数学文化第五讲幻方
《幻方》教学课件

反射对称法
将奇数阶幻方反射后得到 偶数阶幻方。
递推构造法
通过已知的低阶幻方推导 出高阶幻方,常用的递推 关系有菲波那契数列等。
运用编程语言实现幻方构造
Python实现
使用Python的列表操作 和循环语句实现幻方的构 造。
Java实现
使用Java的数组和循环语 句实现幻方的构造。
C实现
使用C的数组和循环语句 实现幻方的构造。
幻方学习的重要性
幻方是一种具有独特魅力的数学游戏,通过学习可以帮助学生 提高数学兴趣和思维能力。
学习内容回顾
在幻方的学习过程中,学生需要掌握基本的数学原理和方法,如 对称性、组合数学等。
学习收获
通过幻方学习,学生可以提高观察力、逻辑思维和空间想象力等 多方面的能力。
对于幻方研究的展望与建议
深入探究
伪代码描述
给出算法的伪代码描述,以清晰简洁地表达算法 的实现细节。
算法复杂度分析
对算法的时间复杂度和空间复杂度进行分析,说 明算法的效率及可行性。
优化与改进
算法优化
针对现有算法的不足之处,提出相应的优化策略和改进方案,提 高算法的效率和性能。
优化实例
通过具体实例,演示优化后的算法相比原算法的优势和特点。
《幻方》教学课件
2023-11-02
目录
• 幻方简介 • 幻方的基本构造方法 • 幻方的数学原理 • 幻方的计算机实现 • 幻方在实践中的应用 • 总结与展望
01 幻方简介
幻方的定义
幻方是一种将n×n个数字排列成一个正方形,使每行、每列 和对角线上的数字之和均相等,具有神秘色彩的组合图形。
幻方最初由古希腊数学家费尔南德斯发现,被认为是数学与 艺术的完美结合。
幻方知识点总结

幻方知识点总结幻方的起源可以追溯到公元前2200年的古代中国,最早的幻方出现在中国的《周髀算经》中。
这本书中记载了3阶和4阶的幻方,展示了当时中国对幻方的早期研究和应用。
随后,幻方传入了印度、中东和欧洲等地区,在这些地区的文化和数学传统中都留下了深远的影响。
著名的数学家如拉马努金、欧拉、高斯等都曾对幻方进行了深入的研究,为幻方的发展和应用做出了重要贡献。
要理解幻方,首先需要了解几个基本概念:阶数、和数、构造方法和性质。
阶数是指幻方数组的边长,比如3阶幻方就是一个3x3的数组。
和数是指每一行、每一列和每一条对角线上的数字之和,也叫做幻方的魔数。
构造方法是指幻方的排列规则和建立过程,包括奇阶幻方和偶阶幻方两种不同的构造方法。
而幻方的性质则是指它特有的数学特点和规律,如对称性、旋转性、等价性等。
在构造幻方的过程中,最常用的方法是奇阶幻方和偶阶幻方的构造方法。
对于奇阶幻方来说,它的构造方法相对简单,常用的有“Siamese method”、“Loubere method”等,它们都是通过一定的规则和步骤将数字逐个填入方格中,最终形成一个满足要求的幻方。
而对于偶阶幻方来说,则需要更复杂的构造方法,常用的有“method of de la Loubere”、“methodof de la Hire”等,它们需要通过巧妙的排列和替换来构造出一个满足要求的幻方。
在构造的过程中,对数字的排列、替换和对称性的利用都是十分重要的技巧。
除此之外,幻方还具有一些特殊的性质和规律。
比如,幻方的逆幻方、旋转幻方和反转幻方都是与原幻方有一定联系的新幻方,它们之间的对应关系和巧妙的变换方法都是幻方研究的重要内容。
幻方还具有对称性和等价性,这使得幻方可以在不同的方向上进行旋转、翻转和变换,从而获得新的幻方和新的挑战。
在实际生活中,幻方还有许多有趣的应用,比如在数学教育、艺术设计、密码学等领域都可以看到幻方的身影。
幻方的研究和探索不仅仅是一种数学游戏,它还蕴含着丰富的数学知识和有趣的推理技巧。
趣味数学-幻方

三、四阶幻方
五阶幻方
六阶幻方
3、探究幻方的规律(1):
49 2 35 7 8 16
1、所有行、列、对角线上的数 之和均为15;
2、偶数位于角上,奇数在中间;
3、5位于中心点,相对的两个端 点数和为10。因为9个数之和是45, 所以中间的数的5。
3、探究幻方的规律(2):
49 2 35 7 8 16
276+951+438= 1665 672+159+834= 1665
2762+9512+4382= 1172421 6722+1592+8342= 1172421
4)每列看成的三位数和 =它逆转之后的三位数。
5)每列看成的三位数的平方和 =它逆转之后的三位数平方和
行也成立
3、探究幻方的规律(3):
24-8-7=9
10 9 5
24-9-5=10 24-10-8=6
本课小结
每行、每列、对角线上的三个数的和都相 等方格,叫“幻方”。 所有行、列、对角线上的数之和均为15。 偶数位于角上;奇数在中间。
5位于中心点,相对的两个端点数和为10。
49 2 35 7 8 16
357+753= 1100 951+159= 1100
456+654= 1100 852+258= 11700
6)每列每行每一条对角线上看成的三位数 和它逆转之后的三位数之和相等。
(7)幻和=九个数之和÷3, (8)中间数=幻和÷3. (9)C=(A+B)÷2 (如右图)
13 14 15 16 第四行和=58 多了24
第 第第 第 一 二三 四 对角线和=34 列 列 列 列 和 和和 和
幻方

分别在ABCD中按照前面的填法把奇数阶填好,最后做如下交换:
○1 B中第0~(m-1)-1行中元素与C中相对应元素交换
○2 D中第(n-1)-m+1~(n-1)共m行的每行中的元素与A中相对应元素 交换
○3 交换D:(u+m,m)与A中对应元素(矩阵中心值)
心得与体会
生活经验
学习经验与体会
这次研究让我们意识到,在生活 中,要有不怕困难,迎难而上的 心理。只要肯探索肯定会成功。
完成了本次的综合实践活动,我体会 到了团队合作的的重要性。若这次活 动没有团队成员的贡献,我想,如果 只有我一个人也许不会很快就解决问 题的。
*(^-^) *
幻方
——课题研究报告
一、幻方的历史
二、幻方的定义
三、研究幻方
三阶
四阶
四、得出结论:幻方的构五造阶方法 五、研究成果展示
六、心得与体会
目录
幻方的历史
幻方又称为魔方,方阵或厅平方,它最早起源于我国。宋代 数学家杨辉称之为纵横图。 所谓纵横图,它是由1到n2,这n2个自 然数按照一珲的规律排列成N行、N列的一个方阵。它具有一种巧 妙的性质:在各种几何形状的表上排列适当的数字,对这些数字 进行简单的逻辑运算时,不论采取哪一条路线,最后得到的和或 积都是完全相同的。
2. 偶数阶
n=4×m+2, m为自然数
1) 将n阶方阵分为四个小魔方阵ABCD如下排列: B C D A
∵n×n=4×(2×m+1) ×(2×m+1), ∴u= n=2×m+1,分为 1~u×u2,u×u+1~2×u×u,2×u×u+1~3×u×u,3×u×u+1~4×u×u
(完整版)趣味数学-幻方

13 14 15 16 第四行和=58 多了24
第 第第 第 一 二三 四 对角线和=34 列 列 列 列 和 和和 和
对角线和=34
=40 =36 =32 =28
少6 少2 多2 多6
根据刚才的情况我们发现对角线上的 4个数和就是幻和,那么就让它们位置都不变。
1 2 34 56 78 9 10 11 12 13 14 15 16
数4个的请让数4它个的们分数4别个的交数换4个的吧!
和 和 和和
=
=
==
34 34 34 34
4个数和= 34
4个数和= 34 1.我先我变是个魔中师心, 点 4个我数可和是= 3有4 魔法的
现在我们来指引 24.个数每数字中你列和2心们的和=点去数334与相字把谁对每和关行相于等
3.数字5和9谁关于 中心点相对
把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方
1 42 7 53 86
9
换位
9 42
三阶幻方有技巧,
3 5 7 3数斜着先排好,
86 1
上下左右要交换, 然后各自归位了!
归位
5:如何填幻方(幻方的构成) 2)三阶幻方构成方法之二 画格辅助 九子斜排 送子回家 清除辅助
1
4
2
7
5
3
8
6
三、四阶幻方
五阶幻方
六阶幻方
3、探究幻方的规律(1):
49 2 35 7 8 16
1、所有行、列、对角线上的数 之和均为15;
2、偶数位于角上,奇数在中间;
3、5位于中心点,相对的两个端 点数和为10。因为9个数之和是45, 所以中间的数的5。
3、探究幻方的规律(2):
幻方定义和规律

幻方定义和规律幻方,作为一种具有神秘色彩的数学游戏,一直以来都吸引着人们的注意。
它的定义和规律引发了许多学者的思考和研究。
在这篇文章中,我们将深入探讨幻方的定义和规律,揭示其中的奥秘。
我们需要了解什么是幻方。
幻方是由一组整数构成的方阵,其中每一行、每一列和对角线上的数字之和都相等。
也就是说,幻方是一个特殊的方阵,在数值上呈现出一种平衡和对称的特性。
幻方的规律是如何产生的呢?首先,我们需要明确一个概念——幻方的阶数。
幻方的阶数表示方阵的行数和列数,通常用n表示。
根据幻方的定义,我们知道每一行、每一列和对角线上的数字之和都相等,所以我们可以推断出幻方的和是多少,即n乘以每个数的平均值。
以3阶幻方为例,我们可以通过数学推导得到。
假设幻方的和为S,根据定义,每一行、每一列和对角线上的数字之和都等于S。
那么,我们可以得到以下等式:3S = n * (n^2 + 1) / 2。
通过解方程,我们可以求解出S的值。
幻方的规律还表现在数字的排列上。
对于奇阶幻方来说,数字的排列是相对简单的,可以利用一种叫做"奇序法"的方法来构造。
奇序法的基本思想是,将数字按照一定的规则填充到方阵中。
具体的规则是,从第一行的中间列开始,依次填充数字,每次向右上方移动一格。
当超出方阵边界时,需要按照特定的规则进行处理。
通过这种方法,我们可以构造出任意奇阶幻方。
对于偶阶幻方来说,数字的排列就更加复杂了。
由于偶数无法平分为两个相等的整数,所以无法使用奇序法来构造。
但是,通过一些特殊的技巧和方法,我们仍然可以构造出偶阶幻方。
其中最著名的就是四阶幻方,也被称为"洛伊斯四阶幻方"。
洛伊斯四阶幻方是由德国数学家洛伊斯于1848年发现的,它的构造方法相当巧妙。
除了基本的规律之外,幻方还有一些更加深奥的特性。
例如,幻方的对角线之和等于方阵中所有数字之和的一半。
这是一种非常有趣的性质,也是幻方研究中的一个重要发现。
幻方知识点总结

幻方知识点总结一、幻方的定义。
幻方是一种将数字安排在正方形格子中,使每行、每列和对角线上的数字之和都相等的数学结构。
例如,一个简单的三阶幻方(3×3的方格):begin{array}{ccc}hline8 1 6 hline3 5 7 hline4 9 2 hlineend{array}这里每行、每列和两条对角线上的数字之和都是15。
二、幻方的阶数。
1. 阶数的概念。
- 幻方的阶数是指幻方的行数(或列数),用n表示。
常见的有三阶幻方(n = 3)、四阶幻方(n=4)等。
2. 不同阶数幻方的特点。
- 三阶幻方。
- 是最基本、最常见的幻方。
它的数字组合相对固定,中心数字具有特殊性质。
在三阶幻方中,中心数字是这9个数字的平均数。
例如在上面的三阶幻方中,数字是1 - 9,它们的平均数是5,正好是中心数字。
- 四阶幻方。
- 构造相对复杂一些。
四阶幻方的幻和(每行、每列、对角线数字之和)计算为:(1 + 2+3+·s+16)÷4=(16×(16 + 1)÷2)÷4= 34。
三、幻方的构造方法。
1. 奇数阶幻方(以三阶幻方为例)——罗伯法。
- 把1(或最小的数)放在第一行正中。
- 按以下规律排列剩下的数:- 每一个数放在前一个数的右上一格。
- 如果这个数所要放的格已经超出了最顶行,那么就把它放在底行,仍然要放在右一列。
- 如果这个数所要放的格已经超出了最右列,那么就把它放在最左列,仍然要放在上一行。
- 如果这个数所要放的格已经填好了其他的数,或者同时超出了顶行和右列,那么就把这个数放在前一个数的下一行同一列的格内。
2. 偶数阶幻方(以四阶幻方为例)——对称交换法。
- 先将1 - 16按顺序填入4×4的方格中。
- 然后将对角线上的数字(从左上角到右下角和从右上角到左下角)进行对称交换。
例如,交换1和16,4和13,6和11,7和10,就可以得到一个四阶幻方。
幻方的规律和求法

幻方的规律和求法幻方的规律和求法:幻方可是个神奇的存在呀!简单来说,就是在一个正方形格子里,填上一些数字,让每行、每列以及对角线上的数字之和都相等。
我们可以把幻方想象成一个数字的大舞台,每个数字都像是一位演员,它们要在这个舞台上找到自己的位置,共同演绎出神奇的规律。
那些格子就像是演员们的站位,必须恰到好处,才能呈现出完美的表演。
比如说三阶幻方,就像是一个小型的数字音乐会,九个数字要在九个位置上完美配合,奏响和谐的数字乐章。
那幻方是怎么做到让每行、每列和对角线的数字和都相等的呢?这就像是一场精心编排的舞蹈,每个数字都要准确无误地迈出自己的舞步。
以三阶幻方为例,中间的数字就像是领舞的主角,它的位置至关重要。
其他数字则像是伴舞,围绕着中间数字旋转跳跃。
它们之间有着一种微妙的平衡和协调,就像一个默契十足的舞蹈团队。
我们来看看具体的规律。
首先,幻方中每行、每列和对角线上的数字之和是一个固定值,这个值是所有数字总和的三分之一。
比如三阶幻方,1 到9 这九个数字的总和是 45,那么每行、每列和对角线的和就是 15。
这就好像是一场比赛,每个队伍的目标总分是确定的,数字们要努力去达到这个目标。
其次,中间位置的数字有着特殊的地位,它往往是一个关键的平衡点。
而且,相对的两个数字之和通常等于另外两个相对数字之和,就像两队选手在进行拔河比赛,力量要保持平衡。
为了让大家更好地理解,我们来看一个具体的三阶幻方例子:4 9 23 5 78 1 6在这里,每行、每列和对角线的和都是 15。
4 和 6、9 和 1、2 和 8 等相对数字之和都是 10,是不是很神奇呢?幻方在生活中也有不少应用呢!比如在建筑设计中,一些古老的建筑可能会运用幻方的原理来布局,以求达到某种平衡和和谐。
在数学研究中,幻方更是一个重要的领域,数学家们不断探索着更复杂、更奇妙的幻方。
总之,幻方就像是一个隐藏在数字世界里的神秘宝藏,等待着我们去探索和发现。
它的规律既神奇又有趣,让我们感受到了数字的魅力和魔力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)任何一个元素,通过一定的四则运算它们个个可以 变成6174。
207
109
179
137
17 37 397 67
307 157 107 227
127 277 257 137
347 47 37 367 尾数全是7,幻和 为798。
4、黑洞数幻方
1341 1791 1476 1566
1836 1206 1701 1431
1611 1521 1746 1296
1386 1656 1251 1881
数学文化的起源——
幻方
一、幻方基本知识
1、从河洛文化说起
相传,在上古伏羲时代,洛 阳东北孟津县境内的黄河里跃出 一匹龙马,背上驮了一幅图,上 面有黑白点55个,用直线连成10 数献给伏羲。后人称之为河图, 伏羲依此而演绎成八卦,后为 《周易》来源。
又传,大禹治水时,有灵龟自洛水出,背上排列成 “带九履一,左三右七,四二为肩,八六为足,五居中央” 的图形,献给大禹,后人称之为洛书。大禹依此治水成功, 遂划天下为九州。又依此定“九章大法”治理社会,流传 下来收入《尚书》中,名为《洪范》。在中国历史中,
31 81 11 21 41 61 71 1 51
49 9 65 57 41 25 17 73 33
40 45 38 39 41 43 44 37 42
32 77 14 23 41 59 68 5 50
3、素数幻方
569 59 449 239 359 479 269 659 149
尾数全是9,幻和 为1077。
1 14 9 20 3 24 19 2 15 10 13 8 25 4 21 18 23 6 11 16 7 12 17 22 5
11 22 33 44 13 24 3 32 43 12 23 2 45 14 21 10 39 34 37 4 25 42 31 36 1 40 15 46 9 20 41 38 35 26 5 30 49 18 7 28 47 16 19 8 29 48 17 6 27
该幻方中蕴含着许多奇特的性质
1、距离幻方中心41的任何中心对称位置上两数 之和都为82。注意12+92=82。
2、将幻方按图中粗线分为九块,即为九个三阶 幻方。
31 76 13 36 81 18 29 74 11 22 40 58 27 45 63 20 38 56 67 4 49 72 9 54 65 2 47 30 75 12 32 77 14 34 79 16 21 39 57 23 41 59 25 43 61 66 3 48 68 5 50 70 7 52 35 80 17 28 73 10 33 78 15 26 44 62 19 37 55 24 42 60 71 8 53 64 1 46 69 6 51
大禹的功劳极其巨大,因为他治 水以后,中国九州才开始以农业 立国。而他成功治水的智慧就来 自“洛书”的启示。
(1)两图的结构对称。
(2)数的概念直接而又形象地包含在图书之中, 其中由黑点构成的数为偶数,白点构成的数为奇数。
2、幻方
在一个方阵中,如果每行、每列以及对角线上自 然数之和分别都等于某一个定值,则称此方阵为幻方。 这个特定值称为幻和,每格内的自然数称为元素。幻 方每边格数n称为幻方的阶。
816 357 492
图Ⅲ
618 753 294
图Ⅶ
438 951 276
图Ⅳ
276 951 438
图Ⅷ
2、九九图
我国宋朝数学家杨辉在《续与摘奇算法》中给出了一个9阶幻方。
31 76 13 36 81 18 29 74 11 22 40 58 27 45 63 20 38 56 67 4 49 72 9 54 65 2 47 30 75 12 32 77 14 34 79 16 21 39 57 23 41 59 25 43 61 66 3 48 68 5 50 70 7 52 35 80 17 28 73 10 33 78 15 26 44 62 19 37 55 24 42 60 71 8 53 64 1 46 69 6 51
120 135 114 117 123 129 132 111 126
4
9
2
3
5
7对角线上的数全部圈起来,再从外向里用方 框框上,则每个“回”形上圈里的八个数字与中心数41 又分别构成三阶幻方。
31 76 13 36 81 18 29 74 11 22 40 58 27 45 63 20 38 56 67 4 49 72 9 54 65 2 47 30 75 12 32 77 14 34 79 16 21 39 57 23 41 59 25 43 61 66 3 48 68 5 50 70 7 52 35 80 17 28 73 10 33 78 15 26 44 62 19 37 55 24 42 60 71 8 53 64 1 46 69 6 51
165
193
151
221
123
5、回文数幻方
5665 1001 4664 2662 2442 4884 3443 3223 2332 4334 1331 5995 3553 3773 4554 2112
该四阶完美幻方的幻和是13992。
6、马步幻方
23 18 11 6 23 10 5 24 17 12 19 22 13 4 7 14 9 2 21 16 1 20 15 8 3
该幻方中蕴含着许多奇特的性质
1、距离幻方中心41的任何中心对称位置上两数 之和都为82。注意12+92=82。
2、将幻方按图中粗线分为九块,即为九个三阶 幻方。
3、若把上述九个三阶幻方的每个“幻和”值写 在九宫中,又构成一个新的三阶幻方。并且幻方中 的九个数分别是首项为111,末项为135,公差为3的 等差数列。将这些数按大小顺序的序号写在九宫格 中,它又恰好是“洛书”幻方。
如果每一对角线上的元素之和也都等于幻和, 则称该方阵为完美幻方。幻方内元素全体的和称为 幻方和。在幻方中所有与其中心对称的两元素的和 如果都相等,则该幻方称为对称幻方。
二、妙趣横生的幻方
1、洛书图
294 753 618
图Ⅰ
492 357 816
图Ⅴ
672 159 834
图Ⅱ
834 159 672
图Ⅵ