地震响应的反应谱法与时程分析比较
地震响应的反应谱法与时程分析比较 (1)

发电厂房墙体地震响应的反应谱法与时程分析比较1问题描述发电厂房墙体的基本模型如图1所示:图1 发电厂墙体几何模型基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。
要求详细的ansys反应谱法命令流与手算验证过程。
以时程法结果进行比较。
分析不同阻尼值(0.02,0.05,0.10)的影响。
RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g)频率谱值(g)33 0.19 0.2612.5 0.3130.25 0.047与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt2数值分析框图思路与理论简介2.1理论简介该问题主要牵涉到结构动力分析当中的时程分析和谱分析。
时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。
谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。
2.2 分析框架:时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。
谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。
3有限元模型与荷载说明3.1 有限元模型考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。
然后,采用solid45单元,设置拖拉方向的单元尺寸并清楚初始平面单元plane42,将平面单元进行拖拉,最后生成发电厂墙体的有限元立体几何模型。
单元总数为6060个,总节点数为8174个,有限元模型如图2所示:图2 发电厂墙体有限元模型3.2 荷载说明时程分析:首先计算结构的前两阶自振频率,分别为126.10008.2867f f ==,。
地震响应的反应谱法与时程分析比较

地震响应的反应谱法与时程分析比较(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除发电厂房墙体地震响应的反应谱法与时程分析比较1问题描述发电厂房墙体的基本模型如图1所示:图1 发电厂墙体几何模型基本要求:依据class 的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。
要求详细的ansys反应谱法命令流与手算验证过程。
以时程法结果进行比较。
分析不同阻尼值,,的影响。
标准谱 (1g=s2) (设计地震动值为频率谱值(g)339与标准谱对应的两条人工波见文件与2数值分析框图思路与理论简介理论简介该问题主要牵涉到结构动力分析当中的时程分析和谱分析。
时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。
谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。
分析框架:时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。
谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。
3有限元模型与荷载说明有限元模型考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。
然后,采用solid45单元,设置拖拉方向的单元尺寸并清楚初始平面单元plane42,将平面单元进行拖拉,最后生成发电厂墙体的有限元立体几何模型。
单元总数为6060个,总节点数为8174个,有限元模型如图2所示:图2 发电厂墙体有限元模型荷载说明时程分析:首先计算结构的前两阶自振频率,分别为126.10008.2867f f ==,。
基于能力设计法的反应谱和时程分析

基于能力设计法的反应谱和时程分析伏永鹏,郑凯锋,刘云飞(西南交通大学,四川成都610031)【摘要】目前,抗震设计方法正在从传统的强度理论向延性抗震理论过渡。
能力设计方法是基于结构性能的抗震设计理论,能力设计理念是在结构体系中的延性构件和能力保护构件之间,确立适当的强度安全等级差异,确保结构不会发生脆性的破坏模式。
反应谱法是拟动力方法,可以用较少的计算量获得结构的最大响应值,但是它不能反映结构在地震动过程中的时间历程和地震动持时效应。
动态时程分析法作为反应谱法的补充,可直接对微分方程进行积分求解,计算地震过程中的每一瞬时结构响应。
文章依据能力设计方法采用Midas /Civil 对三跨连续刚构分别使用反应谱法进行E1和E2地震作用下的验算,并补充线性时程法计算结构内力和位移随时间的响应。
【关键词】能力设计方法;反应谱法;时程分析【中图分类号】TU311.3【文献标志码】A[定稿日期]2018-06-24[作者简介]伏永鹏(1993 ),男,硕士研究生,主要从事桥梁仿真工程研究。
我国地震多发,需要考虑地震设防的地域辽阔,因此研究结构的抗震性能实属必要。
能力设计法(Capability Design Method ,CDM )是结构延性设计的主要内容,最早是由新西兰学者Park 等人在20世纪70年代中期提出的。
该法的定义是:对于结构的非弹性响应设计,首先布置可能出现塑性铰的位置,使结构屈服后形成一个合理的耗能机构;对塑性铰区进行专门的设计,以提供足够的延性,对于其他非塑性铰区,根据塑性铰所具有的超强强度,确定被保护构件的设计强度,从而保证被保护构件在结构塑性铰形成后仍保持弹性[1]。
能力设计法的主要优点是可以预定塑性铰出现的位置,而且可以预测结构整体抗震性能。
地震作用理论研究是地面运动对结构物产生的动态效应,结构的地震反应取决于地震动和结构动力特性两个方面,桥梁结构地震反应分析的发展过程经历了静力、反应谱、和动态时程三个阶段。
地震响应方法比较电力水利工程技专业资料

地震响应方法比较电力水利工程技专业资料反应谱分析和时程分析从理论上讲,如果反映谱分析所用的反映谱是时程分析分析时用的地震波所产生的反映谱,而分析又限於弹性阶段,两者几乎没有差别,因为反映谱分析(取足够的模态)只是忽略了影响很小的高阶效应。
但是如果结构进入非弹性阶段,只有用时程分析。
反应普法有几个假设:1,结构是弹性反应,反应可以叠加;2,无土结的相互作用;3,质点的最大反应即为其最不利反应;4,地震是平稳随机过程.而时程分析是把地震过程安时间步长分为若干段,在每时间段内安弹性分析,算出反应,然后再调整刚度和阻尼.总得一句话,就是步步积分法!① 反应谱方法是一种拟静力方法,虽然能够同时考虑结构各频段振动的振幅最大值和频谱两个主要要素,但对于持时这一要素未能得到体现,震害调查表明,有些按反应谱理论设计的结构,在未超过设防烈度的地震中,也遭受到了严重的破坏,这充分说明了持时要素在设计中应该被考虑。
② 反应谱方法忽略了地震作用的随机性,不能考虑结构在罕遇地震下逐步进入塑性时,因其周期、阻尼、振型等动力特性的改变,而导致结构中的内力重新分布这一现象。
③ 反应谱方法假设结构所有支座处的地震动完全相同,忽略基础与土层之间的相互作用。
时程分析方法是一种相对比较精细的方法,不但可以考虑结构进入塑性后的内力重分布,而且可以记录结构响应的整个过程。
但这种方法只反应结构在一条特定地震波作用下的性能,往往不具有普遍性。
我国反映谱方法的曲线是由255条地震波的地震反映的平均值,而非包络值,体现的是共性,但无法反映结构进入塑性的整体结构性能。
时程方法体现的是具体某条地震波的反映,不同地震波作用下结果的差异也很大,需要合理选波。
底部剪力法/反应谱法/时程分析法一些有用的概念从传统的观点来看,底部剪力法,反应谱法和时程分析法是三大最常用的结构地震响应分析方法。
那么正确的认识它们的一些关键概念,对于建筑结构的抗震设计具有非常重要的意义。
建筑物地震响应谱分析方法研究

建筑物地震响应谱分析方法研究地震是一种严重威胁建筑物安全的自然灾害,因此,研究建筑物地震响应谱分析方法,对于保障建筑物的稳定性和安全性至关重要。
本文将就建筑物地震响应谱分析方法的研究展开探讨,从基本概念、应用领域和发展趋势三个方面进行分析。
一、基本概念地震响应谱是描述结构动力特性的一种重要工具,它通过将结构在地震作用下的加速度、速度或位移响应与地震输入的地面加速度进行对比,来评估结构的抗震性能。
地震响应谱分析方法主要分为两种:时程分析方法和频率响应分析方法。
时程分析方法是通过在一定时间内连续记录结构的动态响应,最终得到结构的地震响应谱。
它适用于复杂结构,可以提供结构在地震作用下的详细响应信息。
频率响应分析方法则是通过对结构的振型和振态进行研究,建立结构的模态超级,并通过对结构频率特性和振型特性的分析,估计结构地震响应谱。
这种方法适用于简单结构,可以从一定程度上简化计算过程。
二、应用领域建筑物地震响应谱分析方法广泛应用于土木工程领域,尤其是在建筑结构抗震设计中起到了至关重要的作用。
通过地震响应谱分析方法,可以评估结构的抗震性能,确定合理的设计参数,从而确保建筑物在地震中的安全性。
此外,建筑物地震响应谱分析方法还在桥梁、塔楼、水坝等工程领域得到广泛应用。
通过对结构的地震响应谱进行分析,并结合地震破坏特征和结构的受力特点,可以有效预测结构在地震中的破坏形式和破坏程度,为工程设计和抗震加固提供科学依据。
三、发展趋势随着科学技术的发展和计算机技术的大幅提升,建筑物地震响应谱分析方法也得到了迅速发展。
在传统的地震响应谱分析方法基础上,出现了一些新的方法和技术,如时频分析方法、随机振动理论等。
时频分析方法基于信号处理和频域分析理论,能够更好地探测结构动态特性的变化规律,提高响应谱分析的准确性和可靠性。
随机振动理论则利用了随机性力学和随机振动理论的成果,可以更客观地描述地震作用下的结构响应。
此外,借助强大的计算机模拟和仿真技术,建筑物地震响应谱分析方法也在不断提高。
反应谱与时程理论对比

反应谱是在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。
用作计算在地震作用下结构的内力和变形.更直观的定义为:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱.反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式.地震时结构所受的最大水平基底剪力,即总水平地震作用为:FEK= αG其中α为地震影响系数,即单质点弹性体系在地震时最大反应加速度。
另一方面地震影响系数也可视为作用在质点上的地震作用与结构重力荷载代表值之比。
目前,反应谱分析法比较成熟,一些主要国家的抗震规范均将它作为基本设计方法。
不过,它主要适合用于规则结构。
对于不规则结构以及高层建筑,各国规范多要求采用时程分析法进行补充计算。
地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后使用静力法进行结构分析.但它并不是结构真实的动力响应分析,只是对于结构动力响应最大值进行估算的近似方法,在线弹性范围内,反应谱分析法被认为是高效而且合理的方法.反应谱分为加速度反应谱、速度反应谱和位移反应谱。
基于不同周期结构相应峰值的大小,我们可以绘制结构速度及加速度的反应谱曲线。
一般情况下,随着周期的延长,位移反应谱为上升曲线,速度反应谱为平直曲线,加速度反应谱为下降曲线,目前结构设计主要依据加速度反应谱。
加速度反应谱在短周期部分为快速上升曲线,并且在结构周期与场地特征周期接近时出现峰值,后面更大范围为逐渐下降阶段.峰值出现的时间与对应的结构周期和场地特征周期有关.一般来说结构自振周期的延长,地震作用将减小。
当结构自振周期接近场地特征周期时,地震作用最大。
反应谱分析方法需要先求解一个方向地震作用响应,再基于三个正交方向的分量考虑结构总响应,即基于振型组合求解一个方向的地震响应,再基于方向组合求解结构总响应。
地震作用下桥梁动态响应分析
地震作用下桥梁动态响应分析地震是一种破坏力极大的自然灾害,对桥梁等基础设施的安全构成严重威胁。
桥梁作为交通运输的关键节点,其在地震作用下的动态响应特性直接关系到人员生命和财产安全。
因此,深入研究地震作用下桥梁的动态响应具有重要的理论和实际意义。
一、桥梁在地震中的受力特点桥梁在地震作用下主要受到水平地震力和竖向地震力的影响。
水平地震力通常是导致桥梁结构破坏的主要因素,它会使桥梁产生水平位移、弯曲变形和剪切破坏。
竖向地震力虽然相对较小,但在某些情况下也可能引起桥梁的墩柱破坏、支座失效等问题。
此外,地震波的传播特性也会对桥梁的受力产生影响。
地震波包括纵波、横波和面波,它们的传播速度和振动方式不同,使得桥梁在不同部位受到的地震作用存在差异。
例如,面波在地表附近传播,其能量较大,对桥梁基础的影响较为显著。
二、桥梁结构对地震响应的影响1、桥梁的类型和跨度不同类型的桥梁(如梁桥、拱桥、斜拉桥等)在地震作用下的响应有所不同。
一般来说,梁桥的结构相对简单,但其跨度较小,在地震中的变形能力有限;拱桥具有较好的抗压性能,但对水平地震力的抵抗能力相对较弱;斜拉桥由于其复杂的结构体系,地震响应较为复杂,需要进行详细的分析。
桥梁的跨度也是影响地震响应的重要因素。
跨度越大,桥梁的自振周期越长,与地震波的共振可能性就越大,从而导致更大的地震响应。
2、桥墩和桥台的形式桥墩和桥台是桥梁的重要支撑结构,它们的形式和尺寸对地震响应有显著影响。
实心桥墩的抗弯和抗剪能力较强,但在地震作用下容易产生较大的内力;空心桥墩则具有较好的延性,但在强震作用下可能发生局部屈曲。
桥台的类型(如重力式桥台、轻型桥台等)也会影响桥梁与地基的相互作用,进而改变地震响应。
3、支座和伸缩缝支座是连接桥梁上部结构和下部结构的关键部件,其力学性能直接影响桥梁在地震中的变形和受力。
常见的支座类型如板式橡胶支座、盆式支座等,它们在地震中的滑移和变形特性不同,会导致桥梁的地震响应有所差异。
地震响应的反应谱法与时程分析比较
地震响应的反应谱法与时程分析比较地震响应分析是地震工程领域中一项重要的研究内容,用于描述地震荷载对结构物产生的动态响应。
常用的地震响应分析方法有反应谱法和时程分析法。
反应谱法和时程分析法在地震响应分析中各有优缺点,本文将对两种方法进行比较。
首先,反应谱法是一种基于地震输入和结构特性的简化方法,适用于结构相对简单、不涉及复杂非线性行为的分析。
反应谱法通过建立结构的响应谱与地震输入谱进行比较,确定结构的最大响应,并用于设计结构的抗震能力。
反应谱法的优点在于简化计算过程,能够提供结构的峰值加速度、速度以及位移等重要参数。
同时,反应谱法可以通过改变地震输入谱来研究结构的响应变化情况,从而进行参数分析和优化设计。
然而,反应谱法也有一些缺点,例如只考虑了结构的最大响应,对于结构的时间历史响应和非线性行为的分析能力有限。
相比之下,时程分析法是一种更为精确和全面的地震响应分析方法。
时程分析法基于结构的动力学特性,通过模拟地震波在结构上的传播和结构的动力响应,计算出结构各个时刻的加速度、速度和位移等响应参数。
时程分析法适用于复杂结构和涉及非线性行为的分析,能够提供结构的详细时程响应,并能够考虑结构的动力参数变化和非线性效应。
时程分析法的优点在于可以全面考虑结构的动态响应特性,对于复杂结构和高等级抗震设计具有更好的适应性。
然而,时程分析法需要大量的计算资源和长时间的计算周期,对于大型结构和大规模的地震模拟较为困难,并且需要考虑更多的输入参数和模型假设,使得计算过程更加复杂和繁琐。
总的来说,反应谱法和时程分析法在地震响应分析中各有优劣。
反应谱法适用于结构相对简单、不涉及复杂非线性行为的分析,计算简化,能够提供结构的峰值响应参数。
时程分析法适用于复杂结构和涉及非线性行为的分析,可以提供更为详细的结构时程响应,但计算复杂度较高。
在实际工程中,根据不同的需求和分析对象,可以选择合适的方法进行地震响应分析。
在抗震设计中,反应谱法常用于结构的初步设计和抗震性能评估,时程分析法常用于重要工程和要求准确分析的结构。
抗震分析
时程分析法:时程分析法是对结构物的运动微分方程直接进行逐步积分求解的一种动力分析方法。
由时程分析可得到各个质点随时间变化的位移、速度和加速度动力反应,进而计算构件内力和变形的时程变化。
时程分析法在数学上称为步步积分法,抗震设计中也被称为“动态设计”。
对结构基本运动方程输入与结构所在场地相对应的地震波加速度作为地震作用,由初始状态开始,逐步积分,直至地震作用结束,求得结构在地震作用下从静止到最终状态整个过程的时程响应。
可应用Ansys中瞬态分析中的完全法辅助计算,它依据直接动力分析理论,积分算法采用Newmark时间积分法.采用时程分析法对结构进行地震响应分析,需要对结构输入地震的加速度,由于地震的随机性以及不同地震波计算结果产生的差异性,合理的选择地震波对结构进行直接动力分析对保证计算结果可靠性是非常重要的。
现今国际公认的地震动三要素为:(1)地震动强度;(2)地震动频谱特性;(3)地震动持续时间。
在选用地震波时,须全面考虑地震动三要素,并根据实际情况加以调整。
EL-CENTRO 地震波应选择与计算结构场地相一致、地震烈度相一致的地震动记录或人工波。
其计算流程一般为:1.静载荷步分析(考虑重力产生的预应力)2.施加地震载荷求解3.后处理分析地震波时程记录全面的反映了地震动特性,以此作为激励积分计算结构的动态响应,可见时程分析法全面体现了地震动特性和结构动态特性对结构地震响应的影响。
反应谱法:是用来计算多自由度体系地震作用的一种方法。
该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。
振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。
反应谱法是将动力问题转化为静力问题来计算,应用结构总响应是各振型响应叠加的原理。
隧道抗震设计中反应位移法与时程分析法的对比分析
我 国是 世 界上 的 多地 震 国家 之 一 , 在 地 铁 隧道 抗
ቤተ መጻሕፍቲ ባይዱ
1 算 法 原 理
目前 国内外在 地 下 结 构抗 震 分 析 中 , 采 用 的 隧 道
震方面, 我 国 目前 刚 刚 开 始 实 行 《 城 市 轨 道 交 通 结 构 抗 震设 计规 范 》 。
由于地 下 空 间的大 量开 发是 在近 2 0年 才 出现 的 ,
用 时 程分 析法 对其 加 以验 证 , 得 出反 应 位 移 法 与 动 力
时程分 析法 具 有一 致性 , 同 时证 明抗 震 规 范 推 荐方 法
的准确 性 与实 用性 。
图1 土层 位 移 沿 深 度 和 隧 道 轴 向 分 布
具体 位移 公式
收 稿 日期 : 2 0 1 5 - 0 3 - 0 1 ; 修 回 日期 : 2 0 1 5 - 0 4 . 1 0
铁
2 0 1 5年第 7期
道
建
筑
35
Ra i l wa y En g i ne e r i n g
文章 编 号 : 1 0 0 3 — 1 9 9 5 ( 2 0 1 5 ) 0 7 — 0 0 3 5 - 0 4
隧 道 抗 震 设 计 中反 应 位 移 法 与 时 程 分 析 法 的 对 比分 析
水 下 盾构 隧 道 抗 震 设 计 上 ; 刘 晶 波 等 在 地 下 结 构 , 尤其 是地 铁车 站 方 面 , 利 用 子结 构 法 和 土一 结 构 动 力 相 互 作用 法等 理论 研究 了常 用 的反应 位移 法在地 下 结 构 横 断面 抗震 分析 中的实 用 性 , 证 明 了反 应 位 移 法 在
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发电厂房墙体地震响应的反应谱法与时程分析比较1问题描述发电厂房墙体的基本模型如图1所示:图1 发电厂墙体几何模型基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。
要求详细的ansys反应谱法命令流与手算验证过程。
以时程法结果进行比较。
分析不同阻尼值(0.02,0.05,0.10)的影响。
RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g)频率谱值(g)33 0.19 0.2612.5 0.3130.25 0.047与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt2数值分析框图思路与理论简介2.1理论简介该问题主要牵涉到结构动力分析当中的时程分析和谱分析。
时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。
谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。
2.2 分析框架:时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。
谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。
3有限元模型与荷载说明3.1 有限元模型考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。
然后,采用solid45单元,设置拖拉方向的单元尺寸并清楚初始平面单元plane42,将平面单元进行拖拉,最后生成发电厂墙体的有限元立体几何模型。
单元总数为6060个,总节点数为8174个,有限元模型如图2所示:图2 发电厂墙体有限元模型3.2 荷载说明时程分析:首先计算结构的前两阶自振频率,分别为126.10008.2867f f ==,。
则结构的圆频率1122238.3274,252.0669f f ωπωπ====,对于常阻尼比10.02ζ=,20.05ζ=,30.10ζ=,由结构质量阻尼公式12122ζωωαωω=+得:10.8831α=,2 2.2076α=,3 4.4153α=,由结构刚度阻尼公式122ζβωω=+得,10.0004425β=,20.0011063β=,30.0022125β=。
采用底部完全约束,加载方式为加载地震波的加速度,分为2800个荷载步,每个荷载步取一个子步进行加载求解。
底跨中单宽上的剪力和弯矩是通过面项然后积分的方式求得,最后得出最大值并在excel 中画出时间历程曲线。
谱分析:求得模态后进行两次谱分析,输入的频率值分别为33、9、2.5、0.25,对应谱值为0.1g 、0.261g 、0.313g 、0.047g 。
同样采用底部完全约束,后处理时采用工况记录和运算的方法。
4数值结果与合理性比较(单位均为国际单位制)4.1 时程分析结果①常阻尼比1=0.02ζ:顶部跨中最大水平位移为3max UX 2.1310m -=⨯,沿X 轴正方向。
其时间历程曲线如图3所示:图3 1=0.02ζ时顶部跨中水平位移时间历程曲线底部跨中单宽上X 轴方向剪力最大值为max FSX 91618.72N =,沿X 轴正方向,时间历程曲线如图4所示:图4 1=0.02ζ时底部跨中单宽上X 轴方向剪力时间历程曲线底部跨中单宽上Z 轴方向剪力最大值为max FSZ 63882.6N =,沿Z 轴负方向,其时间历程曲线如图5所示:图5 1=0.02ζ时底部跨中单宽上Z 轴方向剪力时间历程曲线底部跨中单宽上X 轴方向弯矩最大值为max MX 15689.8N m =⋅,沿X 轴负方向,其时间历程曲线如图6所示:图6 1=0.02ζ时底部跨中单宽上X 轴方向弯矩时间历程曲线底部跨中单宽上Z 轴方向弯矩最大值为max MZ 680449N m =⋅,沿Z 轴负方向,其时间历程曲线如图7所示:图7 1=0.02ζ时底部跨中单宽上Z 轴方向弯矩时间历程曲线②常阻尼比2=0.05ζ:顶部跨中最大水平位移为3max UX 1.3710m -=⨯,沿X 轴正方向。
其时间历程曲线如图8所示:图8 2=0.05ζ时顶部跨中水平位移时间历程曲线底部跨中单宽上X 轴方向剪力最大值为max FSX 64976.48N =,沿X 轴正方向,时间历程曲线如图9所示:图9 2=0.05ζ时底部跨中单宽上X 轴方向剪力时间历程曲线底部跨中单宽上Z 轴方向剪力最大值为max FSZ 62084.09N =,沿Z 轴正方向,其时间历程曲线如图10所示:图10 2=0.05ζ时底部跨中单宽上Z 轴方向剪力时间历程曲线底部跨中单宽上X 轴方向弯矩最大值为max MX 8050.85N m =⋅,沿X 轴负方向,其时间历程曲线如图11所示:图11 2=0.05ζ时底部跨中单宽上X 轴方向弯矩时间历程曲线底部跨中单宽上Z 轴方向弯矩最大值为max MZ 448754N m =⋅,沿Z 轴负方向,其时间历程曲线如图12所示:图12 2=0.05ζ时底部跨中单宽上Z 轴方向弯矩时间历程曲线③常阻尼比3=0.10ζ:顶部跨中最大水平位移为4max UX 9.8910m -=⨯,沿X 轴负方向。
其时间历程曲线如图13所示:图13 3=0.10ζ时顶部跨中水平位移时间历程曲线底部跨中单宽上X 轴方向剪力最大值为max FSX 53318.6N =,沿X 轴负方向,时间历程曲线如图14所示:图14 3=0.10ζ时底部跨中单宽上X 轴方向剪力时间历程曲线底部跨中单宽上Z 轴方向剪力最大值为max FSZ 58739.21N =,沿Z 轴正方向,其时间历程曲线如图15所示:图15 3=0.10ζ时底部跨中单宽上Z 轴方向剪力时间历程曲线底部跨中单宽上X 轴方向弯矩最大值为max MX 3976.12N m =⋅,沿X 轴负方向,其时间历程曲线如图16所示:图16 3=0.10ζ时底部跨中单宽上X 轴方向弯矩时间历程曲线底部跨中单宽上Z 轴方向弯矩最大值为max MZ 335338.2N m =⋅,沿Z 轴正方向,其时间历程曲线如图17所示:图17 3=0.10ζ时底部跨中单宽上Z 轴方向弯矩时间历程曲线4.2 谱分析结果①常阻尼比1=0.02ζ:X 轴向:最大水平位移为3max UX 4.7310m -=⨯,最大剪力为max FSX 154276.2N =,最大弯矩为max 9322.MX 1m 7N =⋅;Z 轴向,最大剪力为max FSZ 85609.2N =,最大弯矩为max 2173789MZ m .7N =⋅。
②常阻尼比2=0.05ζ:X 轴向:最大水平位移为x 3ma 3.321UX m 0-⨯=,最大剪力为max 9457FSX N 1.9=,最大弯矩为max MX 11006.1N m =⋅;Z 轴向,最大剪力为max 7694FSZ N 4.7=,最大弯矩为max MZ 857762.2N m =⋅。
③常阻尼比3=0.10ζ:X 轴向:最大水平位移为x 3ma 2.141UX m 0-⨯=,最大剪力为max 7384FSX N 2.3=,最大弯矩为max MX 60792.2N m =⋅;Z 轴向,最大剪力为max 6255FSZ N 8.9=,最大弯矩为max MZ 636487.5N m =⋅。
4.3 结果比较时程分析和谱分析关于顶部水平位移、底部跨中单宽剪力、弯矩最大响应数据结果对比如表1所示:表1 顶部水平位移、底部跨中单宽剪力、弯矩最大响应5结论与体会5.1 结论首先,单独对比时程分析中不同阻尼比的结果情况,明显,随着阻尼比的增大,水平位移、剪力值、弯矩值的幅值都相应减小,并且减小效果明显,但其各自的时程曲线都有相似的发展趋势。
同样,谱分析中的结果也有相类似的效应。
其次,对比时程分析和谱分析的结果得出,在相同阻尼比的条件下,谱分析的最大响应明显比瞬态大,这主要的原因是在计算时程分析中,本人开始计算的质量阻尼和刚度阻尼都很大,直到把所有的结果都整理完后,才掌握了正确的质量阻尼和刚度阻尼计算公式,由于计算和数据处理时间过长,所以在这里没做修正,但结果的对比情况看,都较合理。
最后,通过时程分析和谱分析,本人发现,时程分析非常耗时,占用内存大,而谱分析非常快而且计算的结果可以作为工程数据参考。
所以,本人认为谱分析在某些时候可能更适合工程实践,并作为一种工程结构的地震分析方法。
5.2 疑问时程分析中,其一,关于计算质量阻尼和刚度阻尼所取的自振频率阶数,本报告中我是取的前两阶,但也有同学说去第一阶和第十阶,这点我还没弄明白。
其二,在加载求解中,将文件数据读入数组及加载方式不同,结果计算时间相差很大,这点我也还没完全明白。
最后,关于考虑重力的作用中,在进行重力静力分析中打开了预应力开关,但对最后结果影响不大,不知道这是什么原因。
反应谱分析中,也有两个很有痛的问题:其一,关于两个方向反应谱的加载求解过程,不明白是模态合并后进行下一个,还是直接先做两次谱解最后共同模态扩展、模态合并;其二,就是结果处理的问题,两次谱分析要用到荷载工况,来组合最后的结果,但荷载工况的写入过程很伤脑经,不知道是每次谱分析都写还最后一起写,我考虑应该分开写,但另一个问题是先前的谱分析结果数据对后面的谱分析数据会不会有干扰,从而到时写入的工况是否不正确,这些都在不断的尝试中去分析。
最后选择了谱分析命令流附件中的那种求解过程和工况处理方法。
5.3 体会及建议自己动手做这个大作业,虽然历时很长,而且过程中也遇到了特别多的问题,但是在学习时程分析和谱分析的方法上,以及分析问题的能力上都有很大收获。
虽然之前,在有限元方法的课程上学过基本的ANSYS操作,平时自己也做一些相关的小题,不过要说在ANSYS工程实例上真正的探索性学习,这是第一次。
这门课程的最后大作业前前后后我差不多做了一个月,遇到了很多问题,也不断地解决了问题,最后独立的完成了这份报告,虽然花费的时间很多但感觉收获丰满,我相信这为我接下来的科研之路铺下了坚实的基础。
除报告中体现的一些过程和结论外,自己也做了很多尝试获得很多探索性的结论,这过程中很感谢老师的帮助以及CAE班QQ群上同学的共同探讨及互相分享心得,也特别感激教研室一起学习、一起生活的朋友。
关于这门课,虽然收获挺大,但仍觉得自己只是学到了老师所授的墙角一隅,还有很多方法和操作没来得及及时操作,老师特别认真,每堂课都准备满满,上课的状态也非常好,上课时,我积极的做笔记,竖起耳朵认真听着老师讲的每一句话,最终下来发现自己确实知道了很多ANSYS及其他软件的功能和相关操作,但自己真正能吸收,化为自己的知识却非常至少,可能的原因是自己下课后没有及时复习上课的内容,另外对原理上的东西领悟不透,太多的理论没时间总结,太多的操作没及时付诸实施,最后也就很快就忘掉了。