2.7二次根式(第3课时)5案

合集下载

二次根式教案--【教学参考】

二次根式教案--【教学参考】

二次根式教案--【教学参考】一、教学目标1. 让学生理解二次根式的概念,掌握二次根式的性质和运算方法。

2. 培养学生运用二次根式解决实际问题的能力。

3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。

二、教学内容1. 二次根式的定义与性质2. 二次根式的运算3. 二次根式在实际问题中的应用三、教学重点与难点1. 重点:二次根式的概念、性质和运算方法。

2. 难点:二次根式在实际问题中的应用。

四、教学方法1. 采用讲授法,讲解二次根式的定义、性质和运算方法。

2. 运用案例分析法,引导学生运用二次根式解决实际问题。

3. 利用数形结合法,帮助学生直观地理解二次根式。

五、教学准备1. 教案、教材、多媒体设备。

2. 练习题、案例分析题。

一、二次根式的定义与性质1. 引导学生回顾平方根的概念,引入二次根式的定义。

2. 讲解二次根式的性质,如:非负性、乘除法、平方等。

3. 举例说明二次根式的性质,让学生通过观察、归纳得出结论。

二、二次根式的运算1. 讲解二次根式的加减法、乘除法运算规则。

2. 利用多媒体展示运算过程,让学生直观地理解二次根式的运算。

3. 给出典型例题,让学生练习二次根式的运算。

三、二次根式在实际问题中的应用1. 给出实际问题案例,引导学生运用二次根式解决问题。

2. 讲解案例分析方法,培养学生运用二次根式解决实际问题的能力。

3. 让学生分组讨论、交流,分享各自解决问题的过程和心得。

四、二次根式的拓展与提高1. 讲解二次根式的高次根式、无理数等相关概念。

2. 引导学生探讨二次根式的性质和运算规律。

3. 给出提高性的练习题,让学生巩固所学知识。

2. 引导学生思考二次根式在实际问题中的应用,提高学生运用知识的能力。

3. 鼓励学生提出问题,激发学生对二次根式学习的兴趣。

六、二次根式的性质深化1. 复习上一节课所学的二次根式性质,通过具体的例子来强化学生对性质的理解。

2. 引入“二次根式的倒数”和“二次根式的乘方”等概念,讲解其性质和运算方法。

二次根式教案(实用7篇)

二次根式教案(实用7篇)

二次根式教案(实用7篇)二次根式教案第1篇一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案第2篇1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

《二次根式》教学教案

《二次根式》教学教案

《二次根式》教学教案《二次根式》教学教案(精选6篇)《二次根式》教学教案篇1一、内容和内容解析1、内容二次根式的概念。

2、内容解析本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。

它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。

教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。

再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。

本节课的教学重点是:了解二次根式的概念;二、目标和目标解析1、教学目标(1)体会研究二次根式是实际的需要。

(2)了解二次根式的概念。

2、教学目标解析(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。

(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。

三、教学问题诊断分析对于二次根式的定义,应侧重让学生理解“ 的双重非负性,”即被开方数≥0是非负数,的算术平方根≥0也是非负数。

教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。

本节课的教学难点为:理解二次根式的双重非负性。

四、教学过程设计1、创设情境,提出问题问题1你能用带有根号的的式子填空吗?(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______。

(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______。

(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____。

2.7 二次根式(3)学案

2.7 二次根式(3)学案

2.7二次根式(3)
学习目标:会进行二次根式的混合运算,并解决简单的实际问题。

一、 自主学习:
计算: (1)3223-; (2)81818+-;
(3)3)6124(÷-
(4)18_99225
+
二、合作探究:
求代数式ab b a ⨯-)1
(的值,其中3=a ,2=b .
三、精讲点拨:
如图所示,图中小正方形的边长为1,试求图中梯形
的面积,你有哪些方法,与同伴交流.
四、盘点收获:
通过今天这节课,你学到了什么?你认为这节课的重点是什么?还有什么问题?
五、检测评估:
1、计算: 2.试求出本节“做一做”中梯形ABCD 的周长.
3.对于正数a ,b ,化简

4.我们已经知道 因此将 分子、分母同时乘
,分母就变成了4.请仿照这种方法化简:
441(1)28;(2)5+756-
-;5349(3)+20;
(4)+10812.352
⎛⎫⨯- ⎪ ⎪⎝⎭234a b (133)(133)4,+-=8
133-133+1,23+2.53-。

2.7二次根式教案

2.7二次根式教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的定义、性质、运算法则以及在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对二次根式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.7二次根式教案
一、教学内容
本节教学内容选自教材第二章第二节“2.7二次根式”。主要内容包括:二次根式的定义与性质,二次根式的化简与运算,以及二次根式的应用。具体教学内容如下:
1.二次根式的定义:了解二次根式的概念,掌握二次根式的表示方法。
2.二次根式的性质:掌握二次根式的乘除运算法则,了解二次根式的平方、开方性质。
4.培养学生的数学运算素养:熟练掌握二次根式的运算方法,提高运算速度与准确性,形成良好的数学运算习惯。
5.培养学生的数学应用意识:通过解决生活中的实际问题,使学生感受数学与生活的紧密联系,提高数学应用能力。
本节课将围绕以上核心素养目标展开教学,旨在全面提升学生的数学素养。
三、教学难点与重点
1.教学重点
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是指根号下含有非负数的表达式,它是解决无法直接开平方问题的重要工具,广泛应用于几何、物理等多个领域。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要计算√18 + √12,通过二次根式的性质和运算规则,我们可以将其化简为3√2 + 2√3,这个案例展示了二次根式在实际中的应用。
(3)熟练进行二次根式的运算:加减乘除运算,以及化简复杂的二次根式。

北师大版数学八年级上册 2.7 二次根式

北师大版数学八年级上册 2.7   二次根式

问题 你还记得单项式乘单项式法则吗?
提示:可
试回顾如何计算 3a2·2a3 = 6a5 . 类比上面
例3 计算:
的计算哦!
(1)2 5 3 7;
(2)4
27

1 2
3 .
解:(1)2 5 3 7 23 5 7 =6 35.
(2)4
27
1 2
3
4
1 2
27 3 29 18.
二次根式
定义
带有二次根号 被开方数为非负数
在有意义条 件下求字母 的取值范围
抓住被开方数必须为非 负数,从而建立不等式 求出其解集.
二次根式的 双重非负性
最简二次根式
二次根式 a中,a≥0 且 a ≥0
北师大版数学八年级上册
第二章 实数
2.7 二次根式
第2课时 二次根式的运算
1. 满足什么条件的根式是最简二次根式?试化简下列二次 根式: 8 ,18 ,80 ,0.5 ,1 ,20 .
前者 x 为全体实数,后者 x 为非负数.
问题2 二次根式 a 的被开方数 a 的取值范围是什么? 它本身的取值范围又是什么?
当 a>0 时, a 表示 a 的算术平方根,因此 a >0; 当 a = 0时, a 表示 0 的算术平方根,因此 a = 0. 这就是说,当 a≥0 时, a ≥0.
归纳总结
一定是二次根式的有 A. 3 个 B. 4 个
C. 5 个
( B) D. 6 个
2.(1)若式子
x
2
1
在实数范围内有意义,则
x
的取值
范围是__x_≥__1__;
(2)若式子 1 x 在实数范围内有意义,则 x 的

北师大版数学八年级上册7《二次根式》教案5

北师大版数学八年级上册7《二次根式》教案5

北师大版数学八年级上册7《二次根式》教案5一. 教材分析《二次根式》是北师大版数学八年级上册第七章的内容。

本节内容是在学生已经掌握了有理数的乘除法、平方根的基础上进行的。

二次根式是数学中的基本概念,它在几何、物理等领域有广泛的应用。

本节课的主要内容是二次根式的定义、性质和运算规则,旨在培养学生的逻辑思维能力和数学运算能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对平方根的概念和运算有一定的了解。

但二次根式相对于平方根来说,其概念和运算更为复杂,需要学生进行一定的抽象和推理。

因此,在教学过程中,需要关注学生的学习情况,引导学生理解二次根式的本质,掌握其运算规则。

三. 教学目标1.理解二次根式的定义和性质。

2.掌握二次根式的运算规则。

3.能够运用二次根式解决实际问题。

四. 教学重难点1.二次根式的定义和性质。

2.二次根式的运算规则。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索;通过案例分析,让学生了解二次根式的应用;通过小组合作学习,培养学生的团队协作能力。

六. 教学准备1.PPT课件。

2.相关案例材料。

3.练习题。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如计算物体体积、求解方程等,引导学生思考这些实例与二次根式的关系。

2.呈现(10分钟)介绍二次根式的定义和性质,通过PPT展示相关公式和定理。

让学生初步了解二次根式的基础知识。

3.操练(10分钟)让学生进行一些简单的二次根式运算,如化简、求值等。

教师在这个过程中要注意引导学生掌握运算规则,并及时解答学生的问题。

4.巩固(10分钟)让学生运用二次根式解决一些实际问题,如计算物体体积、求解方程等。

教师在这个过程中要注意引导学生将所学知识运用到实际问题中,提高学生的解决问题的能力。

5.拓展(10分钟)让学生探讨二次根式在实际生活中的应用,如物理、化学等领域。

教师在这个过程中要注意引导学生思考和探索,培养学生的创新能力。

2.7二次根式第三课时(教案)

2.7二次根式第三课时(教案)
五、教学反思
在今天的二次根式教学中,我发现学生们对于二次根式的概念和性质的理解普遍较好,但在具体的运算和应用上还存在一些问题。首先,我在导入环节通过日常生活中的例子引入二次根式的概念,这一点看来是成功的,学生们能够很快地进入到学习状态,对二次根式的意义有了直观的认识。
然而,在讲解二次根式的乘除法则时,我发现部分学生在处理非完全平方数时感到困惑。我意识到,这里需要更多的例题和练习来巩固他们的理解。在接下来的教学中,我会增加一些针对性的练习,特别是对于乘除法则的运用,让学生们通过实际操作来加深记忆。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的基本概念、性质、乘除法则及其在实际中的应用。通过实践活动和小组讨论,我们加深了对二次根式的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-二次根式的乘除法:熟练运用二次根式的乘法法则(如√a * √b = √(ab))和除法法则(如√a / √b = √(a/b),其中b不为零)进行运算。
-二次根式的化简:掌握将二次根式化简为最简形式的方法,包括分解质因数、提公因数等,如√(12x^5)化简为2x^2√3x。
-二次根式的应用:解决实际问题时运用二次根式,如计算矩形对角线长度或三角形面积。
在实践活动中,分组讨论的环节学生们表现得非常积极,能够主动思考二次根式在实际问题中的应用。但在实验操作中,我发现有些小组在具体测量和计算时遇到了一些困难。这可能是因为他们在将理论知识应用到实际操作时还不够熟练。我考虑在未来的课程中,加入更多的实际操作环节,让学生在实践中学习和体会数学知识的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.7二次根式(第三课时)
精讲案
第一环节:复习引入
(1)最简二次根式的概念;
(2)二次根式化简过程中,你有哪些体会?
(3)上节课课后作业:若414.12≈,732.13≈,449.26≈,求2
3.你是怎样解决的? 第二环节:知识巩固
1.巩固提升
例4 计算:
(1)3223-;(2)8
1818+-; 2.以上过程每位同学都是怎样化简的,方法好不好,能做到快而准确吗? 3练习
化简:
(1)10152-;(2)31312+-;(3)8)2
118(⨯-. 第三环节:知识提升
1.知识探索
问题:2a (0>a )等于多少? 根据算术平方根的定义,可知a a =2(0>a ).
2.知识运用
例5 化简:
(1)3325b a (0>a ,0>b );(2)3)(y x +(0≥+y x );(3)
a
b b a (0>a ,0>b ). 3.课堂练习
1.当0>a ,0>b 时化简:
(1))(a b b a ab +;(2)324b a ;(3)ab b a ⨯-)1(;
(4)b
a a
b ab a 155102÷⋅. 4.求代数式ab b a
⨯-)1(的值,其中3=a ,2=b . 解:由题知0>a ,0>b .
ab b a ⨯-)1(=ab b ab a ⨯-⨯1=ab b ab a
⨯-⨯1=2ab b - =a b b -.
当3=a ,2=b 时,a b b -=322-.
第四环节:课堂小结
(1)二次根式的化简:
二次根式的化简一定要化成最简二次根式.
(2)利用式子a a =2(0>a )可将根号内含字母的二次根式化简,结果也要化成最简二次根式.
第五环节:课后作业
习题 2.11 1, 3
预习案
1.a b •= ( ),=b a
( )
2.二次根式加减的条件:化为 后,被开方数 的二次根式才能加减。

3.二次根式的加减法则:将化简后被开方数相同的二次根式前面的系数 ,根号和被开方数 。

精练案
一、计算:
(1)
3223-; (2)81818+-;。

相关文档
最新文档