药理实验方法学
药理实验方法学

药理实验方法学药理学是研究药物在生物体内作用机理和药效学的科学。
药理实验方法学是药理学的基础,是药理学实验研究的方法和技术的总称。
药理实验方法学的研究对于揭示药物的作用机制、药效学、毒理学等具有重要意义。
下面将介绍一些常见的药理实验方法学。
首先,药理学实验的基本方法之一是体外实验方法。
体外实验是指在体外环境中进行的实验,常用的体外实验方法包括离体器官实验、细胞培养实验等。
离体器官实验是将动物的器官取出后放置在适当的培养液中进行实验,通过观察器官的生理功能变化来研究药物的作用机制。
细胞培养实验是将动物组织中的细胞进行离体培养,然后进行药物的作用研究。
体外实验方法可以减少动物的使用,同时也可以更好地控制实验条件,是药理学研究中常用的方法之一。
其次,药理学实验的另一种方法是体内实验方法。
体内实验是指在活体动物体内进行的实验,常用的体内实验方法包括动物实验、药物代谢实验等。
动物实验是将药物通过不同的给药途径给予实验动物,然后观察动物的生理、病理变化,从而研究药物的药效学和毒理学。
药物代谢实验是研究药物在体内的代谢过程,通过检测药物及其代谢产物在体内的浓度变化来研究药物的代谢途径和代谢动力学。
体内实验方法可以更好地模拟药物在生物体内的作用过程,是药理学研究中不可或缺的方法。
此外,药理学实验还可以采用计算机辅助实验方法。
随着计算机技术的发展,计算机辅助实验方法在药理学研究中得到了广泛应用。
计算机辅助实验方法包括药物分子模拟、药效动力学模拟等。
药物分子模拟是利用计算机对药物分子进行模拟,从而研究药物与受体的结合方式和作用机制。
药效动力学模拟是通过建立药物在体内的动力学模型,模拟药物在体内的代谢和排泄过程。
计算机辅助实验方法可以更好地理解药物的作用机制和药效学特性,为药物研发提供重要的参考。
总之,药理实验方法学是药理学研究的基础,不同的实验方法可以相互补充,共同揭示药物的作用机制和药效学特性。
随着科学技术的不断发展,药理实验方法学也在不断创新和完善,为药物研发和临床应用提供了有力支持。
药理学实验方法包括

药理学实验方法包括
1、体外实验:主要是在体外模拟生物系统的实验,用于研究药物的药理作用机制,
如电聚焦法、半稳定法、趋式滤液法、吸附氯化钾法、血浆药代动力学等。
2、动物实验:通过运用实验动物,研究药物的药理作用、药效学性质,帮助有效的
选择和用药,从而推动药物研发的发展。
3、临床实验:最重要的药理学研究方法,是对导致药物最终出现药效作用的机制和
动力学等进行研究。
通过临床研究,一方面可以评价药物的作用本质,另一方面也可以研
究其作用剂量,并可以用于起草药物的作用规律,从而可以指导有效的用药。
4、免疫学方法:新药研究中常用的药理学实验方法,用于评价药物分子对免疫反应,即向某种特定抗原的免疫反应。
5、微量元素分析:是研究药物的一种实验方法,用于研究药物的化学性质,研究药
物的释放、吸收、转化、排出和代谢谱等。
6、分子生物学方法:是一种新兴的药理学方法,用于研究药物对蛋白质、基因和细
胞内信号传导机制的影响。
7、微生物药理学实验:是研究药物抗病毒、抗菌和抗原过程的一种实验方法,旨在
该药物是否具有抗菌活性,该药物对微生物种群的影响,其有效剂量等。
药理学实验基本操作方法

药理学实验基本操作方法药理学实验基本操作方法是指在药理学研究中进行药物活性、毒性、代谢及药效评价等方面的实验操作方法。
下面将详细介绍药理学实验的基本操作方法。
1. 药物制备:首先需要准备所需的药物溶液。
根据实验需要,药物可以是天然的、合成的或者已经商业化的。
药物溶液的配制方法包括溶于溶剂中、配制不同浓度的药物溶液等。
药物在实验前需要进行精确称量,确保药物剂量的准确性。
2. 动物实验模型:选择合适的动物模型是进行药理学实验的关键。
常用的动物模型包括小鼠、大鼠、猪、猴等。
通过选用适合的动物模型可以更好地模拟人体的生理和病理状态,从而评价药物的疗效和安全性。
在动物实验前,需要进行动物的饲养和培养。
3. 药物给药方式:药物给药方式的选择取决于药物的性质和实验的目的。
常用的给药方式包括经口给药、静脉注射、皮下注射、直肠给药等。
给药时需要注意用药剂量、次数和给药时间的准确控制。
4. 临床观察和测量指标:在药理学实验中,需要对动物进行临床观察和测量,以评价药物的药效和毒性。
常见的观察指标包括体温、心率、呼吸频率、血压等。
另外,还可以通过采集血液、尿液等样本,进行对药物代谢、药物浓度的测定。
5. 数据处理和统计分析:药理学实验结束后,需要对实验数据进行处理和统计分析。
数据处理通常包括数据整理、计算药物的半数抑制浓度(IC50)、最大效应等指标,绘制药效曲线等。
统计分析可以通过方差分析、t检验、相关性分析等方法进行。
6. 实验设备消毒和废弃物处理:在药理学实验过程中,需要定期对实验设备进行消毒,以防止交叉感染。
实验结束后,需要按照相关规定安全处理药物残余和废弃物,确保实验环境的安全和卫生。
总结起来,药理学实验的基本操作包括药物制备、动物实验模型选择、药物给药方式、临床观察和测量指标、数据处理和统计分析以及实验设备消毒和废弃物处理。
这些基本操作方法是进行药理学实验的基础,通过合理的操作方法可以提高实验的准确性和可靠性,为药物的研发和临床应用提供科学依据。
药理学实验10 药物的镇痛实验(扭体法)

扭体反应诱发与观察
01
在给药后的一定时间(如30分钟),用醋酸溶液刺激动物腹 部,诱发扭体反应。
02
观察并记录每只动物在一定时间内(如30分钟内)出现的扭 体次数。
03
扭体反应表现为动物腹部收缩、躯干扭曲和后肢伸展等,是 疼痛反应的一种表现。
数据记录与分析
记录每组动物在给药前后的扭 体次数,计算各组动物在给药 后的扭体抑制率。
药物
待测试药物
准备不同浓度和剂量的待测试药物,以便观察不同剂量下的 镇痛效果。
对照药物
选用已知镇痛效果的药物作为阳性对照,以评估实验药物的 镇痛效果。
实验仪器和试剂
扭体仪
注射器
生理盐水
用于记录实验鼠在药物 作用下的扭体反应次数,
以评估疼痛程度。
用于给实验鼠注射药物。
用于稀释药物,制备不 同浓度的药物溶液。
通过扭体法实验,可以对不同药物的 镇痛强度进行比较,为临床用药提供 依据。
实验原理
• 扭体法实验是一种常用的镇痛实验方 法,其原理基于疼痛刺激引发动物躯 体扭动反应,通过记录扭体反应次数 来评估药物的镇痛效果。在扭体法实 验中,疼痛刺激通常采用化学刺激剂, 如醋酸或其他炎症介质,引起动物的 疼痛反应。药物通过口服或注射给药 后,观察其在一定时间内对扭体反应 的抑制作用,从而评价其镇痛效果。
以确保药物在临床应用中的安全有效性。
评价过程中应采用多指标、多维度的方法,对药物进行全面、
03
客观、科学的评价。ຫໍສະໝຸດ 对实验的反思与展望01
在实验过程中,应严格控制实验条件,确保实验结果的准确性和可靠性。
02
对于实验中存在的问题和不足之处,应进行深入分析和反思,并提出改进措施 。
药理学实验学习

炭末推进率计算公式:
ห้องสมุดไป่ตู้
炭末的移动距离(cm)
小肠推进率 =
×100%
小肠全长(cm)
第4页/共10页
• 实验结果
实验结果填入下表中
不同途径对药物效应的影响
鼠号 体重(g) 药物及剂量 给药途径 动物反应 炭末推进率(%)
A B C
第5页/共10页
二、灌胃和注射给药的药效比较
• 观察指标:
动物的翻正情况、排便、肌张力及呼吸情况。
• 实验方法:
1. 取3只小白鼠,称重并编号,放入鼠笼内。观察正 常活动、翻正反射及呼吸情况。然后以0.5%异戊巴比妥 钠溶液0.1ml/10g体重分别给药:甲鼠灌胃;乙鼠皮下注 射;丙鼠腹腔注射。观察并记录各鼠翻正反射消失时间 及呼吸抑制情况,将结果填入表1,比较分析不同给药途 径对药物作用的影响。
第6页/共10页
表1 结果记录表
鼠号 体重 用量
给药 途径
翻正反射消失 时间
呼吸抑制 程度
2. 取2只小白鼠,称重并编号,放入鼠笼内,观察 正常活动、排便、肌张力及呼吸情况。然后以10% 硫酸镁溶液0.2ml/10g体重分别给药:甲鼠灌胃; 乙鼠腹腔注射。观察并记录各鼠给药后情况,将结 果填入表2,比较分析不同给药途径对药物作用的 影响。
第9页/共10页
感谢您的观看!
第10页/共10页
第2页/共10页
2. 给药后注意观察动物的活动情况,是否有肌肉松 弛的表现。 3. 15min后每只小鼠均灌胃给予5%炭末阿拉伯胶混 悬液0.2ml。 4. 炭末灌胃后15min,将小鼠脱臼处死,剖开腹腔, 取出胃肠道。剪去附着在肠管上的肠系膜,将肠管不 加牵引地轻轻地平铺在玻璃板上(玻璃板上滴少许盐 水)。以幽门为起点,测量炭末在肠管内的移动距离 和小肠(自幽门至回盲部)的全长,计算每只小鼠炭末 的移动距离占小肠全长百分率,比较3组动物的活 动状况和胃肠炭末推进率有何不同。
药理实验方法学

第一章现代药理学实验方法与技术简介第一节分子生物学试验方法与技术分子生物技术在药理学实验中应用较为广泛,包括核酸分子探针的标记、核酸分子杂交、多聚酶链反应、蛋白印迹杂交技术、cDNA文库、随机分子库技术、外核基因在真核细胞中的表达、转基因动物、人类基因治疗等。
现将更为常用的技术介绍如下:一、核酸分子探针的标记标记核酸分子探针(nucleic acid probe)是进行核杂交的基础,根据核酸分子探针的来源及性质进行选择,选择的基本原则是具有高度的特异性,探针选择直接影响杂交结果的分析。
根据检测对象和目的不同,,可选择不同的探针种类及标记方法。
㈠探针种类1.基因组DNA探针是克隆化的各种基因片断,也是最常用的核酸探针,探针应尽可能选用基因编码(外显子),避免使用内含子及其它非编码序列。
2.cDNA探针与mRNA互补的DNA链称cDNA,是一种较为理想的核酸探针,特异性较高。
3.RNA探针RNA与RNA或DNA杂交体的探针稳定性,特异性高。
4.寡核苷酸探针人工合成寡核苷酸片段做探针,可根据需要合成相应序列。
㈡标记物常用的探针标记物有两类:放射性同位素和非放射性同位素。
标记物的检测具有高度灵敏性和特异性。
标记和探针结合不影响杂交的特异性和稳定性。
其中放射性同位素是应用最多的探针标记物,但易造成放射性污染,多数同位素的半衰期短,不能长期存放。
常用的放射性同位素有32P¸3P¸35S,有时也用14C,125I或131I。
二、核酸分子杂交(nucleic acid hybridiazation )是指具有一定同源序列的两条核酸单链在一定的条件下,按碱基互补配对原则形成异质双链的过程。
核酸分子杂交是分子生物学领域应用最广泛的技术,灵敏度高、特异性强,主要用于特异DNA或RNA的定性定量检测。
三、聚合酶链反应(polymerase chain reaction,PCR)是一种体外酶促扩增特异DNA片段的方法。
药理学实验报告

药理学实验报告一、实验目的本次药理学实验的主要目的是研究药物药物名称对动物生理机能的影响,通过实验观察和数据分析,深入了解药物的作用机制、药效特点以及可能产生的不良反应,为临床合理用药提供科学依据。
二、实验材料1、实验动物选用健康的动物种类,体重在体重范围,雌雄各半。
实验前动物在实验室适应环境适应天数。
2、药品与试剂药物名称,规格为规格详情,由生产厂家生产。
实验中所需的其他试剂,如生理盐水、试剂名称等。
3、实验仪器电子天平、注射器、手术器械、生理记录仪等。
三、实验方法1、动物分组将实验动物随机分为分组数量组,每组每组动物数量只。
分别标记为实验组和对照组。
2、给药途径与剂量实验组动物通过给药途径,如静脉注射、腹腔注射等给予药物剂量的药物名称;对照组动物给予等体积的生理盐水。
3、观察指标在给药后的不同时间点(如具体时间点 1、具体时间点 2等),观察并记录以下指标:(1)动物的一般行为表现,如活动情况、精神状态等。
(2)生理指标,包括体温、心率、血压等。
(3)生化指标,如血液中某些酶的活性、代谢产物的含量等。
4、实验操作步骤(1)动物称重后,用适当的麻醉剂进行麻醉。
(2)进行手术操作,如插管、安装传感器等,以监测生理指标。
(3)按照预定的方案进行给药,并密切观察动物的反应。
(4)在规定的时间点采集血液、组织等样本,进行相关指标的检测。
四、实验结果1、一般行为表现实验组动物在给药后具体时间出现了具体行为变化,如活动减少、嗜睡等,而对照组动物行为正常。
2、生理指标变化(1)体温:实验组动物体温在给药后时间开始下降,具体时间达到最低点,与对照组相比差异显著(P<005)。
(2)心率:实验组心率在给药后时间出现减慢,具体时间恢复到正常水平,与对照组相比有统计学差异(P<005)。
(3)血压:实验组血压在给药后时间出现短暂升高,随后逐渐下降,与对照组相比差异明显(P<005)。
3、生化指标结果(1)血液中酶名称的活性:实验组动物血液中该酶的活性在给药后时间显著降低(P<005),而对照组无明显变化。
药理学的研究方法

药理学的研究方法药理学是研究药物在生物体内所产生的效应和作用机制的学科。
在药理学的研究中,常常需要使用各种研究方法来评价药物的药效、毒性和代谢动力学等方面的特性。
以下是一些常见的药理学研究方法:1. 组织和细胞培养技术:采用体外的组织和细胞培养技术,可以研究药物对细胞的作用机制和效应。
例如,通过培养癌细胞株,可以研究药物对癌细胞生长和存活的影响。
2. 动物实验:在动物模型中进行实验是药理学研究中常用的方法之一。
通过给动物注射药物,可以观察其对动物行为、生理功能和病理状态的影响,从而评价药物的药效和毒性。
常用的动物模型包括小鼠、大鼠、兔子和猪等。
3. 临床试验:在人体中进行的临床试验是评价药物疗效和安全性的重要手段。
临床试验的设计需要严格的伦理标准和科学要求,通常包括药代动力学、药效学、安全性和剂量反应关系等内容。
临床试验可以分为四个阶段:I期为安全性和耐受性试验,II期为疗效试验,III期为大样本、多中心的疗效试验,IV期为上市后的药物监测。
4. 分子生物学技术:现代药理学研究中,常常使用分子生物学技术来深入研究药物的靶点和作用机制。
例如,可以通过PCR、Western blot、ELISA等实验技术来检测药物对特定蛋白的表达、修饰和相互作用等。
5. 计算机模拟和分子对接:计算机模拟和分子对接是药理学研究中的重要工具。
通过利用分子模型和计算模拟技术,可以预测药物分子与靶点之间的相互作用,优化药物设计和筛选潜在的药物分子。
6. 流行病学研究:流行病学研究是研究人群健康状况、疾病发生和流行规律的科学。
在药理学研究中,流行病学研究可以用于评价药物的效果和不良反应风险等。
常用的流行病学研究方法包括人群调查、队列研究和病例对照研究等。
7. 药物代谢动力学研究:药物代谢动力学研究是评价药物在生物体内代谢和消除的过程。
通过测定药物在体内的浓度变化,可以获得药物的代谢动力学参数,并进而评估药物的临床用药指导。
总结起来,药理学的研究方法多种多样,包括组织和细胞培养技术、动物实验、临床试验、分子生物学技术、计算机模拟和分子对接、流行病学研究以及药物代谢动力学研究等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章现代药理学实验方法与技术简介第一节分子生物学试验方法与技术分子生物技术在药理学实验中应用较为广泛,包括核酸分子探针的标记、核酸分子杂交、多聚酶链反应、蛋白印迹杂交技术、cDNA文库、随机分子库技术、外核基因在真核细胞中的表达、转基因动物、人类基因治疗等。
现将更为常用的技术介绍如下:一、核酸分子探针的标记标记核酸分子探针(nucleic acid probe)是进行核杂交的基础,根据核酸分子探针的来源及性质进行选择,选择的基本原则是具有高度的特异性,探针选择直接影响杂交结果的分析。
根据检测对象和目的不同,,可选择不同的探针种类及标记方法。
㈠探针种类1.基因组DNA探针是克隆化的各种基因片断,也是最常用的核酸探针,探针应尽可能选用基因编码(外显子),避免使用内含子及其它非编码序列。
2.cDNA探针与mRNA互补的DNA链称cDNA,是一种较为理想的核酸探针,特异性较高。
3.RNA探针RNA与RNA或DNA杂交体的探针稳定性,特异性高。
4.寡核苷酸探针人工合成寡核苷酸片段做探针,可根据需要合成相应序列。
㈡标记物常用的探针标记物有两类:放射性同位素和非放射性同位素。
标记物的检测具有高度灵敏性和特异性。
标记和探针结合不影响杂交的特异性和稳定性。
其中放射性同位素是应用最多的探针标记物,但易造成放射性污染,多数同位素的半衰期短,不能长期存放。
常用的放射性同位素有32P¸3P¸35S,有时也用14C,125I或131I。
二、核酸分子杂交(nucleic acid hybridiazation )是指具有一定同源序列的两条核酸单链在一定的条件下,按碱基互补配对原则形成异质双链的过程。
核酸分子杂交是分子生物学领域应用最广泛的技术,灵敏度高、特异性强,主要用于特异DNA或RNA的定性定量检测。
三、聚合酶链反应(polymerase chain reaction,PCR)是一种体外酶促扩增特异DNA片段的方法。
传统的DNA扩增法是分子克隆法,需经过DNA 酶切、链接、转化等步骤构建含有目的基因的载体。
然后导入细胞中进行扩增,再用同位素标记的探针进行筛选,操作复杂,耗时。
PCR技术灵敏度高,特异性强,操作简便。
PCR是本世纪分子生物学研究领域中最重要的发明之一。
四、cDNA文库是指以mRNA为模板,在反转录酶的作用下形成的互补DNA(complementary DNA,cDNA)。
cDNA文库是指一群含重组DNA 细菌或嗜菌体克隆。
每一个克隆只含一种mRNA的信息,足够数目克隆的总和则含细胞的全部mRNA信息,此种克隆群体叫cDNA文库。
五.随机分子库技术(random moleculer library)采用不同技术手段和在不同的分子水平有效地实现分子的多样性。
其技术路线,一是利用化学合成的方法生成已知结构的化合物,以某种特定方式和一定规律组合在一起,只要确定某一化合物具有活性,即可根据建库的组合方式确定其结构,围绕此技术发展的随机分子库总称为化学合成库(synthetic chemical library)。
二是利用基因工程方法直接合成的DNA或RNA的核酸库(nucleic acid library ),由DNA随即编码表达的小分子和大分子的混合群体而表达物的表面显露又提供了可从庞大的复杂的群体中快速筛选到目的物,这就是近几年发展起来的极富有应用潜力的核酸编码分子肽库(oligonucleotide-encoded peptide library )。
六.真核基因的表达调控技术真核细胞具有比原核细胞更为庞大的和复杂的基因组。
高等真核细胞基因组编码成千上万个基因,基因内遗传信息从DNA到蛋白质的传递过程,即基因表达过程受不同层次调节机制精密调控,此调控既决定着基因表达的量,又决定基因表达的时空顺序。
调控过程精密复杂,涉及到转录前染色质的活化;转录水平的调节;转录后的加工;翻译水平的调节及翻译后的修饰等。
基因表达的调控主要发生在转录水平。
七.转基因动物是用实验方法导入的外源基因在其染色体基因组内稳定整合并能遗传给后代的一类动物。
此种方法可建立转基因动物模型,以研究外源基因在整体动物中的表达调控率;能改变动物基因使其表现更符合人类需要;也可用转基因动物产生人类所需要的生物活性物质。
第二节细胞生物学实验方法与技术细胞生物学是生命科学中的重要分支,它以生命基本单位细胞为研究对象,应用近代物理、化学和实验生物学方法,从显微、亚显微和分子水平来揭示细胞生命活动及规律,其中包括细胞的生长、发育、分裂、分化、遗传、变异(包括癌变)、兴奋、运动、代谢、衰老与死亡等基本生命现象,并且利用与调控细胞的行为活动,已达到为生产实践尤其为医药卫生事业服务。
当前细胞生物学与医药保健事业联系的较为紧密的热点问题主要有以下几种:1)真核细胞基因结构及其表达调控;2)细胞膜、膜系、受体与信号传递研究;3)细胞生长、分化、衰老、癌变、死亡,尤其是程序性细胞死亡的研究;4) 细胞工程,包括基因工程及体细胞核移植的研究。
一、细胞培养常用方法1、细胞原代培养(primay culture)又称初代培养,即直接从机体取下细胞、组织、或器官、让他们在体外维持与生长。
原代细胞的特点是细胞或组织刚离开机体,他们的生物状态尚未发生很大的改变,一定程度上可反映他们在体内的状态,表现出来源组织或细胞的特性,因此用于药物实验尤其是药物对细胞活动、结构、代谢、有无毒性或杀伤作用等研究是极好工具。
常用的原代培养方法有组织快培养法及消化培养法。
前者方法简单,细胞也较易生长,尤其是培养心肌有时能观察到心肌组织块的搏动。
细胞从组织块外长并铺满培养皿或培养瓶后即可进行传代。
2、细胞的传代培养当细胞生长至单层汇合时,便需要进行分离培养否则会因无繁殖空间、营养耗竭而影响生长,甚至整片细胞脱离基质悬浮起来直至死亡。
为此当细胞达到一定密度时必须传代或再次培养,目的是借此繁殖更多的细胞,另一方面是防止细胞的退化死亡。
二、器官培养方法器官培养(organ culture)是指用特殊的装置使器官、器官原基或它们的一部分在体外存活,幷保持其原有的结构和功能。
器官培养可模拟体内的三维结构,用于观察组织间的相互反应、组织与细胞的分化以及外界因子包括药物对组织细胞的作用。
器官培养方法很多,最经典的方法即表玻皿器官培养法;一种最常用的方法是不锈钢金属网格法及Wolff培养法和扩散盒培养法,实验者可根据情况选择采用。
三、放射自显影术测定放射自显影术(autoradiography)是利用放射性同位素电离辐射对核子乳胶的感光作用,显示标本或样品中放射物的分布、定量以及定位的方法。
放射性同位素能在紧密接触的感光乳胶中记录下它存在的部位和强度,准确显示出形态与功能的定位关系。
现已可将放射自显影术与电镜以及生物分子结合起来。
不但可以研究放射性物质在组织和细胞内的分布代谢,而且可以揭示核酸合成及其损伤等改变,目前已在生命科学各领域被广泛应用。
四、染色体分析技术染色质或染色体是遗传物质在细胞水平的形态特征。
前者是指当细胞处于合成期时遗传物质经碱性染料着色后,呈现出细丝状弥漫结构;当细胞进入分裂期时,染色质细丝高度螺旋化凝聚为形态有特征的染色体。
特别是在分裂中期,复制后的染色体达到最高程度的凝聚,称为中期染色,是进行染色体形态观察分析的最佳时期。
染色体分析应用领域越来越广,主要用于以下几方面:1)为临床诊断提供新手段;2)研究不育和习惯性流产发生的遗传基础;3) 通过检查胎儿的染色体,预防有染色体异常患儿出生(先天愚型);4)根据染色体的多肽性进行亲子和异型配子的起源研究;结合DNA 重组技术可以将基因定位于染色体的具体区带上。
五、电镜技术早在1940年,英国剑桥大学首先试制成功扫描电子显微镜,但因分辨率低无实用价值。
1965年英国剑桥科学仪器有限公司开始生产出商品扫描电镜,其以显著优点广泛用于生物学、医学、物理学、化学、电子学及勘探、冶金、国防、公安、机械与轻工业等诸多领域,并已成为非常有用的研究工具。
电镜主要特点:1)景深大,较光学显微镜大几百倍;2)图像富有立体感,是一个具有真实感的三维结构立体图象;3)图像放大范围大,光学显微镜有效放大倍数为1000倍左右,透视电镜的放大倍数为几百倍至100万倍,扫描电镜可放大十几倍至几十万倍;4)分辨率高,扫描电镜可达6-3nm;5)样品可在三度空间平移和旋转,聚焦后可以任意放大倍数,而不需调整重新聚焦。
六、细胞、细胞器、及细胞间质的分离技术、1、细胞的分离分离不同的细胞及亚细胞组分在现代生物学研究中起着重要的作用。
如研究某种药物治疗白血病的机理,需要分离培养人或动物的骨髓细胞,观察药物的细胞作用;研究与细胞生长分化有关的生长因子的作用,需将与此类因子有关的细胞分离出来;分离细胞膜,线粒体等细胞的亚组分,对于研究信号传递,某些遗传疾病,也都是必不可少的手段。
2、细胞膜的分离细胞内的膜系统与细胞质膜统称为生物膜(biomembrane),他们都有共同结构和特征。
首先要分离出形状完整的、具有生物活性的、高纯度的细胞膜,用于研究细胞膜的结构和功能,以利于观察膜在细胞与环境进行能量交换及信息传递的过程。
3、细胞核的分离细胞核作为一个功能单位,完整的保存遗传物质,幷指导RNA合成,后者为蛋白质及其它细胞组分合成所必需。
因此细胞核分离是研究基因表达及细胞核形态结构的首要步骤。
不同组织来源的细胞经匀浆后,用分级离心或超声波处理等方法进行纯化。
4、溶酶体的分离溶酶体是处理细胞吞噬物的细胞器,含有高浓度的各种水解酶类,调控细胞内的消化过程。
溶酶体的分离常用于研究因溶酶体功能缺陷而引起的多种疾病。
5、线粒体的分离线粒体是细胞呼吸的主要场所,细胞活动所需要的能量,主要由在线粒体内进行氧化所产生的能量供给。
制备线粒体关键是保持其完整性及高纯度。
6、细胞DNA、RNA分离与纯化核酸是遗传信息及基因表达的物质基础。
核酸的提取与纯化关键是保持核酸的完整性,但较困难,主要因为:一是细胞内有活性很高的核糖核酸酶;二是酸碱等化学因素;三是高温机械损伤等物理因素,需严格遵守操作规程。
七、细胞凋亡研究方法细胞凋亡(apoptosis),又称为程序性死亡(programmed cell death,PCD)指的是有核细胞在一定条件下,通过激活其自身内部机制,尤其是开启与关闭某些基因以及内源性DNA内切酶活化,导致产生细胞自然性死亡的过程。
可以认为细胞死亡的这种方式是一种生理性的自发过程。
为此有人也称其为细胞自杀。
目前认为程序性死亡几乎和细胞的增殖同样重要,如果没有细胞凋亡,个体不能形成与存活,或者发生疾病。
只有通过细胞凋亡的发生,使特定细胞群体在特定的时间和特定的部位死亡。