信号与系统 欧拉公式

信号与系统 欧拉公式

信号与系统 欧拉公式

808 材料力学与结构力学 考试范围

808 材料力学与结构力学1. 《材料力学》宋子康、蔡文安编,同济大学出版社,2001年6月(第二版)2.《结构力学教程》(Ⅰ、Ⅱ部分),龙驭球、包世华主编,高等教育出版社,2000~2001年3.《结构力学》(上、下册),朱慈勉主编,高等教育出版社,2004年 一、考试范围 I、材料力学必选题(约占50%) 1. 基本概念:变形固体的物性假设,约束、内力、应力,杆件变形的四个基本形式等。 2. 轴向拉、压问题:内力和应力(横截面及斜截面上)的计算,轴向拉伸与压缩时的变形计算,材料的力学性质,塑性材料与脆性材料力学性能的比较,简单超静定桁架,圆筒形薄壁容器等。 3. 应力状态分析:平面问题任意点的应力状态描述,平面问题任意点任一方向应力的求解(包括数解法、图解法),一点的应力状态识别,空间应力分析及一点的大应力,广义虎克定律等。 4. 扭转问题:自由扭转的变形特征,自由扭转杆件的内力计算,扭转变形计算,矩形截面杆的自由扭转,薄壁杆件的自由扭转,简单超静定受扭杆件分析等。 5. 梁的内力、应力、变形:内力(剪力、弯矩)的计算及其内力图的绘制,叠加法作弯矩图的合理运用,梁的正应力和剪应力的计算及其强度条件,梁内一点的应力状态识别,主应力轨迹,平面弯曲的充要条件,梁的变形(挠度、转角)计算,叠加法求梁的变形,梁的刚度校核,简单超静定梁分析等。 6. 强度理论与组合变形:四个常用的强度理论,斜弯曲,拉伸(压缩)与弯曲的组合,扭转与拉压以及扭转与弯曲的组合,拉压及扭转与弯曲的组合,偏心拉、压问题,强度校核等。

II、结构力学必选题(约占40%) 1. 平面体系的几何组成分析及其应用 2. 静定结构受力分析与特性 3. 影响线及其应用 4. 位移计算 5. 超静定结构受力分析与特性(力法、位移法、概念分析等) 6. 结构动力分析(运动方程、频率、振型、阻尼、自由振动、强迫振动、振型分解法等)III、可选题(约占10%,一道材料力学可选题和一道结构力学可选题中必选做一题) 1. 材料力学可选题:能量法:变形能的计算,卡氏第一、第二定理,运用卡氏第二定理解超静定问题等;压杆稳定:细长压杆临界力的计算,欧拉公式的适用范围,压杆稳定的实用计算,简单结构体系的稳定性分析等。 2. 结构力学可选题:变形体的虚功原理;力矩分配法;结构矩阵分析(单元刚度阵、总刚度阵的集成、支座条件的引入和非结点荷载的处理等)。 二、题型 1. 以计算分析题型为主,含基本概念分析、综合概念分析和结构定性分析。 2. 含材料力学-结构力学综合题。

专业英语词汇(信号与系统)

《信号与系统》专业术语中英文对照表第 1 章绪论 信号(signal) 系统(system) 电压(voltage) 电流(current) 信息(information) 电路(circuit) 网络(network) 确定性信号(determinate signal) 随机信号(random signal) 一维信号(one–dimensional signal) 多维信号(multi–dimensional signal) 连续时间信号(continuous time signal) 离散时间信号(discrete time signal) 取样信号(sampling signal) 数字信号(digital signal) 周期信号(periodic signal) 非周期信号(nonperiodic(aperiodic)signal) 能量(energy) 功率(power) 能量信号(energy signal) 功率信号(power signal) 平均功率(average power) 平均能量(average energy) 指数信号(exponential signal) 时间常数(time constant) 正弦信号(sine signal) 余弦信号(cosine signal) 振幅(amplitude) 角频率(angular frequency) 初相位(initial phase) 周期(period) 频率(frequency) 欧拉公式(Euler’s formula) 复指数信号(complex exponential signal) 复频率(complex frequency) 实部(real part) 虚部(imaginary part) 抽样函数Sa(t)(sampling(Sa)function) 偶函数(even function) 奇异函数(singularity function)

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

欧拉公式推导

欧拉公式推导: 图4.3所示的两端铰支杆件,受轴向压力N 作用而处于中性平衡微弯状态,杆件弯曲后截面中产生了弯矩M 和剪力V ,在轴线任意点上由弯矩产生的横向变形为1y ,由剪力产生的横向变形为2y ,总变形21y y y +=。 y 图4.3 两端铰支的轴心压杆临界状态 设杆件发生弯曲屈曲时截面的临界应力小于材料比例极限p f ,即p f ≤σ(对理想材料取y p f f =)。由材料力学可得: EI M dz y d -=2 12 由剪力V 产生的轴线转角为: dz dM GA V GA dz dy ?=?==ββγ2 式中 A 、I ——杆件截面面积、惯性矩; E 、G ——材料的弹性模量、剪切模量; β—— 与截面形状有关的系数。 因为 222 22dz M d GA dz y d ?=β 所以 2222122222d y d y d y M d M dz dz dz EI GA dz β=+=-+? 由 y N M ?=得: 2222dz y d GA N y EI N dz y d ?+?-=β

01=?+??? ??-''y EI N GA N y β 令 ??? ??-=GA N EI N k β12 得常系数线性二阶齐次方程 20y k y ''+= 其通解为:sin cos y A kz B kz =+ 由边界条件:;0,0==y z 0=B ,kz A y sin =。再由0,==y l z 得: 0sin =kl A 上式成立的条件是0=A 或0sin =kl ,其中0=A 表示杆件不出现任何变形,与杆件微弯的假设不符。由0sin =kl ,得πn kl =(=n 1,2,3…),取最小值=n 1,得π=kl ,即 2 221N k N l EI GA πβ==??- ??? 由此式解出N ,即为中性平衡的临界力cr N 12222222211Ι11γππβππ?+?=?+?=l ΕΙl ΕGA l ΕΙl ΕΙ N cr (4.6) 临界状态时杆件截面的平均应力称为临界应力cr σ 12 22211γλπλπσ?+?==ΕΑΕA N cr cr (4.7) 式中 1γ——单位剪力时杆件的轴线转角,)/(1GA βγ=; l ——两端铰支杆得长度; λ——杆件的长细比,i l /=λ; i ——杆件截面对应于屈曲轴的回转半径,A I i /=。 如果忽略杆件剪切变形的影响(此影响很小)则式(4.6)、(4.7)变为: 22cr E πσλ = (4.8)

(精品)信号与系统课后习题与解答第一章

1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号? 图1-1 图1-2

解 信号分类如下: ??? ?? ? ????--???--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号; (e )离散信号,数字信号; (f )离散信号,数字信号。 1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ; (4)为任意值)(00)sin(ωωn ; (5)2 21??? ??。 解 由1-1题的分析可知: (1)连续信号; (2)离散信号; (3)离散信号,数字信号; (4)离散信号; (5)离散信号。 1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ; (3)2)]8t (5sin [; (4)[]为整数)(n )T nT t (u )nT t (u )1(0 n n ∑∞ =-----。 解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各 分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。 (1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15 T 2π=。由于 5π

欧拉公式的证明和应用

数学文化课程报告 欧拉公式的证明与应用 一.序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 极限法 --------------------------------------3 指数函数定义法-------------------------------4 分离变量积分法-------------------------------4 复数幂级数展开法-----------------------------4 变上限积分法---------------------------------5 类比求导法-----------------------------------7 三.欧拉公式的应用 求高阶导数-----------------------------------7 积分计算------------------------------------8 高阶线性齐次微分方程的通解------------------9 求函数级数展开式----------------------------9 三角级数求和函数----------------------------10 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言

欧拉公式的证明(整理)Word版

欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有: a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不

材料力学公式大全

材料力学常用公式 1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面 轴力F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点 到圆心距离r) 19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转 切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如 阶梯轴)时或 24.等直圆轴强度条件 25.塑性材料;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式 , 28.平面应力状态下斜截面应力的一般公式 ,

欧拉公式的证明和应用

欧拉公式的证明和应用-CAL-FENGHAI.Network Information Technology Company.2020YEAR

数学文化课程报告 欧拉公式的证明与应用 一 .序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 1.1 极限法 --------------------------------------3 1.2 指数函数定义法-------------------------------4 1.3 分离变量积分法-------------------------------4 1.4 复数幂级数展开法-----------------------------4 1.5 变上限积分法---------------------------------5

1.6 类比求导法-----------------------------------7 三.欧拉公式的应用 2.1 求高阶导数-----------------------------------7 2.2 积分计算------------------------------------8 2.3 高阶线性齐次微分方程的通解------------------9 2.4 求函数级数展开式----------------------------9 2.5 三角级数求和函数----------------------------10 2.6 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言 欧拉是十八世纪最杰出的最多产的数学家之一[1],留下了数不胜数的以其名 字命名的公式。本文关注的欧拉公式x i x e ix sin cos +=,在复数域中它把指数函数 联系在一起。特别当π=x 时,欧拉公式便写成了01=+πi e ,这个等式将最富有特 色的五个数π,,,,10e i 绝妙的联系在一起,“1是实数的基本单位,i 是虚数的基本单位,0是唯一的中性数,他们都具有独特的地位,都具有代表性。i 源于代数,

欧拉公式的证明

欧拉公式的证明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

欧拉公式的证明 着名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:??? 设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是 e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有:

信号与系统知识点总结

ε(k )*ε(k ) = (k+1)ε(k ) f (k)*δ(k) = f (k) , f (k)*δ(k – k0) = f (k – k0) f (k)*ε(k) = f 1(k – k1)* f 2(k – k2) = f (k – k1 – k2) ?[f 1(k)* f 2(k)] = ?f 1(k)* f 2(k) = f 1(k)* ?f 2(k) f1(t)*f2(t) = f(t) 时域分析: 以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数之和,即 而任意信号作用下的零状态响应yzs(t) yzs (t) = h (t)*f (t) 用于系统分析的独立变量是频率,故称为频域分析。 学习3种变换域:频域、复频域、z 变换 ⑴ 频域:傅里叶表变换,t →ω;对象连续信号 ⑵ 复频域:拉普拉斯变换,t →s ;对象连续信号 ⑶ z 域:z 变换,k →z ;对象离散序列 设f (t)=f(t+mT)----周期信号、m 、T 、 Ω=2π/T 满足狄里赫利Dirichlet 条件,可分解为如下三角级数—— 称为f (t)的傅里叶级数 注意: an 是n 的偶函数, bn 是n 的奇函数 式中,A 0 = a 0 可见:A n 是n 的偶函数, ?n 是n 的奇函数。a n = A ncos ?n , b n = –A nsin ?n ,n =1,2,… 傅里叶级数的指数形式 虚指数函数集{ej n Ωt ,n =0,±1,±2,…} 系数F n 称为复傅里叶系数 欧拉公式 cos x =(ej x + e –j x )/2 sin x =(ej x - e –j x )/2j 傅里叶系数之间关系 n 的偶函数:a n , A n , |F n | n 的奇函数: b n ,?n 常用函数的傅里叶变换 1.矩形脉冲 (门函数) 记为g τ(t) ? ∞ ∞--=ττδτd )()()(t f t f ∑ ∑∞=∞ =Ω+Ω+=1 10)sin()cos(2)(n n n n t n b t n a a t f ∑∞=+Ω+=10)cos(2)(n n n t n A A t f ?2 2n n n b a A +=n n n a b arctan -=? e )(j t n n n F t f Ω∞-∞ =∑= d e )(122 j ?-Ω-=T T t n n t t f T F )j (21e 21e j n n n j n n b a A F F n n -===??n n n n A b a F 212122=+=??? ??-=n n n a b arctan ?n n n A a ?cos =n n n A b ?sin -=

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)

欧拉公式的证明方法和应用

欧拉公式的证明方法和 应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

欧拉公式 θθθ sin cos i e i +=的证明方法和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5],π是圆周率在公园前就被定义为“周长与直径的比”。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造x i x x f e ix sin cos )(+= , 0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f ,使得x i x e ix sin cos += 分离变量积分法

信号与系统重点概念公式总结

信号与系统重点概念公 式总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复 数的辐角。(复平面) 2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(2 1 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(21 21* * ==?≠=???

其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

复数欧拉公式的证明和应用

复数欧拉公式 θθθ sin cos i e i +=的证明和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5], π是圆周率在公园前就被定义为“周长与直径的比” 。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 2.1幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 2.2复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 2.3类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造x i x x f e ix sin cos )(+= , 0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f ,使得x i x e ix sin cos += 2.4分离变量积分法 假设x i x z sin cos +=,求导得 iz dx dz =,通过分离变量得,idx z dz =,然后两边取积分得

郑君里信号与系统习题答案

第三章 傅里叶变换 一.周期信号的傅里叶级数 二.傅里叶变换 例题 ?例题1:傅里叶级数——频谱图 ?例题2:傅里叶变换的性质 ?例题3:傅里叶变换的定义 ?例题4:傅里叶变换的性质 ?例题5:傅里叶变换的性质 ?例题6:傅里叶变换的性质 ?例题7:傅里叶变换的性质、频响特性 ?例题8:傅里叶变换的性质 ?例题9:抽样定理 –例题10:周期信号的傅里叶变换 例3-1 周期信号 1. 画出单边幅度谱和相位谱; ()? ? ? ?? --??? ??++=328cos 265sin cos 3ππt t t t f 形式 频谱:离散性、谐波性、收敛性 周期矩形脉冲信号的频谱特点 定义及傅里叶变换存在的条件 典型非周期信号的频谱 冲激函数和阶跃信号的傅里叶变换 性质→应用:调制和解调→频分复用 周期信号的傅里叶变换:由一些冲激函数组成 抽样信号的傅里叶变换→抽样定理→应用:时分复用

2. 画出双边幅度谱和相位谱。 单边幅度谱和相位谱 双边幅度谱和相位谱 例3-2 分析:f (t )不满足绝对可积条件,故无法用定义求 其傅里叶变换,只能利用已知典型信号的傅里叶 变换和性质求解。下面用三种方法求解此题。 方法一:利用傅里叶变换的微分性质 方法二:利用傅里叶变换的积分性质 方法三:线性性质 方法一:利用傅里叶变换的微分性质 要注意直流,设f A(t )为交流分量,f D(t )为直流分量,则 其中 ()? ?? ??+-+??? ??-++=ππππ328cos 2265cos cos 3t t t t f ? ?? ?? ++??? ??-+=38cos 2315cos cos 3ππt t t ()。的傅里叶变换求信号 )(ωF t f ()()()t f t f t f D A +=()()() ωωωD A F F F +=()()()[]2321=∞+∞-=f f t f D ()()ωπδω3=D F ()()t f t f A '='()??? ??-=' 211t G t f A ()ω ωωωj A e F j -?? ? ??=∴2Sa

《欧拉公式及其应用》

华北水利水电大学 题目《欧拉公式及其应用》 课程名称:高等数学(2) 专业班级:电子信息工程2012154 成员组成: 联系方式: 2013年5月31 日

摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=, 举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式,证明,应用 英文题目"Euler formula and its application" Abstract: The different methods of several in the complex domain that Euler's formula, illustrates several kinds of application of Euler's formula in mathematics, to solve the problem through the summary of many ways to look at problems of the mind, through the solution of several kinds of problems that the reader more understood the importance of Euler in learning many aspects of the theory and the mathematical formula in the. Key words: Euler formula Prove application

相关文档
最新文档