型4.2 高维数据分析•多维随机过程模型•高维统计推断方法4.3 应用拓展与深入研究•生物医药领域的应用研究•工程科学领域的应用研究五、总结概率统计与随机过程作为现代数学的重要分支,对于解决实际问题和推动学科发展具有重要意义。
《概率论与随机过程》课程自学内容小结
大学2015~2016学年秋季学期本科生课程自学报告课程名称:《概率论与随机过程》课程编号:07275061报告题目:大数定律和中心极限定理在彩票选号的应用学生:学号:任课教师:成绩:评阅日期:随机序列在通信加密的应用2015年10月10日摘 要:大数定律与中心极限定理是概率论中很重要的定理,较多文献给出了不同条件下存在的大数定律和中心极限订婚礼,并利用大数定律与中心极限定理得到较多模型的收敛性。
但对于他们的适用围以及在实际生活中的应用涉及较少。
本文通过介绍大数定律与中心极限定理,给出了其在彩票选号方面的应用,使得数学理论与实际相结合,能够让读者对大数定律与中心极限定理在实际生活中的应用价值有更深刻的理解。
1. 引言在大数定律与中心极限定理是概率论中很重要的定理,起源于十七世纪,发展到现在,已经深入到了社会和科学的许多领域。
从十七世纪到现在,很多国家对这两个公式有了多方面的研究。
长期以来,在大批概率论统计工作者的不懈努力下,概率统计的理论更加完善,应用更加广泛,如其在金融保险业的应用,在现代数学中占有重要的地位。
本文主要通过对大数定律与中心极限定理的分析理解,研究探讨了其在彩票选号中的应用,并给出了案例分析,目的旨在给出大数定律与中心极限定理应用对实际生活的影响,也对大数定律与中心极限定理产生更深刻的理解。
2. 自学容小结与分析2.1 随机变量的特征函数在对随机变量的分析过程中,单单由数字特征无法确定其分布函数,所以引入特征函数。
特征函数反映随机变量的本质特征,可唯一的确定随机变量的分布函数、随机变量X 的特征函数定义为:定义1 ][)()(juX jux e E dx e x p ju C ==⎰+∞∞- (1)性质1 两两相互独立的随机变量之和的特征函数等于各个随机变量的特征函数之积。
性质1意味着在傅立叶变换之后,时域的卷积变成频域的相乘,这是求卷积的简便方法。
类比可知求独立随机变量之和的分布的卷积,可化为乘法运算,这样就简便了计算,提高了运算效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∞
∞
= ∑P( X = xi Y = y j )P(Y = y j )
j=1
∞
P(Y = y j ) = ∑ pij = ∑P( X = xi ,Y = y j ) = ∑P(Y = y j X = xi )P( X = xi )
i=1 ∞ i=1 i=1
∞
∞
i =1,2,L
j =1,2,L
注意:
FX Y (x y), f X Y (x y) 是 x 的函数, y 是常数, 对于每一 f Y (y) > 0 的 y 处,只要符合定义 的条件,都能定义相应的函数.
F X ( y x), fY X ( y x) 是 y 的函数, x 是常数, Y
对于每一 f X (x) > 0 的 x 处,只要符合定义 的条件,都能定义相应的函数. 类似于乘法公式: f (x, y) = f X (x) fY X ( y x) f X (x) > 0 = fY ( y) f X Y (x y) fY ( y) > 0
P( X = m,Y = n) P( X = m Y = n) = P(Y = n) 2 n−2 p (1− p) 1 = = 2 n−2 n −1 (n −1) p (1− p) m =1,2,L n −1 , 对每个m, (m =1,2,L )
P( X = m,Y = n) P(Y = n X = m) = P( X = m) 2 n−2 p (1− p) = = p(1− p)n−m−1 m−1 p(1− p) n = m +1, m + 2,L
0
1
P(Y = j X = 2)
1 2
1 2
另一方面,若已知联合分布律,则可由它求出 条件分布律. 假设已知本例的联合分布律如下表所示 求条件分布律即对矩形框中的数据进行运算
pij X Y 0 1 2 3 pi
•
0
1
2
3
p•
j
1 27 1 9 1 9 1 27 8 27
1 9 2 9 1 9
0
1 9 1 90 0源自1 270 0 0
8 27 4 9 2 9 1 27
1
4 9
2 9
1 27
例2 一射手进行独立射击, 已知每次他击中目标 的概率为 p ( 0 < p < 1 ), 射击一直进行到击 中两次目标为止. 令X 表示他首次击中目标 所进行射击的次数, Y 表示他总共进行射击的 次数. 求 X 和 Y 的联合分布律、条件分布律 和边缘分布律. 解 (Y = n) —— 第n 次击中目标,前 n – 1 次恰 有一次击中目标 故联合分布律为 2 n−2 P( X = m,Y = n) = p (1− p) m =1,2,L, n −1; n = 2,3,L (m =1,2,L n = m +1, m + 2,L ; )
同理,
σ2 2 2 fY X ( y x) ~ N µ2 + ρ (x − µ1),σ2 (1− ρ ) σ1
例5 设
8xy, 0 ≤ x ≤ y,0 ≤ y ≤1 f (x, y) = 其 他 0,
1
求 f X Y (x y) , fY X ( y x) 解
18xydy, 0 ≤ x ≤1 f X (x) = ∫x 其 他 0, 2 4x(1− x ), 0 ≤ x ≤1 = 0, 其 他
3−i− j
j = 0,L,3 − i
i = 0,L,3
i = 0,L,3 − j
1 1− 1 P( X = i Y = j) = C 2 2
由问题的意义可知 X 0 1
i
3− j−i
j = 0,L,3
2
3
P( X = i Y = 0)
1 8
3 8
3 8
1 8
Y
def.
= P( X ≤ x Y = y)
定义 若f (x,y)在点(x,y)连续,f Y (y)在点y处连续 且 f Y (y) > 0, 则称
∂F(x, y) ∂y = dF ( y) Y dy
f (u, y) = ∫−∞ du fY ( y) 为Y = y 的条件下X 的条件分布函数,记作 f (x, y) FX Y (x y),称 为Y = y 的条件下X 的 fY ( y) 条件概率密度函数,记作 f X Y (x y)
2 2 2 2
2 r2 − x2 = πr2 , − r < x < r 0, 其 他
同理,
fY ( y) = ∫−∞ f (x, y)dx
2 r2 − y2 = πr2 , − r < y < r 0, 其 他
边缘分布不是均匀分布!
+∞
当 – r < y < r 时,
[F(x, y − ∆y) − F(x, y)] (−∆y) lim ∆y→0+ [F ( y − ∆ ) − F ( y)] (−∆ ) y y Y Y
∂F(x, y) ∂y = = dF ( y) Y dy
y
∫−∞ f (u, y)du
fY ( y) (y
x
y -∆y x
f (x, y)连 续 fY ( y) ≠ 0,连 续
∞
P( X = xi ,Y = y j ) pij 记作 则称 = = P(Y = y j X = xi ) P( X = xi ) pi• j =1,2,L 为在 X = xi 的条件下,Y 的条件分布律
若
p• j = P(Y = y j ) = ∑ pij > 0,
i=1
∞
P( X = xi ,Y = y j ) pij 记作 则称 = = P( X = xi Y = y j ) P(Y = y j ) p• j i =1,2,L
P( X ≤ x y − ∆y < Y ≤ y) P( X ≤ x, y − ∆y < Y ≤ y) = P( y − ∆y < Y ≤ y)
y y - ∆y
∆y x
F(x, y) − F(x, y − ∆y) = F ( y) − F ( y − ∆y) Y Y
[F(x, y − ∆y) − F(x, y)] (−∆y) = [FY ( y − ∆y) − FY ( y)] (−∆y)
1 2πσ2
e
( y−µ2 )2 − 2 2σ2
=
1 2πσ1 1− ρ
2
e
1 σ − 2 ( x−µ1 )−ρ 1 ( y−µ2 ) σ2 2σ1 (1−ρ2 )
σ1 2 2 f X Y (x y) ~ N µ1 + ρ ( y − µ2 ),σ1 (1− ρ ) σ2
x
∫−∞ f (u, y)du = ∫−∞ f (u, y)du +∞ fY ( y) ∫−∞ f (u, y)du
x
x
类似地, 若f (x,y)在点(x,y)连续,f X (x)在点x处 连续且 f X (x) > 0, 则称 ∂F(x, y) y y ∫−∞ f (x,v)dv = ∫−∞ f (x,v)dv ∂x = +∞ dFX (x) f X (x) ∫−∞ f (x,v)dv dx y f (x, v) = ∫−∞ dv f X (x) 为X = x 的条件下Y 的条件分布函数,记作 f (x, y) F X ( y x),称 为X = x 的条件下Y 的 Y f X (x) 条件概率密度函数,记作 fY X ( y x)
类似于全概率公式
f X (x) = ∫−∞ f (x, y)dy = ∫−∞ f X Y (x y) fY ( y)dy fY ( y) = ∫−∞ f (x, y)dx = ∫−∞ fY X ( y x) f X (x)dx
类似于Bayes公式 f (x, y) fY X ( y x) f X (x) f X Y (x y) = = fY ( y) fY ( y)
边缘分布律为
P( X = m) =
n=m+1
2
p2 (1− p)n−2 ∑
m−1
∞
p (1− p) = = p(1− p)m−1 1− (1− p)
P(Y = n) = ∑ p (1− p)
2 m=1
n−1
m =1,2,L
n−2
= (n −1) p2 (1− p)n−2
n = 2,3,L
条件分布律为 ) 对每个n, (n = 2,3,L
1
8xydx, 0 ≤ y ≤1 fY ( y) = ∫0 11 其 他 0, y 3 4y , 0 ≤ y ≤1 = 其 他 0, x 11 当0 < y < 1 时, 2x 2x , 0 ≤ x ≤ y f (x, y) 2 f X Y (x y) = = y fY ( y) 其 他 0, 当0 < x < 1 时, 2y , x ≤ y ≤1 f (x, y) fY X ( y x) = = 1− x2 f X (x) 0, 其 他
为在 Y = yj 的条件下,X 的条件分布律 类似于乘法公式
P( X = xi ,Y = y j ) = P( X = xi )P(Y = y j X = xi )
或
= P(Y = y j )P( X = xi Y = y j )
i, j =1,2,L
类似于全概率公式
P( X = xi ) = ∑ pij = ∑P( X = xi ,Y = y j )
二维连续型随机变量的条件分布函数和 条件密度函数 设二维连续型随机变量(X,Y )的 联合分布函数为F (x,y), 联合密度函数为 f (x,y) X 的边缘分布函数为FX (x), 边缘密度函数为 f X (x) Y 的边缘分布函数为FY (y), 边缘密度函数为 f Y (y)