三角函数的有关计算导学案(含答案)

合集下载

高一数学必修第一册2019(A版)_5.2.1_三角函数的概念_导学案(2)

高一数学必修第一册2019(A版)_5.2.1_三角函数的概念_导学案(2)

【新教材】5.2.1 三角函数的概念(人教A版)1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.3.掌握公式一并会应用.1.数学抽象:理解任意角三角函数的定义;2.逻辑推理:利用诱导公式一求三角函数值;3.直观想象:任意角三角函数在各象限的符号;4.数学运算:诱导公式一的运用.重点:①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;②掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.难点:理解任意角三角函数(正弦、余弦、正切)的定义.一、预习导入阅读课本177-180页,填写。

1.单位圆在直角坐标系中,我们称以原点O为圆心,以__________为半径的圆为单位圆.2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,它的终边与__________交于点P(x,y),那么:图1­2­1(2)结论①y叫做α的__________,记作__________,即sin α=y;②x叫做α的__________,记作__________,即cos α=x;③yx叫做α的__________,记作__________,即tan α=yx(x≠0).(3)总结正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.思考:若已知α的终边上任意一点P的坐标是(x,y),则其三角函数定义为?在平面直角坐标系中,设α的终边上任意一点P的坐标是(x,y),它与原点O的距离是r(r=x2+y2>0).三角函数定义名称sinα__________ 正弦cosα__________ 余弦tanα__________ 正切正弦函数、余弦函数、正切函数统称三角函数.3.正弦、余弦、正切函数在弧度制下的定义域三角函数定义域sin α__________cos α__________tan α__________4.正弦、余弦、正切函数值在各象限内的符号(1)图示:图1­2­2(2)口诀:“一全正,二__________,三__________,四__________”.5.诱导公式一1.若角α的终边经过点P (2,3),则有( )A .sin α=21313B .cos α=132C .sin α=31313D .tan α=232.已知sin α>0,cos α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.sin 253π= .4.角α终边与单位圆相交于点M ⎝⎛⎭⎫32,12,则cos α+sin α的值为 .题型一 三角函数的定义及应用例1 在平面直角坐标系中,角α的终边在直线y =-2x 上,求sin α,cos α,tan α的值. 跟踪训练一1.已知角θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ. 题型二 三角函数值的符号例2 (1)若α是第四象限角,则点P (cos α,tan α)在第________象限.(2)判断下列各式的符号: ①sin 183°;②tan 7π4;③cos 5. 跟踪训练二1.确定下列式子的符号:(1) tan 108°·cos 305°;(2)cos 5π6·tan11π6sin2π3;(3)tan 120°·sin 269°.题型三 诱导公式一的应用例3 求值:(1)tan 405°-sin 450°+cos 750°;(2)sin 7π3cos ⎝⎛⎭⎫-23π6+tan ⎝⎛⎭⎫-15π4cos 13π3.跟踪训练三 1.化简下列各式:(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°); (2)sin ⎝⎛⎭⎫-11π6+cos 125π·tan 4π.1.有下列说法:①终边相同的角的同名三角函数的值相等; ②sin α是“sin”与“α”的乘积;③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-. 其中正确的个数是( ) A .0 B .1 C .2 D .32.如果α的终边过点(2sin 30°,-2cos 30°),那么sin α=( )A. 12B .-12C. 32D .-323.若sin θ·cos θ>0,则θ在( )A .第一或第四象限B .第一或第三象限C .第一或第二象限D .第二或第四象限4.若cos α=-32,且角α的终边经过点P (x ,2),则P 点的横坐标x 是( )A .2B .±2C .-2D .-25.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于x 轴对称,若sin α=51,则sin β= .6.求值:(1)sin 180°+cos 90°+tan 0°;(2)cos 25π3+tan15π4.答案小试牛刀 1.C 2.B 3.324.3+12. 自主探究例1 【答案】当α的终边在第二象限时,sin α=255,cos α=-55,tan α=-2.当α的终边在第四象限时, sin α=-255,cos α=55,tan α=-2.【解析】当α的终边在第二象限时,在α终边上取一点P (-1,2),则r =-12+22=5,所以sin α=25=255,cos α=-15=-55,tan α=2-1=-2.当α的终边在第四象限时, 在α终边上取一点P ′(1,-2), 则r =12+-22=5,所以sin α=-25=-255,cos α=15=55,tan α=-21=-2.跟踪训练一1.【答案】当x =1时,sin θ=31010,tan θ=3;当x =-1时,此时sin θ=31010,tan θ=-3.【解析】由题意知r =|OP |=x 2+9,由三角函数定义得cos θ=x r =xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x .∵x ≠0,∴x =±1. 当x =1时,P (1,3),此时sin θ=312+32=31010,tan θ=31=3.当x =-1时,P (-1,3),此时sin θ=3-12+32=31010,tan θ=3-1=-3. 例2 【答案】(1)四; (2) ①sin 183°<0;②tan 7π4<0;③cos 5>0. 【解析】(1)∵α是第四象限角,∴cos α>0,tan α<0,∴点P (cos α,tan α)在第四象限. (2) ①∵180°<183°<270°,∴sin 183°<0; ②∵3π2<7π4<2π,∴tan 7π4<0;③∵3π2<5<2π,∴cos 5>0.跟踪训练二1.【答案】(1) tan 108°·cos 305°<0;(2) cos 5π6·tan11π6sin2π3>0;(3)tan 120°sin 269°>0.【解析】(1)∵108°是第二象限角,∴tan 108°<0.∵305°是第四象限角,∴cos 305°>0.从而tan 108°·cos 305°<0. (2)∵5π6是第二象限角,11π6是第四象限角,2π3是第二象限角,∴cos 5π6<0,tan 11π6<0,sin 2π3>0.从而cos 5π6·tan11π6sin2π3>0.(3)∵120°是第二象限角,∴tan 120°<0,∵269°是第三象限角,∴sin 269°<0.从而tan 120°sin 269°>0.例3 【答案】(1)32;(2)54. 【解析】 (1)原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°) =tan 45°-sin 90°+cos 30°=1-1+32=32. (2)原式=sin ⎝⎛⎭⎫2π+π3cos ⎝⎛⎭⎫-4π+π6+tan ⎝⎛⎭⎫-4π+π4·cos ⎝⎛⎭⎫4π+π3 =sin π3cos π6+tan π4cos π3=32×32+1×12=54.跟踪训练三1.【答案】(1)(a -b )2 ; (2)12.【解析】(1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°)=a 2sin 90°+b 2tan 45°-2ab cos 0° =a 2+b 2-2ab =(a -b )2. (2)sin ⎝⎛⎭⎫-116π+cos 125π·tan 4π =sin ⎝⎛⎭⎫-2π+π6+cos 125π·tan 0=sin π6+0=12. 当堂检测1-4. BDBD 5.−156.【答案】(1) 0;(2) 32 .【解析】 (1)sin 180°+cos 90°+tan 0°=0+0+0=0.(2) cos25π3+tan15π4=cos π3+tan π4=12+1=32.。

人教版九年级下《28.1.3特殊角的三角函数值》学案(含答案)

人教版九年级下《28.1.3特殊角的三角函数值》学案(含答案)

28.1.3 特殊角的三角函数值学案一、新课导入1.课题导入情景:出示一副三角尺,老师手中的两块三角尺中有几个不同的锐角?问题:分别求出这几个锐角的正弦值、余弦值和正切值.本节课我们学习30°,45°,60°角的三角函数值.(板书课题)2.学习目标(1)推导并熟记30°,45°,60°角的三角函数值.(2)能运用30°,45°,60°角的三角函数值进行简单的计算.(3)能由30°,45°,60°角的三角函数值求对应的锐角.3.学习重、难点重点:推导并熟记30°,45°,60°角的三角函数值.难点:相关运算.二、分层学习1.自学指导(1)自学内容:教材P65探究~P66例3上面的内容.(2)自学时间:8分钟.(3)自学方法:完成探究提纲.②通过计算,得到30°,45°,60°角的正弦值、余弦值、正切值如下表:③观察上表,sin30°,sin45°,sin60°的值有什么规律?cos30°,cos45°,cos60°呢?tan30°,tan45°,tan60°呢?2.自学:学生可参考自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生能否推导30°,45°,60°角的三角函数值.②差异指导:根据学情进行针对性指导.(2)生助生:小组内相互交流、研讨、纠正错误.4.强化:特殊角的三角函数值的推导和记忆以及30°,45°,60°角的正弦值、余弦值、正切值的变化规律.第二层次学习1.自学指导(1)自学内容:教材P66例3~P67练习上面的内容.(2)自学时间:10分钟.(3)自学方法:先自主学习,再同桌之间讨论交流,互相纠错.(4)自学参考提纲:①含30°,45°,60°角的三角函数值的计算题的解题要点是什么?熟练掌握特殊锐角的三角函数值.②求直角三角形中某锐角的解题要点是什么?先求该锐角的正弦值或余弦值或正切值,然后根据特殊锐角的三角函数值求该锐角的度数.③求下列各式的值:a.1-2sin30°cos30°;b.3tan30°-tan45°+2sin60°;=-1.c.(cos230°+sin230°)×tan60°.2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生对特殊角的三角函数值表的掌握情况.②差异指导:根据学情指导学生记忆或推导特殊角的三角函数值.(2)生助生:小组交流、研讨.4.强化(1)求特殊锐角的三角函数值的关键是先把它转化为实数的运算,再根据实数的运算法则计算.(2)求锐角的度数的关键是先求其正弦值或余弦值或正切值,然后对应特殊锐角的三角函数值求角的度数.(3)当A、B为锐角时,若A≠B,则sin A≠sin B,cos A≠cos B,tan A≠tanB.三、评价1.学生自我评价:这节课你学到了什么?还有什么疑惑?2.教师对学生的评价:(1)表现性评价:根据学生的情感态度和学习效果等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时中的特殊角是指30°,45°,60°的角,课堂上采用“自主探究”的形式,给学生自主动手的时间并提供创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究和合作的能力.本节课的最终教学目的是让学生理解并掌握30°,45°,60°角的三角函数值,并且能够熟记其函数值,然后利用它们进行计算.评价作业一、基础巩固(70分)3.(40分)求下列各式的值.(1)sin45°+cos45°;=2.(2)sin45°cos60°-cos45°;(3)cos245°+tan60°cos30°;=2.(4)1-cos30°sin60°+tan30°.的度数.∵∠B 是锐角且tan B =1,∴∠B =45°.∴∠C =180°-∠A -∠B =75°.二、综合应用(20分)是(D )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形6.(10分)如图,△ABC 内接于⊙O ,AB ,CD 为⊙O 的直径,D E ⊥AB 于点E ,三、拓展延伸(10分)7.(10分)对于钝角α,定义它的三角函数值如下:sinα=sin(180°-α),cosα=-cos(180°-α).(1)求sin 120°,cos 120°,sin 150°的值;(2)若一个三角形的三个内角的比是1∶1∶4,A,B是这个三角形的两个顶点,sin A,cos B是方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A 和∠B的大小.解:∵三角形的三个内角的比是1∶1∶4,∴三角形三个内角度数分别为30°,30°,120°.∴∠A=30°或120°,∠B=30°或120°.又∵sin A,cos B是方程4x2-mx-1=0的两个不相等的实数根,。

《三角函数的计算》导学案 2022年最新word版

《三角函数的计算》导学案 2022年最新word版

1.3 三角函数的计算学习目标:1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.学习重点:1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.开展学生数学应用意识和解决问题的能力.学习难点:根据题意,了解有关术语,准确地画出示意图.学习方法:探索——发现法学习过程:一、问题引入:海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后,到达该岛的南偏西25°的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.二、解决问题:1、如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°°.那么该塔有多高?(小明的身高忽略不计,结果精确到1 m)2、某商场准备改善原来楼梯的平安性能,把倾角由40°减至35°,原楼梯长为4 m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.0l m)三、随堂练习1.如图,一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5 m,现再在C 点上方2m处加固另一条钢缆ED,那么钢缆ED的长度为多少?2.如图,水库大坝的截面是梯形ABCD.坝顶AD=6m,坡长CD=8m.坡底BC=30m,∠ADC=135°.(1)求∠ABC的大小:(2)如果坝长100 m.那么建筑这个大坝共需多少土石料?(结果精确到0.01 m3)3.如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时.接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均受到影响.(1)问:B处是否会受到台风的影响?请说明理由.(2)为防止受到台风的影响,该船应在多少小时内卸完货物?(供选用数据:≈1.4,≈1.7)四、课后练习:1. 有一拦水坝是等腰楼形,它的上底是6米,下底是10米,高为2米,求此拦水坝斜坡的坡度和坡角.2.如图,太阳光线与地面成60°角,一棵大树倾斜后与地面成36°角, 这时测得大树在地面上的影长约为10米,求大树的长(精确到0.1米).3.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所学校,AP=160米,假设拖拉机行驶时,周围100米以内会受到噪声的影响,那么拖拉机在公路MN上沿PN的方向行驶时 ,学校是否会受到噪声影响?请说明理由.4.如图,某地为响应市政府“形象重于生命〞的号召,在甲建筑物上从点A到点E挂一长为30米的宣传条幅,在乙建筑物的顶部D点测得条幅顶端A点的仰角为40°,测得条幅底端E 的俯角为26°,求甲、乙两建筑物的水平距离BC的长(精确到0.1米).5.如图,小山上有一座铁塔AB,在D处测得点A的仰角为∠ADC=60°,点B的仰角为∠BDC=45°;在E处测得A的仰角为∠E=30°,并测得DE=90米, 求小山高BC 和铁塔高AB(精确到0.1米).6.某民航飞机在大连海域失事,为调查失事原因,决定派海军潜水员打捞飞机上的黑匣子,如以下列图,一潜水员在A处以每小时8海里的速度向正东方向划行,在A处测得黑匣子B在北偏东60°的方向,划行半小时后到达C处,测得黑匣子B在北偏东30 °的方向,在潜水员继续向东划行多少小时,距离黑匣子B最近,并求最近距离.7.以申办2021年冬奥会,需改变哈尔滨市的交通状况,在大直街拓宽工程中, 要伐掉一棵树AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在某工人站在离B点3米远的D处测得树的顶点A的仰角为60°,树的底部B点的俯角为30°, 如以下列图,问距离B点8米远的保护物是否在危险区内?8.如图,某学校为了改变办学条件,方案在甲教学楼的正北方21米处的一块空地上(BD=21米),再建一幢与甲教学等高的乙教学楼(甲教学楼的高AB=20米),设计要求冬至正午时,太阳光线必须照射到乙教学楼距地面5米高的二楼窗口处, 该地区冬至正午时太阳偏南,太阳光线与水平线夹角为30°,试判断: 方案所建的乙教学楼是否符合设计要求?并说明理由.9.如图,两条带子,带子α的宽度为2cm,带子b的宽度为1cm,它们相交成α角,如果重叠局部的面积为4cm2,求α的度数.第2课时一次函数的图象和性质一、学习目标:1、知道一次函数的图象是一条直线,理解正比例函数图象和一次函数图象的关系.2、理解一次函数中k,b对函数图象的影响,掌握一次函数的性质.3、培养大胆猜测,乐于质疑的良好品质,体会合作探究的乐趣.二、重点难点:重点:一次函数的图象和性质难点:对一次函数中的数与形的联系的理解三、学习过程:1、复习、回忆:〔1〕、什么叫正比例函数、一次函数?它们之间有什么关系?〔2〕、正比例函数的图象是什么形状?〔3〕、正比例函数y=kx〔k是常数,k≠0〕中,k的正负对函数图像有什么影响?2、合作、探究:1、在同一直角坐标系内做出y=-2x、y=2x+3、y=2x-3的图像,比一比这三个函数的图象有什么异同并答复下面的问题:(1)这三个函数的图象形状都是___,并且倾斜程度___;(2)函数y=-2x图象经过原点,一次函数y=-2x+3 的图象与y轴交于点____,即它可以看作由直线y=-2x向__平移__单位长度而得到;一次函数y=-2x-3的图象与y轴交于点____,即它可以看作由直线y=-2x向__平移__单位长度而得到;归纳:(1) 所有一次函数y=kx+b的图象都是________(2)直线 y=kx+b与直线y=kx__________(3)直线 y=kx+b可以看作由直线y=kx___________而得到2、在同一坐标系中用两点法画出函数y=x+1、y=-x+1、y=2x+1、y=-2x+1的图象观察上面四个一次函数的图象,类比正比例函数y=k x中k的正负对图象的影响,表述一次函数的性质.3、练习检测〔1〕、有以下函数:①y=2x+1, ②y=-3x+4,③y=0.5x,④y=x-6; 其中过原点的直线是________;函数y随x的增大而增大的是__________;函数y随x的增大而减小的是___________;图象在第一、二、三象限的是________ .〔2〕、一次函数y = mx-(m-2), 假设它的图象经过原点,那么m= ;假设它的图象经过一、二、四象限,那么m .〔3〕、对于函数y=mx-3,y随x增大而减小,那么该直线经过象限.〔4〕、一次函数y=kx+b中,kb>0,且y随x的增大而减小,画出它的大致图象.。

北师大版九年级数学第一章三角函数全章导学案

北师大版九年级数学第一章三角函数全章导学案

3
35
A4
C
(1)
C
A
(2)
4.三角形在正方形网格纸中的位置如图所示,则 sin α的值是﹙ ﹚
3
A. 4
4
B
.3
3
C .5
4
D
.5
5.如图,在直角△ ABC中,∠ C= 90o,若 AB= 5, AC=4,则
A
sinA =( )
2
6.在△ ABC中,∠C=90°,BC=2,sinA= 3,则边 AC的长是 ( )
斜边
c
把∠ A 的对边与邻边的比叫做∠ A 的正切,记作 tanA ,即 tanA= A的对边 = a . A的邻边 b
例如,当∠ A=30°时,我们有 cosA=cos30°=

当∠ A=45°时,我们有 tanA=tan45 °=

锐角 A 的正弦、余弦、正切都叫做∠ A 的锐角三角函数.
对于锐角 A 的每一个确定的值, sinA 有唯一确定的值与它对应, 所以 sinA
B
2.难点:理解正弦的意义,并用它来表示两边的 比。
一、预习案
A
C
B
1、如图在 Rt△ABC 中,∠ C=90°,∠ A=30 °,
BC=10m, ?求 AB
A
C
2、如图在 Rt△ABC 中,∠ C=90°,∠ A=30 °,
AB=20m, ?求 BC
3、归纳直角三角形中存在的边角关系:
二、探究案
1.为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,
AB A ' B '
结论:这就是说,在直角三角形中,当锐角 形的大小如何, ?∠A 的对边与斜边的比

《两角和与差的三角函数》导学案

《两角和与差的三角函数》导学案

《两角和与差的三角函数》导学案姓名: 班级: 组别: 组名:【学习目标】1﹑公式的正用、逆用.2﹑公式的变形应用.3﹑利用公式化简、求值、证明等综合利用.【重点难点】▲重点:公式的应用.▲难点:公式的逆用与变形应用.【知识链接】()sin sin cos cos sin αβαβαβ±=±cos()cos cos sin sin αβαβαβ±=()tan tan tan 1tan tan αβαβαβ±±=【学习过程】类型1:两角和与差基本公式的应用(公式的正用)例1﹑ ①已知3cos ,(,)52πθθπ=-∈,求sin()3πθ+的值?②已知αβ,为锐角,1cos 7α=,11cos 14αβ+=-(),cos β求的值提示:公式的正用包括求值型、凑角型、求角型.问题1﹑在①中,sin sin cos cos sin 333πππθθθ⎛⎫+=+ ⎪⎝⎭,要求sin()3πθ+值,需求sin θ与cos θ的值,请尝试解答①.问题2﹑先尝试直接解出第②问.问题3﹑你是否是按这样的思路完成的第②问?由cos()αβ+展开得11cos cos sin sin 14αβαβ-=-,再根据1cos 7α=得到sin α的值,再根据1cos sin 22=+αα得到cos β的值.这个过程很繁琐,我们一般不采纳,你有没有其他的方法呢?(提示:将已知角()αβ-尽量不拆开,尝试一下,利用已知角()αβ-与α配凑出角β,你会有更多的收获哦!)尝试写出本题的完整过程类型2: 两角和与差公式的应用(公式的逆用)例2﹑①求sin 7cos37sin83cos53︒∙︒-︒∙︒的值?②求1cot151tan 75+︒-︒的值。

问题1﹑在①中应尽量的先统一角再观察所求式,请尝试解答本问.问题2﹑第②问考察了正切公式的逆用,要注意特殊角以及“1”的转化,请尝试解答本问.类型3:和差公式的技巧运用例3﹑已知324πβαπ<<<,12cos()13αβ-=,3sin()5αβ+=-求sin 2α的值. 提示:可以用配凑的方法来达成角的统一,尽量将所求角转化为已知角来表示,例如:()()ααββββα=+-=--问题1﹑将cos()αβ-,sin()αβ+直接展开,方便求解吗?尝试一下.问题3﹑要求s i n2α的值需求出sin()αβ-与cos()αβ+的值,根据22sin ()cos ()1αβαβ-+-=可得225sin ()169αβ-=,同理也可得216cos ()25αβ+=,尝试求出sin()αβ-与cos()αβ+的值(注意取正负的问题哦!)?写出本题完整的解答过程例4﹑在三角形ABC 中, tan B+tan C = A.问题1﹑本题可整理为tan tan tan tan )B C B C +-,易得tan A 的值.问题2﹑本题也可使用tan tan tan()(1tan tan )B C B C B C +=+-代入已知式进行求解,尝试一下.【基础达标】A1﹑已知123cos ,(,)132θθππ=-∈,求cos()4πθ+的值.B2﹑已知cos()sin 6παα-+=,求7sin()6πα+的值.C3﹑化简sin(2)2cos()sin αβαβα+-+. 【小结】【当堂检测】B1﹑已知23sin ,(,)32ααππ=-∈,3cos 4β=,3(,2)2βππ∈,求cos()αβ-的值.【课后反思】本节课我最大的收获是我还存在的疑惑是。

2020版高中数学人教A版必修4 导学案 《任意角三角函数一》(含答案解析)学生版

2020版高中数学人教A版必修4 导学案 《任意角三角函数一》(含答案解析)学生版

思考 1 角α的正弦、余弦、正切分别等于什么?
思考 2 对确定的锐角α,sin α,cos α,tan α的值是否随 P 点在终边上的位置的改变 而改变?
思考 3 在思考 1 中,当取|OP|=1 时,sin α,cos α,tan α的值怎样表示?
梳理
(1)单位圆
在直角坐标系中,我们称以原点 O 为圆心,以单位长度为半径的圆为单位圆.
位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.
知识点二 正弦、余弦、正切函数的定义域 思考 对于任意角α,sin α,cos α,tan α都有意义吗? 梳理 三角函数的定义域
知识点三 正弦、余弦、正切函数值在各象限的符号 思考 根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗?
四、探究与拓展
14.已知角θ的终边上有一点 P(x,-1)(x≠0),且 tan θ=-x,则 sin θ+cos θ=
.
1
1
15.已知
=-
,且 lg(cos α)有意义.
|sin α| sin α
(1)试判断角α所在的象限;
3 ,m
(2)若角α的终边与单位圆相交于点 M 5 ,求 m 的值及 sin α的值.
C.第三象限角
D.第四象限角


sin ,cos
4.已知角α的终边上一点的坐标为
3
3 ,则角α的最小正值为( )
5π A.
6
2π B.
3
4π C.
3
11π D.
6
3 5.已知角α的终边经过点 P(3,4t),且 sin(2kπ+α)=- (k∈Z),则 t 等于( )
5
9 A.-

《简单的三角恒等变换》 导学案

《简单的三角恒等变换》 导学案

《简单的三角恒等变换》导学案一、学习目标1、能够运用两角和与差的正弦、余弦、正切公式进行简单的恒等变换。

2、掌握二倍角的正弦、余弦、正切公式,并能进行简单的恒等变换。

3、能运用三角恒等变换解决一些简单的实际问题。

二、学习重难点1、重点(1)两角和与差的正弦、余弦、正切公式的应用。

(2)二倍角公式的应用。

2、难点(1)灵活运用三角恒等变换公式进行化简、求值和证明。

(2)三角恒等变换与其他数学知识的综合应用。

三、知识回顾1、两角和与差的正弦、余弦、正切公式(1)\(\sin(\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta\)(2)\(\sin(\alpha \beta) =\sin\alpha\cos\beta \cos\alpha\sin\beta\)(3)\(\cos(\alpha +\beta) =\cos\alpha\cos\beta \sin\alpha\sin\beta\)(4)\(\cos(\alpha \beta) =\cos\alpha\cos\beta +\sin\alpha\sin\beta\)(5)\(\tan(\alpha +\beta) =\frac{\tan\alpha +\tan\beta}{1 \tan\alpha\tan\beta}\)(6)\(\tan(\alpha \beta) =\frac{\tan\alpha \tan\beta}{1 +\tan\alpha\tan\beta}\)2、二倍角公式(1)\(\sin 2\alpha = 2\sin\alpha\cos\alpha\)(2)\(\cos 2\alpha =\cos^2\alpha \sin^2\alpha =2\cos^2\alpha 1 = 1 2\sin^2\alpha\)(3)\(\tan 2\alpha =\frac{2\tan\alpha}{1 \tan^2\alpha}\)四、新课导入在数学中,三角恒等变换是解决三角函数问题的重要工具。

高中数学《三角函数的诱导公式——诱导公式五、六》导学案

高中数学《三角函数的诱导公式——诱导公式五、六》导学案

第2课时 诱导公式五、六诱导公式五和六1.判一判(正确的打“√”,错误的打“×”) (1)角π2-α与角α的终边关于y 轴对称.( )(2)由诱导公式五、六,能够推导出tan ⎝ ⎛⎭⎪⎫π2+α与tan α的关系.( ) (3)sin ⎝ ⎛⎭⎪⎫3π2+α=-sin α.( )答案 (1)× (2)√ (3)× 2.做一做(1)已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,那么cos α=( )A .-25B .-15 C.15 D.25答案 C解析 根据诱导公式sin ⎝ ⎛⎭⎪⎫π2+α=cos α,可得sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫2π+π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=15.故正确答案为C.(2)(教材改编P 26公式五)已知角α的终边经过点P 0(-3,-4),则cos ⎝ ⎛⎭⎪⎫π2-α的值为( )A .-45 B.35 C.45 D .-35 答案 A解析 角α的终边经过点P 0(-3,-4),由三角函数的定义可得sin α=-4(-3)2+(-4)2=-45,所以cos ⎝ ⎛⎭⎪⎫π2-α=sin α=-45,故选A.(3)化简:sin ⎝ ⎛⎭⎪⎫3π2+α=________. 答案 -cos α解析 sin ⎝ ⎛⎭⎪⎫3π2+α=sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π2+α =-sin ⎝ ⎛⎭⎪⎫π2+α=-cos α.探究1 利用诱导公式五、六求值例1 已知cos ⎝ ⎛⎭⎪⎫π2+α=13,求值: sin ⎝⎛⎭⎪⎫π2+αcos ⎝⎛⎭⎪⎫π2-αcos (π+α)+sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+αsin (π+α).解 原式=cos αsin α-cos α+sin αsin α-sin α=-sin α-sin α=-2sin α.又cos ⎝ ⎛⎭⎪⎫π2+α=13,所以-sin α=13.所以原式=-2sin α=23. 拓展提升诱导公式应用中需注意的问题诱导公式的应用,就是化归思想的应用,求值过程就是由未知角的三角函数向已知角的三角函数的转化过程.解题时要密切注意角之间的关系,特别是互余、互补关系,为应用诱导公式创造条件.【跟踪训练1】 已知cos(π+α)=-12,求cos ⎝ ⎛⎭⎪⎫π2+α的值.解 ∵cos(π+α)=-cos α=-12, ∴cos α=12,∴α为第一或第四象限角. ①若α为第一象限角,则cos ⎝⎛⎭⎪⎫π2+α=-sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫122 =-32;②若α为第四象限角,则cos ⎝ ⎛⎭⎪⎫π2+α=-sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫122=32. 探究2 化简三角函数式 例2 化简:sin ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫π2-αcos (π+α)+sin (π-α)cos ⎝ ⎛⎭⎪⎫π2+αsin (π+α).解 ∵sin ⎝ ⎛⎭⎪⎫π2+α=cos α,cos ⎝ ⎛⎭⎪⎫π2-α=sin α,cos(π+α)=-cos α,sin(π-α)=sin α,cos ⎝⎛⎭⎪⎫π2+α=-sin α,sin(π+α)=-sin α, ∴原式=cos α·sin α-cos α+sin α·(-sin α)-sin α=-sin α+sin α=0. 拓展提升用诱导公式化简求值的方法(1)对于三角函数式的化简求值问题,一般遵循诱导公式先行的原则,即先用诱导公式化简变形,达到角的统一,再进行三角函数名称转化,以保证三角函数名称最少.(2)对于k π±α(k ∈Z )和π2±α这两套诱导公式,切记运用前一套公式不变名,而后一套公式必须变名.【跟踪训练2】 (1)sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°+sin 290°的值等于________;(2)化简:tan (3π-α)sin (π-α)sin ⎝ ⎛⎭⎪⎫3π2-α+sin (2π-α)cos ⎝ ⎛⎭⎪⎫α-7π2sin ⎝ ⎛⎭⎪⎫3π2+αcos (2π+α).答案 (1)912 (2)见解析解析 (1)因为sin 21°+sin 289°=sin 21°+cos 21°=1, sin 22°+sin 288°=sin 22°+cos 22°=1,sin 2x °+sin 2(90°-x °)=sin 2x °+cos 2x °=1(1≤x ≤44,x ∈N ), 所以原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 290°+sin 245°=45+⎝ ⎛⎭⎪⎫222=912.(2)tan(3π-α)=-tan α,sin(π-α)=sin α,sin ⎝ ⎛⎭⎪⎫3π2-α=-cos α,sin(2π-α)=-sin α, cos ⎝ ⎛⎭⎪⎫α-7π2=cos ⎝ ⎛⎭⎪⎫α+π2=-sin α, sin ⎝ ⎛⎭⎪⎫3π2+α=-cos α, cos(2π+α)=cos α,所以原式=-tan αsin α(-cos α)+-sin α(-sin α)-cos αcos α=1cos 2α-sin 2αcos 2α=1-sin 2αcos 2α=cos 2αcos 2α=1. 探究3 利用诱导公式证明三角恒等式 例3 求证:证明拓展提升三角恒等式的证明策略对于恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一、变更论证的方法.常用定义法、化弦法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法.证明1.诱导公式的记忆诱导公式一~六可归纳为k ·π2±α(k ∈Z )的形式,可概括为“奇变偶不变,符号看象限”.(1)“变”与“不变”是针对互余关系的函数而言的.(2)“奇”“偶”是对诱导公式k ·π2±α(k ∈Z )中的整数k 来讲的.(3)“象限”指k ·π2±α(k ∈Z )中,将α看成锐角时,k ·π2±α(k ∈Z )所在的象限,根据“一全正,二正弦,三正切,四余弦”的符号规律确定原函数值的符号.2.诱导公式是三角变换的基本公式,其中角α可以是一个单角,也可以是一个复角,应用时要注意整体把握、灵活变通.1.已知sin40°=a ,则cos50°等于( ) A .±a B .-a C .a D.1-a 2 答案 C解析 cos50°=cos(90°-40°)=sin40°=a .2.已知sin ⎝ ⎛⎭⎪⎫α+π2=13,α∈⎝ ⎛⎭⎪⎫-π2,0,则tan α的值为( ) A .-2 2 B .2 2 C .-24 D.24 答案 A解析 因为sin ⎝ ⎛⎭⎪⎫α+π2=cos α=13.又α∈⎝ ⎛⎭⎪⎫-π2,0,所以sin α=-1-cos 2α=-223,则tan α=-2 2.3.已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin ⎝ ⎛⎭⎪⎫π2-α-2cos ⎝ ⎛⎭⎪⎫π2+α-sin (-α)+cos (π+α)=________.答案 2解析 由tan(3π+α)=2,得tan α=2,所以 原式=-sin α+(-cos α)+cos α-2(-sin α)sin α-cos α=sin αsin α-cos α=tan αtan α-1=22-1=2. 4.若sin ⎝ ⎛⎭⎪⎫π2+θ=35,则cos 2θ-sin 2θ=________.答案 -725解析 sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ=35,从而sin 2θ=1-cos 2θ=1625,所以cos 2θ-sin 2θ=-725.5.已知sin ⎝ ⎛⎭⎪⎫π3-α=12,求cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫2π3+α的值. 解 cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫2π3+α =cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α·sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-α =sin ⎝ ⎛⎭⎪⎫π3-α·sin ⎝ ⎛⎭⎪⎫π3-α=12×12=14.A 级:基础巩固练一、选择题1.若sin ⎝ ⎛⎭⎪⎫π2+θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 答案 B解析 ∵sin ⎝ ⎛⎭⎪⎫π2+θ<0,∴cos θ<0,即θ是第二或第三象限角.∵cos ⎝ ⎛⎭⎪⎫π2-θ>0,∴sin θ>0,即θ是第一或第二象限角. 综上,θ是第二象限角.2.在△ABC 中,下列四个关系中正确的有( )①sin(A +B )=sin C ;②cos(A +B )=sin C ;③sin A +B 2=sin C2;④cos A +B 2=sin C 2.A .0个B .1个C .2个D .3个 答案 C解析 因为△ABC 中,A +B +C =π,所以sin(A +B )=sin(π-C )=sin C ,故①正确;cos(A +B )=cos(π-C )=-cos C ,故②错误;sin A +B2=sin π-C 2=cos C 2,故③错误;cos A +B 2=cos π-C 2=sin C 2,故④正确.综上,①④正确.故选C.3.下列与sin ⎝ ⎛⎭⎪⎫θ-π2的值相等的式子为( )A .sin ⎝ ⎛⎭⎪⎫π2+θ B .cos ⎝ ⎛⎭⎪⎫π2+θ C .cos ⎝ ⎛⎭⎪⎫3π2-θD .sin ⎝ ⎛⎭⎪⎫3π2+θ答案 D解析 因为sin ⎝⎛⎭⎪⎫θ-π2=-sin ⎝ ⎛⎭⎪⎫π2-θ=-cos θ, 对于A ,sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ; 对于B ,cos ⎝ ⎛⎭⎪⎫π2+θ=-sin θ; 对于C ,cos ⎝ ⎛⎭⎪⎫3π2-θ=cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π2-θ=-cos ⎝ ⎛⎭⎪⎫π2-θ=-sin θ;对于D ,sin ⎝ ⎛⎭⎪⎫3π2+θ=sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π2+θ=-sin ⎝ ⎛⎭⎪⎫π2+θ=-cos θ.4.若f (sin x )=3-cos2x ,则f (cos x )=( ) A .3-cos2x B .3-sin2x C .3+cos2x D .3+sin2x 答案 C解析 f (cos x )=f ⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫π2-x =3-cos(π-2x )=3+cos2x ,故选C. 5.若sin(π+α)+cos ⎝ ⎛⎭⎪⎫π2+α=-m ,则cos ⎝ ⎛⎭⎪⎫3π2-α+2sin(6π-α)的值为( )A .-23m B .-32m C.23m D.32m答案 B解析 ∵sin(π+α)+cos ⎝ ⎛⎭⎪⎫π2+α=-m , 即-sin α-sin α=-2sin α=-m ,从而sin α=m2,∴cos ⎝ ⎛⎭⎪⎫3π2-α+2sin(6π-α)=-sin α-2sin α=-3sin α=-32m .故选B.二、填空题6.化简:sin(450°-α)-sin(180°-α)+cos(450°-α)+cos(180°-α)=________.答案 0解析 原式=sin(90°-α)-sin α+cos(90°-α)-cos α=cos α-sin α+sin α-cos α=0.7.已知α是第三象限角,且cos(85°+α)=45,则sin(α-95°)=________.答案 35解析 ∵α是第三象限角,cos(85°+α)=45>0,∴85°+α是第四象限角.∴sin(85°+α)=-35,sin(α-95°)=sin[(85°+α)-180°]=-sin[180°-(85°+α)]=-sin(85°+α)=35.8.在△ABC 中,3sin ⎝ ⎛⎭⎪⎫π2-A =3sin(π-A ),且cos A =-3cos(π-B ),则C =________.答案 π2解析 ∵3sin ⎝ ⎛⎭⎪⎫π2-A =3sin(π-A ), ∴3cos A =3sin A ,即tan A =33,∴A =π6.又cos A =-3cos(π-B ),∴cos A =3cos B ,即32=3cos B ,∴cos B =12,∴B =π3,∴C =π-π6-π3=π2.三、解答题9.已知f (α)=sin (α-3π)cos (2π-α)sin ⎝ ⎛⎭⎪⎫-α+3π2cos ()-π-αsin (-π-α). (1)化简f (α);(2)若α是第三象限的角,且cos ⎝ ⎛⎭⎪⎫α-3π2=15,求f (α)的值. 解 (1)f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎪⎫-α+3π2cos (-π-α)sin (-π-α)=(-sin α)·cos α·(-cos α)(-cos α)·sin α=-cos α.(2)因为cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α=15, 所以sin α=-15.又α是第三象限的角,所以cos α=-1-⎝ ⎛⎭⎪⎫-152=-265. 所以f (α)=265.B 级:能力提升练是否存在角α,β,α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解 假设存在角α,β满足条件,则⎩⎨⎧ sin α=2sin β, ①3cos α=2cos β,② 由①2+②2得sin 2α+3cos 2α=2.∴sin 2α=12,∴sin α=±22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4. 当α=π4时,cos β=32,∵0<β<π,∴β=π6;当α=-π4时,cos β=32,∵0<β<π,∴β=π6,此时①式不成立,故舍去.∴存在α=π4,β=π6满足条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1-3 三角函数的有关计算学习目标1.经历用由三角函数值求相应锐角的过程,进一步体会三角函数的意义.2.能够利用计算器进行有关三角函数值的计算.3.能够运用计算器辅助解决含三角函数值计算的实际问题. 学习重点1.用计算器由已知三角函数值求锐角.2.能够用计算器辅助解决含三角函数值计算的实际问题. 学习难点用计算器辅助解决含三角函数值计算的实际问题. 学习过程 一、引入新课已知tanA =56.78,求锐角A.( 上表的显示结果是以“度”为单位的.再按 键即可显示以“度、分、秒”为单位的结果.) 二、习题训练1.根据下列条件求锐角θ的大小:(1)tan θ=2.9888; (2)sin θ=0.3957; (3)cos θ=0.7850; (4)tan θ=0.8972; (5) tan θ=22.3 (6) sin θ=0.6;(7)cos θ=0.2 (8)tan θ=3; (9) sin θ=232.某段公路每前进100米,路面就升高4米,求这段公路的坡角.解:sin α=1004=0.04,α=2°17′33″. 3.运用计算器辅助解决含三角函数值计算的实际问题.[例1]如图,工件上有-V 形槽.测得它的上口宽加20 mm 深19.2mm 。

求V 形角(∠ACB)的大小.(结果精确到1°)分析:根据题意,可知AB =20 mm ,CD ⊥AB ,AC =BC ,CD=19.2 mm , 要求∠ACB ,只需求出∠ACD(或∠DCB)即可. 解:tanACD=2.1910=CD AD ≈0.5208∴∠ACD =27.5°∠ACB =2∠ACD ≈2×27.5°=55°. [例2]如图,一名患者体内某重要器官后面有一肿瘤.在接受放射性治疗时,为了最大限度地保证疗效,并且防止伤害器官,射线必须从侧面照射肿瘤.已知肿瘤在皮下6.3 cm 的A 处,射线从肿瘤右侧9.8cm 的B 处进入身体,求射线的入射角度。

解:如图,在Rt △ABC 中, AC =6.3 cm ,BC=9.8 cm , ∴tanB=8.93.6=BC AC ≈0.6429. ∴∠B ≈32°44′13″. 因此,射线的入射角度约为32°44′13″.小结:这两例都是实际应用问题,确实需要知道角度,而且角度又不易测量,这时我们根 据直角三角形边的关系.即可用计算器计算出角度,用以解决实际问题.三、解直角三角形在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c. (1)边的关系:a 2+b 2=c 2(勾股定理); (2)角的关系:∠A+∠B=90°; (3)边角关系:sinA=c a ,cosA=cb ,tanA=b a ;sinB =cb,cosB =c a ,tanB=ab. 由前面的两个例题以及上节的内容我们町以发现,很多实际问题中的数量关系都可归结为直角三角形中元素之间的关系,使实际问题都得到解决. 四、随堂练习1.已知sin θ=0.82904.∠θ= (∠θ≈56°1″)2.一梯子斜靠在一面墙上.已知梯长4 m ,梯子位于地面上的一端离墙壁2.5 m ,求梯子与地面所成的锐角.解:如图.cos α=45.2=0.625,α≈51°19′4″. 所以梯子.与地面所成的锐角约51°19′4″.五、课时小结本节课我们学习了用计算器由三角函数值求相应的锐角的过程,进一步体会三角函数的意义.并且用计算器辅助解决含有三角函数值计算的实际问题. 六、课后作业如图,美国侦察机B 飞抵我国近海搞侦察活动,我战斗机A 奋起拦截,地面雷达C 测得:当两机都处在雷达的正东方向,且在同一高度时,它们的仰角分别为∠DCA=16°,∠DCB =15°,它们与雷达的距离分别为AC =80千米,BC=81千米时,求此时两机的距离是多少千米?(精确到0.01千米) [过程]当从低处观测高处的目标时.视线与水平线所成的锐 角称为仰角.两机的距离即AB 的长度.根据题意,过A 、B 分别作 AE ⊥CD ,BF ⊥CD.E 、F 为垂足,所以AB =EF ,而求EF 需分别在 Rt △AEC 和Rt △BFC 中求了CE 、CF ,则EF =CF-CE. [结果]作AE ⊥CD ,BF ⊥CD ,E 、F 为垂足,∴cos16°=80CE,∴CE =80×cos16°≈80×0.96=76.80(千米).∴cos15°= 81CF,∴CF =81×cos15°≈81×0.97=78.57(千米).依题意AB=EF=CF-CE=79.57-76.80=1.77(千米). 所以此时两机的距离为1.77千米.§1-4 船有触礁的危险吗学习目标1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明. 学习重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力. 学习难点根据题意,了解有关术语,准确地画出示意图. 学习过程一、引入新课直角三角形就像一个万花筒,为我们展现出了一个色彩斑澜的世界.我们在欣赏了它神秘的“勾股”、知道了它的边的关系后,接着又为我们展现了在它的世界中的边角关系,它使我们现实生活中不可能实现的问题,都可迎刃而解.它在航海、工程等测量问题中有着广泛应用,例如测旗杆的高度、树的高度、塔高等.海中有一个小岛A ,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后,到达该岛的南偏西25°的C 处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗? 二、探索新知(一)根据题意,画出图形(二)小组交流,分析题意1、货轮要向正东方向继续行驶,有没有触礁的危险, 由 来决定。

2、根据题意,小岛四周10海里内有暗礁,那么货轮继续向东航行的方向如果到A 的最短距离大于10海里,则无触礁的危险,如果小于10海里则有触礁的危险.A 到BC 所在直线的最短距离为过A 作AD ⊥BC ,D 为垂足,即AD 的长度.我们需根据题意,计算出AD 的长度,然后与10海里比较.3、通过上面的分析,我们已将实际问题转化成数学问题.根据题意,有已知条件: BC °=20海里,∠BAD =55°,∠CAD =25° (三)全班交流,写出解题过程解:过A 作BC 的垂线,交BC 于点D.得到Rt △ABD 和Rt △ACD ,从而BD=ADtan55°,CD =ADtan25°,由BD-CD =BC ,又BC =20海里.得 ADtan55°-ADtan25°=20. AD(tan55°-tan25°)=20, AD=︒-︒25tan 55tan 20≈20.79(海里).这样AD ≈20.79海里>10海里,所以货轮没有触礁的危险. 三、随堂练习如图,小明想测量塔CD 的高度.他在A 处仰望塔顶,测得仰角为30°, 再往塔的方向前进50m 至B 处.测得仰角为60°.那么该塔有多高? (小明的身高忽略不计,结果精确到1 m)在Rt △ADC 中,tan30°=AC CD , 即AC =︒30tan CD在Rt △BDC 中,tan60°=BC CD ,即BC =︒60tan CD,又∵AB=AC-BC =50 m ,得 ︒30tan CD -︒60tan CD=50.解得CD ≈43(m), 即塔CD 的高度约为43 m. 四、课堂小结 五、作业1、某商场准备改善原来楼梯的安全性能,把倾角由40°减至35°,已知原楼梯长为4 m , 调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.0l m) 解:由条件可知,在Rt △ABC 中,sin40°=ACAB,即AB =4sin40°m ,原楼梯占地 长BC =4cos40°m.调整后,在Rt △ADB 中,sin35°=AD AB ,则AD =︒︒=︒35sin 40sin 435sin AB m.楼梯占地长DB=︒︒35tan 40sin 4m.∴调整后楼梯加长AD-AC =︒︒35sin 40sin 4-4≈0.48(m),楼梯比原来多占DC =DB-BC=︒︒35tan 40sin 4-4cos40°≈0.61(m).2、如图,一灯柱AB 被一钢缆CD 固定,CD 与地面成40°夹角, 且DB =5 m ,现再在C 点上方2m 处加固另一条钢缆ED ,那么钢 缆ED 的长度为多少?解:在Rt △CBD 中,∠CDB=40°,DB=5 m ,sin40°= DBBC, BC=DBsin40°=5sin40°(m).在Rt △EDB 中,DB=5 m , BE=BC+EC =2+5sin40°(m). 根据勾股定理,得DE=2222)40sin 52(5︒++=+BE DB ≈7.96(m).所以钢缆ED 的长度为7.96 m.3、如图,水库大坝的截面是梯形ABCD ,坝顶AD =6 m ,坡长CD =8 m.坡底BC =30 m ,∠ADC=135°. (1)求∠ABC 的大小。

(2)如果坝长100 m.那么建筑这个大坝共需多少土石料?(结果精确到0.01 m 3) 解:过A 、D 分别作AE ⊥BC ,DF ⊥BC ,E 、F 为垂足.(1)在梯形ABCD 中.∠ADC =135°,∴∠FDC =45°,EF =AD=6 m.在Rt △FDC 中,DC =8 m.DF =FC =CD.sin45°=42 (m).∴BE=BC-CF-EF=30-42-6=24-42(m).在Rt △AEB 中,AE =DF=42 (m). tanABC =262242424-=-=BEAE ≈0.308.∴∠ABC ≈17°8′21″. (2)梯形ABCD 的面积S =21(AD+BC)×AE = 21(6+30)×4 2=722 (m 2).4、如图,某货船以20海里/时的速度将一批重要物资由A 处运往正西方向的B 处,经16小时的航行到达,到达后必须立即卸货.此时.接到气 象部门通知,一台风中心正以40海里/时的速度由A 向北偏西60°方向 移动,距台风中心200海里的圆形区域(包括边界)均受到影响. (1)问:B 处是否会受到台风的影响?请说明理由.(2)为避免受到台风的影响,该船应在多少小时内卸完货物?( 2≈1.4,3 ≈1.7)解:(1)过点B 作BD ⊥AC.垂足为D.依题意,得∠BAC =30°,在Rt △ABD 中,BD= 21AB=21×20×16=160<200, ∴B 处会受到台风影响.(2)以点B 为圆心,200海里为半径画圆交AC 于E 、F ,由勾股定理可求得DE=120. AD=1603. AE=AD-DE=1603 -120,∴401203160-=3.8(小时).因此,陔船应在3.8小时内卸完货物.。

相关文档
最新文档