西安交通大学数学实验报告(用MATLAB绘制二维、三维图形)(MATLAB循环结构、选择结构)

合集下载

matlab西安交大

matlab西安交大

我校大学数学教学中计算软件使用情况
微分方程模型实验 MATLAB软件求微分方程解析解 软件求微分方程解析解 编程计算微分方程数值解 MATLAB软件求微分方程数值解 软件求微分方程数值解 微分方程模型实验:缉私艇追赶走私船 微分方程模型实验: 人口数量预测模型实验 用MATLAB软件进行数据拟合 软件进行数据拟合 人口数量预测模型 水塔水流量计算 MATLAB软件实现数据插值法 软件实现数据插值法 数据插值模型实验: 数据插值模型实验:水塔水流量估计
x p + 1+ p = c
2 r
r = a /b
c p − 1 + p = − x
2
r
dy 1 x r c r = − dx 2 c x y (c ) = 0
数学软件辅助大学数学教学的示例
用MATLAB软件提升大学数学课程教学质量 软件提升大学数学课程教学质量
李 继 成
高等学校大学数学教学研究与发展中心 西安交通大学数学教学实验中心 2010年7月 年 月 西安
报告内容
1. 我校大学数学教学中计算软件使用情况 2. 数学软件辅助大学数学教学的示例 3. 对数学软件辅助大学数学教学的几点看法
我校大学数学教学中计算软件使用情况
课程名称 概率统计与随机过程 概率论与数理统计
学分 4 3
学时 64(58+4/4) 48(42+4/4)
我校大学数学教学中计算软件使用情况
随机量的数值模拟 MATLAB软件生成服从特殊分布的样本随机数 用MATLAB软件生成服从特殊分布的样本随机数 MATLAB软件计算随机变量的数字特征 MATLAB软件计算随机变量的数字特征 绘制统计图 统计量数据模拟实验 随机模拟计算方法 参数估计与假设检验

实验二MATLAB绘制图形

实验二MATLAB绘制图形

grid on %在所画出的图形坐标中加入栅格
绘制图形如下
50
10
1
0.8
40
10
0.6
0.4
30
10
0.2
0
1020
-0.2
-0.4
1010
-0.6
-0.8
0
10
-1
-2
0
2
-2
0
2
10
10
10
10
10
10
如果在图中不加栅格
程序如下:
clear x=logspace(-1,2);%在10^(-1)到10^2之间产生50个 对数等分的行向量 subplot(121); loglog(x,10*exp(x),'-p') subplot(122); semilogx(x,cos(10.^x))
(2)plot(x,y): 基本格式,x和y可为向量或矩阵. 1. 如果x,y是同维向量,以x元素为横坐标,以y元素 为纵坐标绘图. 2. 如果x是向量,y是有一维与x元素数量相等的矩阵, 则以x为共同横坐标, y元素为纵坐标绘图,曲线数目 为y的另一维数. 3. 如果x,y是同维矩阵,则按列以x,y对应列元素为 横、纵坐标绘图,曲线数目等于矩阵列数.
y=2*exp(-0.5*x).*cos(4*pi*x);
2
plot(x,y)
1.5
1
0.5
0
-0.5
-1
-1.5
-2
0
1
2
3
4
5
6
7
例4 绘制曲线
t=(0:0.1:2*pi);
x=t.*sin(3*t);
y=t.*sin(t).*sin(t);

西安交大数字图像处理第二次实验报告

西安交大数字图像处理第二次实验报告

数字图像处理第二次作业摘要本次报告主要记录第二次作业中的各项任务完成情况。

本次作业以Matlab 2013为平台,结合matlab函数编程实现对lena.bmp,elain1.bmp图像文件的相关处理:1.分别得到了lena.bmp 512*512图像灰度级逐级递减8-1显示,2.计算得到lena.bmp图像的均值和方差,3.通过近邻、双线性和双三次插值法将lena.bmp zoom到2048*2048,4. 把lena和elain 图像分别进行水平shear(参数可设置为1.5,或者自行选择)和旋转30度,并采用用近邻、双线性和双三次插值法zoom到2048*2048。

以上任务完成后均得到了预期的结果。

1.把lena 512*512图像灰度级逐级递减8-1显示(1)实验原理:给定的lena.bmp是一幅8位灰阶的图像,即有256个灰度色。

则K位灰阶图像中某像素的灰度值k(x,y)(以阶色为基准)与原图同像素的灰度值v(x,y)(以256阶色为基准)的对应关系为:式中floor函数为向下取整操作。

取一确定k值,对原图进行上式运算即得降阶后的k位灰阶图像矩阵。

(2)实验方法首先通过imread()函数读入lena.bmp得到图像的灰度矩阵I,上式对I矩阵进行灰度降阶运算,最后利用imshow()函数输出显示图像。

对应源程序为img1.m。

(3)处理结果8灰度级7灰度级6灰度级5灰度级4灰度级3灰度级2灰度级1灰度级(4)结果讨论:由上图可以看出,在灰度级下降到5之前,肉眼几乎感觉不出降阶后图像发生的变化。

但从灰度级4开始,肉眼明显能感觉到图像有稍许的不连续,在灰度缓变区常会出现一些几乎看不出来的非常细的山脊状结构。

随着灰度阶数的继续下降,图像开始出现大片的伪轮廓,灰度级数越低,越不能将图像的细节刻画出来,最终的极端情况是退化为只有黑白两色的二值化图像。

由此可以得出,图像采样的灰度阶数越高,灰度围越大,细节越丰富,肉眼看去更接近实际情况。

数学2-用MATLAB绘制二维-三维图形(lq)

数学2-用MATLAB绘制二维-三维图形(lq)
ans = 8 9
[i,j,v]=find(A) 返回矩阵A中非零元素所在的行i,
列j,和元素的值v(按所在位置先后 顺序输出)
A=[3 2 0; -5 0 7; 0 0 1]; [i,j,v]=find(A)
i= 1 2 1 2 3 j= 1 1 2 3 3 v = 3 -5 2 7 1
[X,Y]=meshgrid(x,y) 3)根据函数表达式生成全部网格节点出对应的函数值矩阵z: z=f(X,Y) 4)顺序连接已经产生的空间点(x,y,z)绘制相应曲面: mesh(X,Y,Z) surf(X,Y,Z) shading flat %去除网格线。
例2-7画出矩形域[-1,1]×[-1,1]旋转抛物面:z=x2+y2. x=linspace(-1,1,100); y=x; [X,Y]=meshgrid(x,y); %生成矩形区[-1,1]×[-1,1]的网格坐标矩阵 Z=X.^2+Y.^2; subplot(1,2,1) mesh(X,Y,Z); subplot(1,2,2) surf(X,Y,Z); shading flat; %对曲面z=x2现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
用matlab绘制二维、三维图形
2.1二维图形的绘制
2.1.1 二维绘图的基本命令 matlab中,最常用的二维绘图命令是plot。
使用该命令,软件将开辟一个图形窗口,并 画出连接坐标面上一系列点的连线。
例2-5 采用不同形式(直角坐标、参数、极坐标),画出 单位圆x2+y2=1的图形。
分析:对于直角坐标系方程,y= 1 x2,对于参数方 程x=cost,y=sint,t[0,2 pi] ,利用plot(x,y)命令可以实现。 而在极坐标系中单位圆为r=1(1+0t),利用polar(t,r)命 令实现。

MATLAB绘图 实验报告三

MATLAB绘图 实验报告三

MATLAB绘图实验报告三MATLAB绘图实验报告三**大学实验报告学院:计信学院专业:网络工程班级:网络092姓名实验时间实验项目名称实1.掌握绘制二维图形及三维图形的方法。

验2.掌握图形控制与修饰处理的方法。

目3.了解图像处理及动画制作的基本方法。

的实验要求实验PC 机、MATLAB7.0仪器在MATLAB7.0下认真独立完成各个实验,并了解和掌握绘制二维、三围图形的方法,学会图形制作的基本方法。

学号指导教师实验组成绩实验3.MATLAB绘图实验MATLAB程序设计教程第四章课后实验习题1、2、4内容1.(1)(2)实验数据2.4.(1)(2)1.在MATLAB中,绘制直角坐标系下的二维曲线可以利用plot函数。

实验总2.在绘制图形的同时,可对图形添加图形标注,以使图形意义更加明确,可读性强。

3.Mesh函数用于绘制三维网格图,在不需要绘制特别精细的三维曲面图时,可通过三维网格图来表示三维曲面。

结4.MATLAB有功能极强的图形处理工具箱,可对图像进行更专业的处理---图形处理;描绘质点运动轨迹的动画轨迹动画。

指导教师意见签名:年月日注:各学院可根据教学需要对以上栏木进行增减。

表格内容可根据内容扩充。

扩展阅读:MATLAB绘图实验报告实验项目:MATLAB作图实验目的:1)了解MATLAB平面绘图的命令,如MATLAB常用的二维及三维绘图命令。

2)了解MATLAB立体图形的绘制,其中包括常用的立体绘图函数的理解。

实验原理:一、平面绘图命令1)plot:线性二维图。

plot函数常用的格式:plot(x,y)或者plot(x,y,s)或plot(x1,y1,x2,y2,...)或plot(x1,y1,s1,x2,y2,s2,...)其中x,x1,x2,…为横坐标,y,y1,y2,…为纵坐标,s,s1,s2,…为绘图方式参数。

绘图方式参数及含义:颜色:bblue;ggreen;rred;ccyan;mmagenta;yyellow;kblack。

MATLAB实验报告3(1)

MATLAB实验报告3(1)

四、实验内容与步骤:1.绘制下列曲线.(1) y=x-(x^3)/6程序输入如下:fplot('x-(x^3)/6',[-5,5],'r.');程序输出:(2) x^2+2*y^2=64程序输入如下:ezplot(' x^2+2*y^2-64',[-8,8]) 程序输出:2.设y=1/(1+exp(-t)) –pi<=t<=pi在同一图形窗口采用子图的形式绘制条形图阶梯图杆图和对数坐标图等不同图形,并对不同图形加标注说明.程序输入如下:t=-pi:pi/10:pi;y=1./(1+exp(-t));subplot(2,2,1);bar(t,y,'r');title('条形图');axis([-4,4,0,1]);subplot(2,2,2);stairs(t,y,'b');title('阶梯图');axis([-4,4,0,1]);subplot(2,2,3);stem(t,y,'g');title('杆图');axis([-4,4,0,1]);subplot(2,2,4);semilogx(t,y,'k');title('对数坐标图');axis([-4,4,0,1]);程序输出:3.绘制下列极坐标图.(1) y=5*cos(x)+4(2) y=(5*sin(x)*sin(x))/cos(x) (1)程序输入:x=0:pi/50:2*pi;y=5*cos(x)+4;polar(x,y,'-*');程序输出:(2)程序输入:x=-pi/3:pi/50:pi/3;y=(5.*sin(x).*sin(x))./cos(x);polar(x,y,'-*');程序输出:4.绘制下列三维图形(1)x=exp(-t/20).*cos(t)y=exp(-t/20).*sin(t)z=t0<=t<=2*pi(2)z=5abs(x)<=5abs(y)<=5要求应用插值着色处理(1)程序输入:t=0:pi/10:2*pi;x=exp(-t/20).*cos(t);y=exp(-t/20).*sin(t);z=t;plot3(x,y,z);title('三维图形4-1');xlabel('x');ylabel('y');zlabel('z'); grid on;程序输出:(2)程序输入:[x,y]=meshgrid(-5:0.5:5); z=0*(x-y)+5;surf(x,y,z);shading interp;title('三维图形4-2');程序输出:五、实验总结:2.绘制下列曲线,(1) y=exp(-x*x/2)/(2*pi)程序输入:fplot('exp(-x*x/2)/(2*pi)',[0,5],'r.')程序输出:(2) x=t*sin(t)y=t*cos(t)程序输入:t=0:0.1:2*pi;x=t.*sin(t);y=t.*cos(t);plot(x,y);程序输出:3.在同一坐标轴中绘制下列两条曲线并标注两曲线交叉点(1) y=2*x-0.5(2) x=sin(3*t).*cos(t)y= sin(3*t).*sin(t)0<=t<=pi程序输入:t=0:pi/100:pi;x=sin(3*t).*cos(t);y2=sin(3*t).*sin(t);y1=2*x-0.5;plot(x,y1,'m',x,y2,'g');hold onk=find(abs(y2-y1)<1e-4);x1=x(k);y3=2*x1-0.5;plot(x1,y3,'bp');程序输出:4.分别用plot和fplot函数绘制函数y=sin(1/x)的曲线,分析两曲线的差别程序输入:x=-1:pi/100:1;y=sin(1./x);subplot(2,1,1);plot(x,y,'g');subplot(2,1,2);fplot('sin(1./x)',[-1,1],'m');程序输出:两曲线的差别plot函数在取数据点时一般都是等间隔采样,fplot函数可自适应地对函数进行采样,能更好的反应函数的变化规律6.绘制曲面图形(1)x=3*u*sin(v)y=2*u*cos(v)z=4*u*u程序输入:[u,v]=meshgrid(0:pi/100:2*pi);x=3*u.*sin(v);y=2*u.*cos(v);z=4*u.*u;mesh(x,y,z);程序输出:严重觉得对细节方面很重要,,差一个点就能导致整个程序的不能运行。

第5章matlab绘制二维图形及三维图形的方法

实验四
专业:电子信息工程2班姓名:李书杰学号:3121003210
一、实验目的
1.掌握绘制二维图形及三维图形的方法。

2.掌握图形控制与修饰处理的方法。

3.了解图像处理及动画制作的基本方法。

二、实验内容
1.绘制下列图形曲线。

(1)y=x-x^3/3! (2)x^2+2Y^2=64
解:程序如下
2.设y=1/(1+e^-t),-pi<=t<=pi,在同一个图形窗口中采用子图的形式绘制条形图、阶梯图、杆图和对数坐标等不同图形,并对不同图形加标注说明。

解:程序如下
3.绘制下列极坐标图。

(1)ρ=5cosθ+4 (2)γ=5sin^2φ/cosφ,-π/3<φ<π/3 解:程序如下
思考练习:
2.绘制下列曲线
(1)y=1/2πe^(-x^2/2) (2)x=tsint y=tcost
解:程序如下
(1)
结果如下:
(2)
结果如下:
3.在同一坐标中绘制下列两条曲线并标注两曲线交叉点。

(1)y=2x-0.5
(2)x=sin(3t)cost
Y=sin(3t)sint
解:程序如下
4.分别用plot和fplot函数绘制y=sin(1/x)的曲线,分析两曲线的差别。

解:程序如下
结果如下:
5.绘制下列极坐标图:
(1)p=12/sqrt(θ) (2)γ=3asinφcosφ/(sin^3φ+cos^3φ)解:程序如下
结果如下:。

matlab实验五报告

实验五数据可视化一、实验目的掌握MATLAB 二维、三维图形绘制,掌握图形属性的设置和图形修饰。

二、实验内容(1)二维图形绘制。

(2)三维曲线和三维曲面绘制。

三、实验步骤1.二维图形绘制(1) 二维图形绘制主要使用函数plot。

(2)函数plot 的参数也可以是矩阵。

(3) 选用绘图线形和颜色(4) 添加文字标注。

(5) 修改坐标轴范围。

6) 子图和特殊图形绘制。

2. 三维曲线和三维曲面绘制(1) 三维曲线绘制使用plot3 函数。

绘制一条空间螺旋线:z=0:0.1:6*pi;x=cos(z);y=sin(z);plot3(x,y,z);(2) 三维曲面图的绘制:MATLAB 绘制网线图和曲面图的函数分别是mesh( )和surf( ),其具体操作步骤是:①用函数meshgrid( )生成平面网格点矩阵[X,Y];②由[X,Y]计算函数数值矩阵Z;③用mesh( )绘制网格图,用surf( )绘制曲面图。

绘制椭圆抛物面:clear all,close all;x=-4:0.2:4;y=x;[X,Y]=meshgrid(x,y);Z=X.^2/9+Y.^2/9;mesh(X,Y,Z);title('椭圆抛物面网格图')figure(2)surf(X,Y,Z);title('椭圆抛物面曲面图')绘制阔边帽面:clear all,close all;x=-7.5:0.5:7.5;y=x;[X,Y]=meshgrid(x,y);R=sqrt(X.^2+Y.^2)+eps; %避开零点,以免零做除数Z=sin(R)./R;mesh(X,Y ,Z);title('阔边帽面网格图')figure(2)surf(X,Y ,Z);title('阔边帽面曲面图')四、练习:1、写出图 A2 的绘制方法。

提示:按照以下的步骤进行(1)产生曲线的数据(共有 3组数据);(2)选择合适的线形、标记、颜色(正弦曲线为红色,余弦曲线为青色);(3)添加图例及文字说明信息;(4)添加坐标轴说明与图标题。

西安交通大学数学实验报告(用MATLAB绘制二维、三维图形)

实验报告(二)完成人:L.W.Yohann注:本次实验主要学习了用MATLAB绘制二维、三维图形的基本命令、图形的标识与修饰以及用符号函数绘图,在学习完成后小组对52页的上机练习题进行了程序编辑和运行。

1.绘制数列变化趋势图.解:在编辑窗口输入:n=1:100;an=(1+1./n).^n;plot(n,an,'r*')grid并保存,命名为lab1;在命令窗口中输入lab1,得:2.绘制数列变化趋势图.解:在编辑窗口输入:n=1:0.1:50;an=n.^(1./n);plot(n,an,'r*')grid并保存,命名为lab2;在命令窗口中输入lab2,得:3.绘制函数在无定义点处的变化趋势.解:在编辑窗口输入:x=-10:0.05:10;y=sin(x)./x;plot(x,y,'r*')grid并保存,命名为lab3;在命令窗口中输入lab3,得:4.在同一坐标系中画出函数及其Taylor多项式的图像解:y=sinx在编辑窗口输入:syms xf=sin(x);T6=taylor(f,x);T8=taylor(f,x,'Order',8);T10=taylor(f,x,'Order',10);T12=taylor(f,x,'Order',12);fplot([T6 T8 T10 T12 f])xlim([-8 8])grid onlegend('approximation of sin(x) up to O(x^6)',...'approximation of sin(x) up to O(x^8)',...'approximation of sin(x) up to O(x^{10})',...'approximation of sin(x) up to O(x^{12})',...'sin(x)','Location','Best')title('Taylor Series Expansion')并保存,命名为lab4sin;在命令窗口中输入lab4sin,得:y=exp(x)在编辑窗口输入:syms xf=exp(x);T6=taylor(f,x);T8=taylor(f,x,'Order',8);T10=taylor(f,x,'Order',10);T12=taylor(f,x,'Order',12);fplot([T6 T8 T10 T12 f])xlim([-8 8])grid onlegend('approximation of exp(x) up to o(x^6)',...'approximation of exp(x) up to o(x^8)',...'approximation of exp(x) up to o(x^{10})',...'approximation of exp(x) up to o(x^{12})',...'exp(x)','Location','Best')title('Taylor Series Expansion')并保存,命名为lab4exp;在命令窗口中输入lab4exp,得:5.符号函数绘图.注:在matlab r2010b 和matlab r2019b中对绘制函数图像的输入方法有不同的要求,故此类题分两个版本来求解。

MATLAB实验报告绘图

t=[54 21 35;
68 54 35;
45 25 12;
48 68 45;
68 54 69];
x=sum(t);
h=pie(x);
textobjs=findobj(h,'type','text');
str1=get(textobjs,{'string'});
val1=get(textobjs,{'extent'});
输出图像:
3.画出所表示的三维曲面(图1.3-4)。的取值范围是。
输入程序: x=-8:0.5:8;
y=x';
X=ones(size(y))*x;
Y=y*ones(size(x));
R=sqrt(X.^2+Y.^2)+eps;
Z=sin(R)./R;
surf(X,Y,Z);
colormap(cool)
实验名称
MATLAB绘图
1、实验目的和要求:
2、了解MATLAB的绘图指令。
3、掌握绘图函数的用法、简单的图形标注,简单颜色设定。
4、掌握MATLAB二维曲线绘图、三维曲线绘图,以及一些特殊图形的绘制。
5、掌握MATLAB二维曲线绘图、三维曲线绘图,以及一些特殊图形的绘制。
实验内容和步骤:
1.作多条曲线
plot3(y1,y2,t);
title('helix'),text(0,0,0,'origin');
xlable('sin(t)'),ylable('cos(t)'),zlable('t');
gridon;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告(三)
完成人:L.W.Yohann
注:本次实验主要学习了用MATLAB循环结构、选择结构进行编程,在学习完成后小组对65页的上机练习题进行了
程序编辑和运行。

1.使用for循环求和.
解:在编辑窗口输入:
clear;clc;
n=20;s=0;
for i=1:n
s=s+((i^2+3*i)/(2*i+1));
fprintf('i=%.0f,s=%.5f\n',i,s)
end
并保存,命名为lab1;
在命令窗口中输入lab1,得:
i=1,s=1.33333
i=2,s=3.33333
i=3,s=5.90476
i=4,s=9.01587
i=5,s=12.65224
i=6,s=16.80608
i=7,s=21.47275
i=8,s=26.64922
i=9,s=32.33343
i=10,s=38.52391
i=11,s=45.21956
i=12,s=52.41956
i=13,s=60.12326
i=14,s=68.33016
i=15,s=77.03984
i=16,s=86.25196
i=17,s=95.96624
i=18,s=106.18246
i=19,s=116.90041
i=20,s=128.11992
2.编写程序,通过键盘输入一组数,找出其中的最大数和最
小数.
3.解:在编辑窗口输入:
a=input('请输入一组数x(用中括号括起来):');
n=length(a);
m=a(1);M=a(1);
for i=2:n
if a(i)<m
m=a(i);
end
end
m
for I=2:n;
if a(I)>M
M=a(I);
end
end
M
并保存,命名为lab2;
在命令窗口中输入lab2,得:
请输入一组数x(用中括号括起来):[2 6 5 2 3 5 6 2 2 5 5 2 4 9 5]
输入后按回车,得:
m =
2
M =
9
3.编写程序,通过键盘输入一个常数,判别其为奇数还是偶数
解:在编辑窗口输入:
x=input('请输入x的值:');
if mod(x,2)==0
x='偶数'
else x='奇数'
end
并保存,命名为lab3;
在命令窗口中输入lab3,得:
请输入x的值:5
输入后按回车,得:
x =
'奇数'
4.斐波那契数列.
斐波那契数列,又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,21……,该数列满足Fn=F(n-1)+F(n-2),(n>=2),试分别用for和while循环语句指令编程,找出改数列中小于10000的最大数,并指出该数是数列的第几项。

for语句:
解:在编辑窗口输入:
clear;clc;
k=100;
a=[1,1];
for i=3:k
p=a(i-1)+a(i-2);
a=[a p];
if p>10000
break;
end
end
n=length(a)-1 %上式刚好求到了大于10000的第一个数,减去一得到小于10000的最大数对应的项数
a(:,n) %显示出小于10000的最大数
并保存,命名为lab4for;
在命令窗口中输入lab4for,得:
n =
20
ans =
6765
while语句:
解:在编辑窗口输入:
clear;clc;
n=2;
f=0;
a=1;
b=1;
while f<=10000
n=n+1;
f=a+b;
a=b;
b=f;
fprintf('n=%.0f,f=%.0f\n',n,f); end
n=n-1
f=a
并保存,命名为lab4while;在命令窗口中输入lab4while,得:n=3,f=2
n=4,f=3
n=5,f=5
n=6,f=8
n=7,f=13
n=8,f=21
n=9,f=34
n=10,f=55
n=11,f=89
n=12,f=144
n=13,f=233
n=14,f=377
n=15,f=610
n=16,f=987
n=17,f=1597
n=18,f=2584
n=19,f=4181
n=20,f=6765
n=21,f=10946
n =
20
f =
6765。

相关文档
最新文档