ANSYS地震反应谱SRSS分析共24页
ANSYS_地震分析算例

ANSYS_地震分析算例地震是指地球上因地壳运动而产生的震动现象。
在地震发生后,建筑物的结构稳定性和抗震性能至关重要,因为地震可以对建筑物造成严重破坏。
因此,在建设和设计建筑物时,地震分析变得非常重要。
在此我将介绍一种用ANSYS进行地震分析的算例。
在地震分析中,我们首先需要建立一个合适的模型。
在这个算例中,我们将使用ANSYS提供的有限元分析方法。
首先,我们需要创建一个建筑物的三维模型。
在建筑物的模型中,我们需要包括所有的结构细节,例如建筑物的基础、柱子、梁和地板等。
我们可以使用ANSYS的几何建模工具来创建这个模型。
接下来,我们需要为建筑物定义材料特性。
建筑物的材料特性会对地震分析的结果产生重要影响。
例如,不同种类的混凝土、钢铁和木材等材料在地震作用下的响应是不同的。
我们需要使用ANSYS的材料库来定义这些材料的特性。
完成模型和材料定义后,我们需要定义地震荷载。
地震荷载是指地震发生时作用在建筑结构上的力量。
地震荷载可以根据地震的震级和地震波的性质来确定。
我们可以使用ANSYS的预处理工具来定义这些地震荷载。
接下来,我们需要定义边界条件。
边界条件是指建筑物与外部环境之间的约束关系。
例如,建筑物的基础是固定的,地震发生时不能移动。
我们需要使用ANSYS的加载工具来定义这些边界条件。
完成了模型、材料、地震荷载和边界条件的定义后,我们可以进行地震分析。
地震分析是指通过模拟地震发生时结构的动力响应来评估建筑物的抗震性能。
在ANSYS中,我们可以使用动力分析工具来进行这个分析。
在地震分析过程中,我们可以观察到各个部位的应力和位移等响应。
这些响应可以帮助我们评估建筑物的破坏机制和结构的安全性能。
例如,我们可以观察到柱子是否出现弯曲、梁是否发生裂缝等。
根据地震分析的结果,我们可以对建筑物的设计和结构进行优化。
例如,我们可以调整柱子和梁的尺寸、材质和布置方式,以提高建筑物的抗震能力。
综上所述,通过ANSYS进行地震分析可以帮助我们评估和优化建筑物的抗震性能。
ANSYS地震响应分析讨论

地震响应分析1模态组合就是根据模态分析中的几阶振型(也可以少于这几阶,看你要求的精度)进行组合(类似于结构最不利组合),从而求出地震响应的最大值。
2组合各振型反应的最大值,求得结构地震响应的最大值。
这个问题在论坛上已经有很多人问过,也有各种各样的回答,但是至今没有令人满意的解答。
我自己试过很多种方法,加上论坛上其他人提到的方法,大致归类如下:1.先做静力恒载工况分析,打开预应力pstres开关;然后转到时程分析。
结果:恒载对后面的时程计算不起作用,时程计算依然从0开始。
2.直接在antype,trans中考虑恒载:先把timint,off加acel,,9.81,打开应力刚化,sstif,on,lswrite,1,然后timint,on开始时程计算。
结果:恒载9.81起作用了,但结果是错的,它被积分了。
3.不用什么前处理,直接把9.81加在地震波上acel,9.81+ac(i)。
结果,同2,9.81带入了积分,这个9.81相当于阶跃荷载,而不是产生恒载。
4.ansys帮助中施加初始加速度的方法(篇幅限制请自己看帮助)。
结果,同2、3,9.81还是带进时间积分。
5.这种是我受到别人的启发,通过结构受ramp荷载的特点施加的,可以近似的解决问题。
即1)求出结构的自振一阶频率w2)令tr=1/w3) 定义ramp荷载为从0到tr加到9.81,然后在整个时间积分中保持不变4)antype,trans中分几个荷载步将荷载从0加到9.815) 在随后的荷载步中acel,,9.81+ac(i)这种做法虽然也是将9.81++加到地震波中,但是因为满足TR的要求,所以这个动力效应被削弱到了静力效应,它作用在结构上就像静载一样。
对于单自由度结构理论上跟静载是完全一样的,但是多自由度会子静力效应上下很小的范围内波动,所以可以认为相当于静载的作用,这样我们就可以达到考虑恒载的目的了。
第5种是我至今为止考虑恒载的做法,我也很想知道还有没有更简单精确的方法,或者在前4种方法中就有只是我使用不正确,希望大家能一起来讨论,彻底解决这个问题。
ANSYS地震分析实例

ANSYS地震分析实例土木工程中除了常见的静力分析以外,动力分析,特别是结构在地震荷载作用下的受力分析,也是土木工程中经常碰到的题目。
结构的地震分析根据现行抗震规范要求,一般分为以下两类:基于结构自振特性的地震反应谱分析和基于特定地震波的地震时程分析。
本算例将以一个4质点的弹簧-质点体系来说明如何使用有限元软件进行地震分析。
更复杂结构的分析其基本过程也与之类似。
关键知识点:(a) 模态分析(b) 谱分析(c) 地震反应谱输进(d) 地震时程输进(e) 时程动力分析(1) 在ANSYS窗口顶部静态菜单,进进Parameters菜单,选择Scalar Parameters选项,在输进窗口中填进DAMPRATIO=0.02,即所有振型的阻尼比为2%(2) ANSYS主菜单Preprocessor->Element type->Add/Edit/Delete,添加Beam 188单元(3) 在Element Types窗口中,选择Beam 188单元,选择Options,进进Beam 188的选项窗口,将第7个和第8个选项,Stress/Strain (Sect Points) K7, Stress/Strain (Sect Nods) K8,从None 改为Max and Min Only。
即要求Beam 188单元输出积分点和节点上的最大、最小应力和应变(4) 在Element Types 窗口中,继续添加Mass 21集中质量单元(5) 下面输进材料参数,进进ANSYS主菜单Preprocessor->Material Props-> Material Models菜单,在Material Model Number 1中添加Structural-> Linear-> Elastic->Isotropic 属性,输进材料的弹性模量EX和泊松比PRXY分别为210E9和0.3。
ANSYS Example02地震分析算例 (ANSYS)

02地震分析算例(ANSYS)土木工程中除了常见的静力分析以外,动力分析,特别是结构在地震荷载作用下的受力分析,也是土木工程中经常遇到的问题。
结构的地震分析根据现行抗震规范要求,一般分为以下两类:基于结构自振特性的地震反应谱分析和基于特定地震波的地震时程分析。
本算例将以一个4质点的弹簧-质点体系来说明如何使用有限元软件进行地震分析。
更复杂结构的分析其基本过程也与之类似。
关键知识点:(a)模态分析(b)谱分析(c)地震反应谱输入(d)地震时程输入(e)时程动力分析(1)在ANSYS窗口顶部静态菜单,进入Parameters菜单,选择Scalar Parameters选项,在输入窗口中填入DAMPRATIO=0.02,即所有振型的阻尼比为2%(2)ANSYS主菜单Preprocessor->Element type->Add/Edit/Delete,添加Beam 188单元(3)在Element Types窗口中,选择Beam 188单元,选择Options,进入Beam 188的选项窗口,将第7个和第8个选项,Stress/Strain (Sect Points) K7, Stress/Strain (Sect Nods) K8,从None改为Max and Min Only。
即要求Beam 188单元输出积分点和节点上的最大、最小应力和应变(4)在Element Types窗口中,继续添加Mass 21集中质量单元(5)下面输入材料参数,进入ANSYS主菜单Preprocessor->Material Props-> MaterialModels菜单,在Material Model Number 1中添加Structural-> Linear-> Elastic->Isotropic属性,输入材料的弹性模量EX和泊松比PRXY分别为210E9和0.3。
(6)继续给Material Model Number 1添加Density属性,输入密度为7800。
ANSYS中进行地震谱分析-ANSYSWorkbench-CAE软件-沈沉C...

ANSYS中进行地震谱分析-ANSYSWorkbench-CAE软件-沈沉C...ANSYS中进行地震谱分析转自:这几天仔细研究了如何使用ANSYS进行地震谱分析的问题。
和大家分享下,不过有些问题我也不是太明白。
大家一起讨论。
地震谱分析的步骤:•建模•模态分析,并进行模态扩展•谱分析•查看结果这几个步骤是我结合ANSYS帮助文档中的介绍和里面的实例总结出来的,应该说是可靠的。
网上有很多文章介绍地震谱分析的,但是里面有很多出入,只能靠自己的一步一步地摸索,到底哪种方式才是正解。
首先说明一下,这里的地震谱是选自GR-63-CORE中的加速度频谱值。
所以在ANSYS中应该选用单点响应谱分析,即Single-Point Response Spectrum (SPRS)。
并不是有的地方说的PSD谱分析,因为GR-63-CORE中给出的根本就不是PSD谱。
下面把求解的代码附上,供大家参考:/SOLUANTYPE,MODALMODOPT,SUBSP,10MXPAND,10,,,YES !模态扩展,求解单元结果SOLVEFINISH/SOLUANTYPE,SPECTR ! 谱分析SPOPT,SPRS ! 单点响应谱分析,SED,,,1 ! Z轴,可对另外两个轴方向重新求解SVTYP,2 ! 加速度谱FREQ,0.3,0.6,2.0,5.0,15.0,50.0 ! 频率点SV,,0.2,2.0,5.0,5.0,1.6,1.6 ! 谱值SOLVEFINISH/POST1SET,LIST ! 固有频率*GET,MC1,MODE,1,MCOEF ! 一阶频率的模态系数MC1SET,1,1,MC1PLNSOL,U,Z,1 ! 节点位移结果ETABLE,SBYB,SMISC,33PLETAB,SBYB ! 单元应力结果,这里是对Beam188单元建的单元表,其它单元需做改变验证了几个问题:•SPOPT,SPRS这就后面加不加Element calculation key选项对结果没影响,即有的地方写成SPOPT,SPRS,,YES。
基于Ansys_的塔式起重机地震反应谱分析

基于Ansys的塔式起重机地震反应谱分析秦仙蓉 赵俊陆 王玉龙 张 氢 孙远韬同济大学机械与能源工程学院 上海 201804摘 要:塔式起重机在工程建造中发挥着重要作用,但因其具有高耸大跨度的细长结构,在地震的作用下可能造成结构损伤或破坏,有必要在设计阶段即对塔式起重机进行地震反应谱分析。
文中标定了利用Ansys平台进行反应谱分析的基本流程,构建了1个单自由度和1个二自由度系统,分别利用理论计算和Ansys数值模拟完成了这2个系统的地震反应谱分析,并分析对比这2种方法所得结果,实现了对Ansys分析流程的标定。
另外,根据经过理论标定的分析流程,对某型塔式起重机进行了反应谱分析,分别在平行、垂直于该塔式起重机模型臂架的方向施加地震加速度谱,合并生成各阶模态结果,可知模型垂直于臂架方向具有更强抗震性能。
关键词:塔式起重机;反应谱;结构;有限元;地震响应;分析中图分类号:TH213.3 文献标识码:A 文章编号:1001-0785(2023)15-0018-05Abstract: Tower crane plays an important role in engineering construction. However, due to large span, it may suffer structural damage or destruction in case of an earthquake. Therefore, it is necessary to analyze the seismic response spectrum of tower crane in the design stage. In this paper, the authors calibrated the basic process of response spectrum analysis through Ansys platform, constructed a single-degree-of-freedom system and a two-degree-of-freedom system, and analyzed the seismic response spectrum of these two systems by theoretical calculation and Ansys numerical simulation respectively, and compared the results, thus realizing the calibration of Ansys analysis process. In addition, according to the theoretically calibrated analysis process, the response spectrum of a tower crane was analyzed, and the seismic acceleration spectra were applied in the directions parallel to and perpendicular to the boom of the tower crane model, and the modal results of each order were generated. The results show that the seismic performance perpendicular to the boom direction is better. Keywords:tower crane; response spectrum; structure; finite element method; seismic response; analysis0 引言地震反应谱分析由美国学者Biot M A在20世纪40年代提出的[1],描述了不同自振频率的弹性单自由度系统中相同阻尼比在地震激励下产生的最大响应与自振周期的关系[2],广泛应用于结构抗震设计过程中。
基于ANSYS的支撑框架结构地震反应谱分析

第 38 卷
图 2 支撑框架结构有限元模型 Fig. 2 Finite element modal of the braced structure
图 1 支撑框架结构平面布置 Fig. 1 The braced RC frame sturcture layout
1. 2 单元的选取与参数设定 采用梁单元 BEAM188 来模拟框架梁、框架柱、
193
基于 ANSYS 的支撑框架结构地震反应谱分析
李 坤1 ,田兴运1 ,苏 雷2 ,侯春娇1
( 1. 西北农林科技大学土木工程系,陕西 杨凌 712100; 2. 哈尔滨工业大学土木工程学院,黑龙江 哈尔滨 150090)
摘 要: 利用 ANSYS 对一斜支撑框架结构建立有限元模型并分析该结构的动力特性和地震荷载作用下的弹性响
modal on horizontal RC frame
第 3 阶振型主要是结构的横向振动。由图 6 可 知,横向支撑框架各层柱没有明显的反弯点出现,这 说明支撑布置改变了原有横向框架的受力状态,进 行结构的横向分析时应该按支撑和框架的协同工作 分析。 2. 4 第 4 阶结构频率和模态振型分析
第 4 阶结构振动频率为 3. 229 Hz,对应振动周 期为 0. 303 s。模态振型位移节点解如图 7 所示。
支撑; 采用壳单元 SHELL63 单元来模拟楼板。结构 阻尼系数为 0. 05。模型所用详细参数列于表 1。
表 1 模型参数 Table 1 Parameters of structure modal
构件
单元类型
截面尺寸 /m
框架柱 框架梁 框架支撑
楼板
BEAM188 BEAM188 BEAM188 SHELL63
ANSYS反应谱分析内幕

A N S Y S反应谱分析内幕-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANANSYS反应谱分析内幕ANSYS结构振型分解反应谱分析有如下内容:1)首先要定义好加速度反应谱。
这里需要注意的是,规范上给的是地震影响系数谱曲线,这个曲线的函数值是以地面加速度为单位的。
而我们在用这个软件算的时候就需要给出绝对的加速度值,这个绝对加速度值当然就是要在地震影响系数的基础上再乘上一个地面加速度。
而地面加速度也并不一定是9.8,这与我们使用的单位制有关,如果是N/M/S,就应该是9.8,如果是N/MM/S就应该是9800。
2)求振型。
一定要是相对质量矩阵进行归一化,当然modopt 命令默认的方法就可以了,为什么要这样呢,从ANSYS文档式17-110就可以看出,这个式子是求振型参与系数的,显然这个式子里面不是完整的求振型参与系数的式子,它少了分母,但是,由于对振型相对质量矩阵进行了归一化,这个分母就等于1了,这就是为什么必须要对振型相对质量进行归一化的原因了。
在这一步中,可以这样理解,程序只进行了一次特征值求解,即只求出了周期和振型。
如果需要看某个振型的“内力/应力/反力”,就需要对其进行模态扩展。
模态扩展其实就是相当于对将“振型位移”看作“强制位移”进行静力的分析而得到静力分析的结果。
3)求谱解。
其实在这一步中,程序只做了一件事,那就是求模态系数。
模态系数的算法在ANSYS文档里有说明,对于不同的激励谱(位移谱、加速度谱、力谱),其算法不一样,对于加速度谱,它等于模态参与数/模态频率的平方*谱值(模态频率的平方是弧度/秒,开始的时候我老是验算不过去这个式子,总是差一个40左右的系数,就是没有注意它的单位制,原来(2*3.14159)^2就约等于40),而详细的说明见ANSYS文档式17-120~17-126。
总而言之,模态系数描述的是某个模态对的结构总的响应的贡献。
顺便指出,模态参与系数是某个模态对结构发生给定单位方向位移的贡献,这个东东可查阅的资料比较多,这里就不多说了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS地震反应谱SRSS分析我在ANSYS中作地震分解反应谱分析,一次X方向,一次Y 方向,他们要求是独立互不干扰的,可是采用直进行一次模态分析的话,他生成的*.mcom文件好像是包含了前面的计算结果,命令流如下:!进入PREP7并建模/PREP7B=15 !基本尺寸A1=1000 !第一个面积A2=1000 !第二个面积A3=1000 !第三个面积ET,1,beam4 !二维杆单元R,1,0.25,0.0052,0.0052,0.5,0.5 !以参数形式的实参MP,EX,1,2.0E11 !杨氏模量mp,PRXY,1,,0.3mp,dens,1,7.8e3N,1,-B,0,0 !定义结点N,2,0,0,0N,3,-B,0,bN,4,0,0,bN,5,-B,0,2*bN,6,0,0,2*bN,7,-B,0,3*bN,8,0,0,3*bE,1,3 !定义单元E,2,4E,3,5E,4,6E,3,4E,5,6e,5,7e,6,8e,7,8D,1,ALL,0,,2FINISH!!进入求解器,定义载荷和求解/SOLUD,1,ALL,0,,2 !结点UX=UY=0sfbeam,1,1,PRES,100000,sfbeam,3,1,PRES,100000,sfbeam,7,1,PRES,100000,SOLVEFINISHallselNMODE=10/SOL!*ANTYPE,2!*MSAVE,0!*MODOPT,LANB,NMODEEQSLV,SPARMXPAND,NMODE , , ,1LUMPM,0PSTRES,0!*MODOPT,LANB,NMODE ,0,0, ,OFFSOLVE*DIM,FRE,,NMODE*DO,I,1,NMODE*GET,FRE(I),MODE,I,FREQ ! OBTAIN MODE FREQENCY FORMODE I*ENDDOFINISH!地震影响系数grav=9.81tg=0.35amax=0.08c=0.05!*dim,a,,nmode*dim,t,,nmode*do,i,1,nmodet(i)=1.0/fre(i)*enddor=0.9+(0.05-c)/(0.5+5.0*c)p1=0.02+(0.05-c)/8p2=1+(0.05-c)/(0.06+1.7*c)*do,i,1,nmode*if,t(i),ge,0.0,and,t(i),lt,0.1,then a(i)=(0.45+(10.0*p2-4.5)*t(i))*amax*grav*elseif,t(i),ge,0.1,and,t(i),le,tga(i)=p2*amax*grav*elseif,t(i),gt,tg,and,t(i),le,5*tga(i)=(tg/t(i))**r*p2*amax*grav*elsea(i)=(p2*0.2**r-p1*(t(i)-5*tg))*amax*grav*endif*enddo!! X-方向谱分析 Spectrum analysis along Global X-axisdirection/SOLUANTYPE,SPECTR ! Spectrum analysisSPOPT,SPRS ! Single point spectrum SED,1,, ! Global X-axis as spectrum direction SVTYP,2 ! Seismic acceleration response spectrum! Frequency points and Spectrum values for SV vs. freq.tableFREQ,fre(1),fre(2),fre(3),fre(4),fre(5),fre(6),fre(7),fre(8),fre(9)FREQ,fre(10)SV,,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)SV,,a(10)FINISH!/SOLU!ANTYPE,MODAL ! Mode-frequency analysis!EXPASS,ON!MXPAND,nmode,,,YES,0.0 ! Expand nmode shapes,calculate element stresses!SOLVE!FINISH/SOLUANTYPE,SPECTRSRSS,0.0,DISP ! Square Root of Sum of Squares Modecombination! with signif=0.0 and displacement solution requestedSOLVEFINISH/POST1SET,LIST/INPUT,,mcom!***************EARTHQUAKE X******************ALLSEL,ALLFINISH! Y-方向谱分析 Spectrum analysis along Global X-axisdirection!!**********************************************!/SOL!!*!ANTYPE,2!!*!MSAVE,0!!*!MODOPT,LANB,NMODE!EQSLV,SPAR!MXPAND,NMODE , , ,1!LUMPM,0!PSTRES,0!!*!MODOPT,LANB,NMODE ,0,0, ,OFF!SOLVE!FINISH!!**********************************************/SOLULSCLEAR,LSOPTANTYPE,SPECTR ! Spectrum analysisSPOPT,SPRS ! Single point spectrum SED,,1, ! Global Y-axis as spectrum direction SVTYP,2 ! Seismic acceleration response spectrumFREQ! Frequency points and Spectrum values for SV vs. freq.tableFREQ,fre(1),fre(2),fre(3),fre(4),fre(5),fre(6),fre(7),fre(8),fre(9)FREQ,fre(10)SV,,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)SV,,a(10)SOLVEFINISH!/SOLU!ANTYPE,MODAL ! Mode-frequency analysis!EXPASS,ON!MXPAND,nmode,,,YES,0.0 ! Expand nmode shapes,calculate element stresses!SOLVE!FINISH/SOLUANTYPE,SPECTRSRSS,0.0,DISP ! Square Root of Sum of Squares Modecombination! with signif=0.0 and displacement solution requestedSOLVEFINISH/POST1SET,LIST/INPUT,,mcom!***************EARTHQUAKE Y******************ALLSEL,ALLFINISH这里在进行X方向的反应谱分析以后,进行Y方向的分析,可是他生成的*.mcom文件如下:/COM,ANSYS RELEASE 8.0 UP20030930 09:28:42 07/23/2005/COM, truss.mcomLCOPER,ZEROLCDEFI,1, 1, 1LCFACT,1, 0.263825E-17LCASE,1LCOPER,SQUARELCDEFI,1, 1, 2LCFACT,1, 8.55778LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, -0.188669E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4 LCFACT,1, -0.871099E-15 LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.757013LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6 LCFACT,1, 0.967307E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7 LCFACT,1, 0.533141E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.203699LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9 LCFACT,1, 0.445795E-13LCOPER,ADD,1,MULT,1 LCDEFI,1, 1, 10 LCFACT,1, -0.387808E-13 LCOPER,ADD,1,MULT,1LCOPER,SQRT/COM,ANSYS RELEASE 8.0 UP20030930 09:28:42 07/23/2005/COM, truss.mcomLCOPER,SQUARE !注意这里没有清空数据库LCDEFI,1, 1, 1LCFACT,1, 50.7528LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 2LCFACT,1, 0.887017E-14LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, 0.612824E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -1.96484LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.331613E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6LCFACT,1, 0.330459E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.366569LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.976991E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9LCFACT,1, 0.417313E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, 0.401040E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT我感觉这样好像是X和Y两个方向地震的叠加,可是如果在座Y方向的地震以前把注释掉的模态分析在做一下这样的Y方向的地震的*.mcom就是:/COM, truss.mcomLCOPER,ZERO !注意这里清空数据库LCDEFI,1, 1, 1LCFACT,1, 50.7528LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 2LCFACT,1, 0.887017E-14LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3 LCFACT,1, 0.612824E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -1.96484LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5 LCFACT,1, -0.331613E-13 LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6 LCFACT,1, 0.330459E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.366569LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8 LCFACT,1, -0.976991E-13 LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9 LCFACT,1, 0.417313E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, 0.401040E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT如果在X方向后不作Y方向的地震,他的*.mcom:/COM,ANSYS RELEASE 8.0 UP20030930 08:46:23 07/23/2005/COM, truss.mcomLCOPER,ZEROLCDEFI,1, 1, 1LCFACT,1, 0.263825E-17LCASE,1LCOPER,SQUARELCDEFI,1, 1, 2LCFACT,1, 8.55778LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, -0.188669E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -0.871099E-15LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.757013LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6LCFACT,1, 0.967307E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.533141E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.203699LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9LCFACT,1, 0.445795E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, -0.387808E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT可是在X后作Y他不清空数据库,需要进行两次模态分析,这很耗时间对于大型结构,请大家讨论讨论如何处理呢?Re:讨论:ANSYS地震反应谱SRSS分析本人是学土木工程的,平时主要用Patran+Nastran对结构做线性分析,偶尔使用Ansys对结构做地震反应谱分析,但对Ansys的命令流不熟悉。