高数A(2)习题课(7)多元函数微分学2
最新多元微分习题课

多元微分习题课多元函数微积分复习课在实际生活中,会遇到依赖于两个或两个以上自变量的多元函数.本章在一元函数微积分的基础上介绍多元函数微积分.多元函数微积分和一元函数微积分有很多相似的问题,也有很多不同的问题,需要大家在学习中注意.一、内容提要1.二元函数(1)二元函数:设«Skip Record If...»是平面上的一个非空点集,如果有一个对应规律«Skip Record If...»,使每一个点«Skip Record If...»都对应于惟一确定的值«Skip Record If...»,则称«Skip Record If...»为«Skip Record If...»上的二元函数.记做«Skip Record If...»,其中«Skip Record If...»称为自变量,函数«Skip Record If...»也称为因变量,«Skip Record If...»称为该函数的定义域.自变量多于一个的函数统称为多元函数.(2)二元函数的几何意义:函数«Skip Record If...»的几何图形一般在空间直角坐标系中表示一张曲面,而其定义域«Skip Record If...»就是此曲面在«Skip Record If...»坐标面上的投影.2. 二元函数的极限与连续(1)二元函数的极限设函数«Skip Record If...»在点«Skip Record If...»的某个邻域内有定义(在点«Skip Record If...»处可以无定义),如果当点«Skip Record If...»以任意方式趋向于点«Skip Record If...»时,相应的函数值«Skip Record If...»无限接近于一个确定的常数«Skip Record If...»,则称当«Skip Record If...»«Skip Record If...»时,函数«Skip Record If...»以«Skip Record If...»为极限,记作«Skip Record If...»或«Skip Record If...»«Skip Record If...».(2)二元函数的连续性①在一点连续的两个等价的定义定义1 设有二元函数«Skip Record If...»,如果«Skip RecordIf...»=«Skip Record If...»,则称二元函数«Skip Record If...»在点«Skip Record If...»处连续.定义2 设«Skip Record If...»(称«Skip Record If...»为函数«Skip Record If...»的全增量),若«Skip Record If...»,则称二元函数«Skip Record If...»在点«Skip Record If...»处连续.②如果«Skip Record If...»在区域«Skip Record If...»内的每一点都连续,则称«Skip Record If...»在区域«Skip Record If...»上连续.③如果«Skip Record If...»在点«Skip Record If...»不连续,则称点«Skip Record If...»是二元函数«Skip Record If...»的不连续点或间断点.3.偏导数(1)二元函数«Skip Record If...»的两个偏导数定义如下:«Skip Record If...»«Skip Record If...»(2)偏导数的计算从偏导数的定义可以看出,求«Skip Record If...»的偏导数并不需要用新方法,因为这里只有一个自变量在变动,另一个自变量被看作是固定的,所以仍旧可用一元函数的微分法.求«Skip Record If...»时,只要把«Skip Record If...»暂时看作常量而对«Skip Record If...»求导数;求«Skip Record If...»时,只要把«Skip Record If...»暂时看作常量而对«Skip Record If...»求导数.4.高阶偏导数(1)«Skip Record If...»的四个二阶偏导数如下:«Skip Record If...» , «Skip Record If...»,«Skip Record If...» , «Skip Record If...».二阶以及二阶以上的偏导数统称为高阶偏导数.(2)混合偏导数与次序无关的定理如果函数«Skip Record If...»的两个混合偏导数在点«Skip Record If...»连续,则在点«Skip Record If...»处,有«Skip Record If...».5.全微分(1)定义«Skip Record If...».(2)全微分在近似计算中的应用«Skip Record If...».«Skip Record If...».6.复合函数的偏导数设函数«Skip Record If...»«Skip Record If...»在点«Skip Record If...»处有偏导数,函数«Skip Record If...»在相应点«Skip Record If...»处有连续偏导数,则复合函数«Skip Record If...»在点«Skip Record If...»处有偏导数,且«Skip Record If...»,«Skip Record If...» .7.隐函数的偏导数设方程«Skip Record If...»确定了«Skip Record If...»是«Skip Record If...»的函数«Skip Record If...»,且«Skip Record If...»«Skip Record If...»,«Skip Record If...»连续及«Skip Record If...»,则«Skip Record If...» , «Skip Record If...» , 一般地,求由方程确定的隐函数的偏导数,对方程两边同时求偏导更为方便.8. 二元函数的极值与驻点(1)极值存在的必要条件设函数«Skip Record If...»在点«Skip Record If...»的某个邻域内有定义,且存在一阶偏导数,如果«Skip Record If...»是极值点,则必有«Skip Record If...».即可导函数的极值点必定为驻点,但是函数«Skip Record If...»的驻点却不一定是极值点.(2)极值存在的充分条件设函数«Skip Record If...»在点«Skip Record If...»的某个邻域内具有二阶连续偏导数,且«Skip Record If...»是驻点.设«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,则①当«Skip Record If...»时,点«Skip Record If...»是极值点,且当«Skip Record If...»时,点«Skip Record If...»是极大值点;当«Skip Record If...»时,点«Skip Record If...»是极小值点;②当«Skip Record If...»时,点«Skip Record If...»不是极值点;③当«Skip Record If...»时,点«Skip Record If...»有可能是极值点也可能不是极值点.(3)条件极值与拉格朗日乘数法求函数«Skip Record If...»在满足约束条件«Skip Record If...»下的条件极值,其常用方法是拉格朗日乘数法,具体步骤如下:①构造拉格朗日函数«Skip Record If...»,其中«Skip Record If...»为待定常数,称其为拉格朗日乘数.②求四元函数«Skip Record If...»的驻点,即列方程组«Skip Record If...»求出上述方程组的解«Skip Record If...»,那么驻点«Skip Record If...»有可能是极值点;③判别求出的点«Skip Record If...»是否是极值点,通常由实际问题的实际意义来确定.对于多于三个自变量的函数或多于一个约束条件的情形也有类似的结果.9.二重积分(1)定义设二元函数«Skip Record If...»是定义在有界闭区域«Skip Record If...»上的连续有界函数,如果极限«Skip Record If...»存在,且该极限的值与区域«Skip Record If...»的分割方法和«Skip Record If...»的选取无关,则称此极限为函数«Skip Record If...»在闭区域«Skip Record If...»上的二重积分,记为«Skip Record If...»,即«Skip Record If...».(2)几何意义«Skip Record If...»表示曲面«Skip Record If...»在区域«Skip Record If...»上所对应的曲顶柱体各部分体积的代数和.(3)二重积分的性质线性:设«Skip Record If...»为常数,则有«Skip Record If...».可加性:设积分区域«Skip Record If...»可分割成为«Skip Record If...»、«Skip Record If...»两部分,则有«Skip Record If...».积分的比较性质:若«Skip Record If...»,其中«Skip Record If...»,则«Skip Record If...».积分的估值性质:设«Skip Record If...»,其中«Skip Record If...»,而«Skip Record If...»为常数,则«Skip Record If...»(其中«Skip Record If...»表示区域«Skip RecordIf...»的面积).积分中值定理:若«Skip Record If...»在有界闭区域«Skip Record If...»上连续,则在«Skip Record If...»上至少存在一点«Skip Record If...»,使得«Skip Record If...».10. 二重积分的计算(1)二重积分在直角坐标系下的计算直角坐标系下的面积元素«Skip Record If...».①若«Skip Record If...»为:«Skip Record If...»,«Skip Record If...»,则«Skip Record If...».②若«Skip Record If...»: «Skip Record If...»,«Skip Record If...»,则«Skip Record If...».(2)二重积分在极坐标系下的计算极坐标系下的面积元素«Skip Record If...»,极坐标与直角坐标的关系«Skip Record If...»①设区域«Skip Record If...»为:«Skip Record If...»≤«Skip Record If...»≤«Skip Record If...»,«Skip Record If...»≤«Skip RecordIf...»≤«Skip Record If...»,则«Skip Record If...».②设区域«Skip Record If...»为:0≤«Skip Record If...»≤«Skip Record If...»«Skip Record If...»≤«Skip Record If...»≤«Skip Record If...»,则«Skip Record If...».③设区域«Skip Record If...»为:0≤«Skip Record If...»≤«Skip Record If...»0≤«Skip Record If...»≤2«Skip Record If...»所确定,从而得«Skip Record If...».11. 二重积分的应用二重积分在几何学中可用于求空间中立体的体积,在物理学中可用于求平面薄片的质量、重心、转动惯量等.二、解题指导1.二元函数定义域例1求下列函数的定义域并画出定义域的图形.(1)«Skip Record If...»;(2)«Skip Record If...».解(1)要使函数有意义,需满足条件«Skip Record If...»即 «Skip Record If...».因此定义域为«Skip Record If...»与«Skip Record If...»围成的部分,包括曲线«Skip Record If...»(图1) .图1 图2(2)要使函数有意义,需满足条件«Skip Record If...» 即 «Skip Record If...»定义域如图2所示.小结 多元函数的定义域的求法与一元函数的定义域的求法完全相同.即先考虑三种情况:分母不为零;偶次根式的被开方式不小于零;要使对数函数,某些三角函数与反三角函数有意义.再建立不等式组,求出其公共部分就是多元函数的定义域.如果多元函数是几个函数的代数和或几个函数的乘积,其定义域就是这些函数定义域的公共部分.2.多元函数的偏导数例2 设«Skip Record If...» ,求«Skip Record If...».解法一 求函数在一点处的偏导数是指函数的偏导函数在一点处的值.可先将«Skip Record If...»看作常数,对«Skip Record If...»求偏导数«SkipRecord If...»,然后代入«Skip Record If...»,从而«Skip Record If...». «Sk解法二先将二元函数转化为一元函数,再对«Skip Record If...»求导数,由于«Skip Record If...»,则«Skip Record If...»,从而«Skip Record If...».说明以上两种解法中解法一较为常用,解法二较简单.例3 设«Skip Record If...»,求 «Skip Record If...»,«Skip Record If...».解法一令«Skip Record If...»,«Skip Record If...»,原式可写成«Skip Record If...»,由复合函数求导法则,得«Skip Record If...»,即«Skip Record If...»=«Skip Record If...»,«Skip Record If...»=«Skip Record If...»=«Skip Record If...».解法二利用一元函数求导法则求偏导,可直接求出两个偏导数«Skip Record If...»,«Skip Record If...».即«Skip Record If...»= «Skip Record If...»,«Skip Record If...»=«Skip Record If...».例4设«Skip Record If...»,求«Skip Record If...»,«Skip Record If...».解此题为抽象函数,所以只能用多元函数求导法则.令 «Skip Record If...» , «Skip Record If...» , 则«Skip Record If...»,于是«Skip Record If...»=«Skip Record If...»+«Skip Record If...»=«Skip Record If...»+«Skip Record If...»[«Skip Record If...»]=«Skip Record If...»+«Skip Record If...»[«Skip Record If...»] =«Skip Record If...»+«Skip Record If...»(«Skip Record If...»),«Skip Record If...»=«Skip Record If...»=«Skip Record If...»[«Skip Record If...»]=«Skip Record If...»[«Skip Record If...»]=«Skip Record If...»(«Skip Record If...»).小结求二元复合函数偏导数,对于函数关系具体给出时,一般将一个变量看成常量,可直接对另一个变量求偏导,但求带有抽象函数符号的复合函数偏导数时,必须使用复合函数的求导公式.其关键在于正确识别复合函数的中间变量与自变量的关系.3.隐函数的偏导数例5设 «Skip Record If...»,求«Skip Record If...»,«Skip Record If...».解法一用公式法,设«Skip Record If...»=«Skip Record If...»,则 «Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...»;«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...».解法二方程两端求导,由于方程有三个变量,故只有两个变量是独立的,所以求«Skip Record If...»,«Skip Record If...»时,将«Skip Record If...»看作«Skip Record If...»,«Skip Record If...»的函数.方程两端对«Skip Record If...»求偏导数,得«Skip Record If...»即 «Skip Record If...»=«Skip Record If...»;方程两端对«Skip Record If...»求偏导数,得«Skip Record If...»即 «Skip Record If...»=«Skip Record If...».解法三利用全微分求«Skip Record If...»,«Skip Record If...».方程两边求全微分,利用微分形式不变性,则«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,«Skip Record If...»=«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»,因此 «Skip Record If...»=«Skip Record If...»,«Skip Record If...»=«Skip Record If...».小结用公式法求隐函数的偏导数时,将«Skip Record If...»看成是三个自变量«Skip Record If...»,«Skip Record If...»,«Skip Record If...»的函数,即«Skip Record If...»,«Skip Record If...»,«Skip Record If...»处于同等地位.方程两边对«Skip Record If...»求偏导数时,«Skip Record If...»,«Skip Record If...»是自变量,«Skip Record If...»是«Skip Record If...»,«Skip Record If...»的函数,它们的地位是不同的.4.函数的极值与最值例 6求函数«Skip Record If...»的极值.分析求函数极值问题可以用列表的方法,比较清晰,一目了然.解(1)求偏导数«Skip Record If...»,«Skip Record If...»«Skip Record If...»,«Skip Record If...»,«Skip Record If...»;(2)解方程组«Skip Record If...» , 得驻点(0,0)及(2,2);(3)列表判定极值点例7某公司要用不锈钢板做成一个体积为8«Skip Record If...»的有盖长方体水箱.问水箱的长、宽、高如何设计,才能使用料最省?解法一用条件极值求问题的解.设长方体的长,宽,高分别为«Skip Record If...»,«Skip Record If...»,«Skip Record If...».依题意,有«Skip Record If...», «Skip Record If...»令 «Skip Record If...»=«Skip Record If...»+«Skip Record If...»,由 «Skip Record If...»解得驻点(«Skip Record If...»).根据实际问题,最小值一定存在,且驻点惟一.因此,当水箱的长、宽、高分别为2«Skip Record If...»时,才能使用料最省.解法二将条件极值转化为无条件极值.设长方体的长,宽,高分别为«Skip Record If...»,«Skip Record If...»,«Skip Record If...».依题意,有«Skip Record If...», «Skip Record If...»消去«Skip Record If...»,得面积函数 «Skip Record If...», «Skip Record If...»,«Skip Record If...»,«Skip Record If...».由 «Skip Record If...»得驻点(«Skip Record If...»),根据实际问题,最小值一定存在,且驻点惟一.因此,(«Skip Record If...»)为«Skip Record If...»的最小值点,即当水箱的长、宽、高分别为2«Skip Record If...»时,才能使用料最省.小结 求条件极值时,可以化为无条件极值去解决,或用拉格朗日乘数法.条件极值一般都是解决某些最大、最小值问题.在实际问题中,往往根据问题本身就可以判定最大(最小)值是否存在,并不需要比较复杂的条件(充分条件)去判断.5.二重积分例8 计算 «Skip Record If...» 其中«Skip Record If...»由直线«Skip Record If...»,«Skip Record If...»和曲线«Skip Record If...»所围成.解 画出区域«Skip Record If...»的图形如图3所示,求出边界曲线的交点坐标A («Skip Record If...»,2), B (1,1), C (2,2),视区域«Skip Record If...»为«Skip Record If...»型区域:«Skip Record If...»于是«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...»=«Skip Record If...» =«Skip Record If...» . 分析:若视区域«Skip Record If...»为«Skip Record If...»型区域,此时就必须用直线«Skip Record If...»将«Skip Record If...»分«Skip Record If...»和«Skip Record If...»两部分(图4).其中«Skip Record If...»«Skip Record If...» «Skip Record If...»«Skip Record If...»由此得«Skip Record If...»=«Skip Record If...»+«Skip Record If...»=«Skip Record If...»+«Skip Record If...»=«Skip Record If...»+«Skip Record If...» =«Skip Record If...»+«Skip Record If...» =«Skip Record If...».显然,先对«Skip Record If...»积分后对«Skip Record If...»积分要麻烦得多,所以恰当地选择积分次序是化二重积分为二次积分的关键步骤.例9 已知 «Skip Record If...»=«Skip Record If...»+«Skip Record If...» 改变积分次序. 解 积分区域«Skip Record If...»,其中«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...» 画出积分区域«Skip Record If...»的图形(图5),改变为先对«Skip Record If...»积分后对«Skip Record If...»积分, 此时 «Skip Record If...»«Skip Record If...» 因此«Skip Record If...»=«Skip Record If...»+«Skip Record If...»=«Skip Record If...» . 例10 计算二重积分«Skip Record If...»,其中区域«Skip Record If...»«Skip Record If...».解 该积分区域为环形(图6),利用极坐标,区域的边界曲线是 «Skip Record If...» 与 «因此«Skip Record If...».例11 求球体«Skip Record If...»被圆柱面«Record If...»所截得的立体的体积(图7).解 由对称性,所截的部分是以«Skip Record If...»为底的曲顶柱体体积的4倍,而曲顶柱体顶面的方程是 «Skip Record If...».2x 图5因此«Skip Record If...»,利用极坐标,便得«Skip Record If...»«Skip Record If...»«Skip Record If...».小结在计算二重积分时,当积分区域为圆形区域、圆环区域或扇形区域时,选择用极坐标为好,其他情况用直角坐标为宜.。
多元函数微分学习题课-14页精品文档

6、全微分形式不变性
无论 z是自变量u 、 v 的函数或中间变量u 、 v
的函数,它的全微分形式是一样的.
dzzduzdv. u v
7、隐函数的求导法则
(1) F(x,y)0
dyFx
dx Fy
(2 )F (x ,y ,z) 0
z Fx,z Fy x Fz y Fz
求隐函数偏导数的方法 ①公式法 ②直接法 ③全微分法
8、多元函数的极值
极值、驻点、必要条件P341 (偏导为0)
充分条件P342 P(x,y )
求 函 数 z f ( x ,y ) 极 值 的 一 般 步 骤 :
最值 条件极值,目标函数、约束条件
一、主要内容
极限运算 多元连续函数
的性质
多元函数概念
多元函数 的极限
多元函数 连续的概念
复合函数 求导法则
全微分形式 的不变性
全微分 概念
偏导数 概念
多元函数的极值
全微分 的应用
高阶偏导数
隐函数 求导法则 微分法在 几何上的应用
1、多元函数的极限 说明:(1)定义中 PP0的方式是任意的;
(2)二元函数的极限运算法则与一元 函数类似. 存在性 ——定义,夹逼定理
构造 Lagrange 函数 F ( x ,y ,z ) f ( x ,y ,z ) ( x ,y ,z )
二重积分
1. 二重积分的定义
n
D
f
x, y d
lim
0 i1
f (i ,i ) i
(d dxdy)
2. 二重积分的性质 (与定积分性质相似)
高等数学多元函数微积分学习要点与参考练习

《高等数学》(2)学习要点与练习(一)本学期水利水电工程专业高等数学课程教学内容包括高等数学(2)(多元函数微积分)和概率统计基础量部分内容,具体内容如下:高等数学1. 第九章 空间解析几何与向量代数 2. 第十章 多元函数微分学3. 第十一章 重积分、曲线积分与曲面积分概率统计1. 第1章 随机事件与概率 2. 第2章3. 第3章 统计推断下面根据课程的基本要求,指明各章学习要点,并给出一些练习,供学习参考.第九章 空间解析几何与向量代数一、学习要点1.关于空间直角坐标系与向量两点间的距离公式设空间两点M 1=(x 1,y 1,z 1),M 2=(x 2,y 2,z 2),则M 1与M 2之间的距离21221221221)()()(z z y y x x M M -+-+-=向量的坐标表示向量是本章重点,它是学习平面和空间直线知识的基本工具设a=(a 1,a 2,a 3), b =(b 1,b 2,b 3)是两个向量,有关向量有如下一些基本概念要掌握:模 ∣a ∣=232221a a a ++方向余弦 aa a a a a321cos ,cos ,cos ===γβα且C os 2α+C os 2β+C os 2γ=1数量积 332211,c o s b a b a b a b a b a b a ++>=<=⋅,两个向量的数量积是一个数.向量积 321321b b b a a a k j i b a=⨯=(a 2b 3-a 3b 2,a 3b 1-a 1b 3,a 1b 2-a 2b 1),两个向量的向量积是一个向量.b a b a b a b a b a b a b a⨯⊥⨯><=⨯,,;;,sin 和成右手系.两个向量平行或垂直的充分必要条件0=⋅⇔⊥b a b ab k a b a=⇔∥或0 =⨯⇔b a b a ∥2.关于平面熟练掌握平面的点法式方程,掌握平面的一般方程,会求平面方程、点到平面的距离. 求平面方程的关键是找出法方向n=(A ,B ,C )。
《高等数学》多元函数微分学部分 练习题答案

八、多元函数的微积分: (一)求下列函数的偏导数:(1)33xy y x z -=解:233zx y y x ∂=-∂, 323z x xy y ∂=-∂.(2))ln(xy z =解:()12ln()z xy =,()1211ln()()2z xy y x xy -∂==∂ ()1211ln()()2z xy x y xy -∂==∂.(3)2arcsin()cos ()z xy xy =+,2arcsin()cos ()z xy xy =+;2cos()[sin()]sin(2)z y xy xy x y xy x ∂=+-=-∂,2cos()[sin()]sin(2)z x xy xy x x xy y ∂=+-=-∂.(4)yxy z )1(+=解:关于x 是幂函数故:121(1)(1)y y zy xy y y xy x--∂=+=+∂, 关于y 是幂指函数,将其写成指数函数ln(1)y xy z e+=,故:ln(1)1[ln(1)](1)(ln(1))11y xy y z xy e xy y x xy xy y xy xy+∂=++=+++∂++ 解II: 两边取对数得ln ln(1)z y xy =+,因此11z y y z x xy ∂=∂+ , 1l n (1)1z xxy y z y xy ∂=++∂+, 即21(1)y zy xy x-∂=+∂, 1(1)ln(1)(1)y y z xy xy xy xy y -∂=++++∂. (二)求下列函数的全微分:(1) xz x yy=+ , 因为1z y x y ∂=+∂,2z x x y y ∂=-∂.所以21()d ()d z z xdz dx dy y x x y x y y y ∂∂=+=++-∂∂ . (2)2x yz e -=,因为2x y ze x -∂=∂,22x y z e y -∂=-∂.所以2(d 2d )x y z zdz dx dy e x y x y-∂∂=+=-∂∂. (3)z =因为()()()()13322222222232221[]()22z xyy x y y x y x xy x y x x xy---∂∂-=+=-+⋅=-+=∂∂+,()23222z x yxy∂==∂+所以()()233222222)z zxyx dz dx dy dx dy xdy ydx x yxyxy∂∂-=+=+=-∂∂++(4)yzu x = 因为11()yz yz u yz x yzx x --∂==∂,ln ln yz yz u x x z zx x y ∂=⋅=∂,ln ln yz yz u x x y yx x z ∂=⋅=∂ 所以u u udu dx dy dz x y z∂∂∂=++∂∂∂=1ln ln )yz yz yz yzx dx yx xdy yx xdz -++ (ln ln )yz yzx dx y xdy y xdz x=++(三)求下列函数的偏导数和微分: (1)设2ln ,,32,x z u v u v x y y ===-,求,z z x y∂∂∂∂. 解:212ln 3z f u f v u u v x u x v x y v ∂∂∂∂∂=+=⋅+⋅∂∂∂∂∂()()22223ln 3232x x x y y x y y =-+-, z f u f v y u y v y ∂∂∂∂∂=+∂∂∂∂∂222ln ()(2)x u u v y v =⋅-+⋅-()()223222ln 3232x x x y y x y y=---- (2)设32 ,sin ,t y t x e z y x ===-,求dz ;3222sin 22cos (2)(3)(cos 6)x y x y t t dz z dx z dye t e t e t t dt x dt y dt---∂∂=+=+-=-∂∂ dz 3sin 22(cos 6)d t t e t t t -=-.(四)设下列方程所确定的函数为()y f x =,求dxdy.(1)ln 0xy y -=解: 设(,)ln .F x y xy y =- 则,x F y = 1y F x y=-, x yF dydx F =-1yx y=--21y xy =--21y xy =-.(2) 0sin 2=-+xy e y x解I : 设2(,)sin .xF x y y e xy =+-则2,xx F e xy =- cos 2y F y xy =-,2d d cos 2xx y F y y e x F y xy-=-=-.解II :22cos d d d 2d 0(cos 2)d ()d x xy y e x y x xy y y xy y y e x +--=⇒-=-2d d cos 2xy y e x y xy-⇒=-.(3) ln ln 0xy x y ++= 解: 设(,)ln ln .F x y xy x y =++ 则1,x F y x=+1y F x y =+,x y F dy dx F =-11y x x y+=-+(1)(1)y xy x xy +=-+y x =-.(五)对下列隐函数, 求x z ∂∂,y z ∂∂,xy∂∂及dz .(1)20x y z ++-解:设(,,)2F x y z x y z =++-则1x F =21y z F F =-=,x z F z x F ∂=-====∂y zF z y F ∂=-====∂y xF x y F ∂=-====∂.dz =+解II :(隐函数法)两边关于x求导:10z x ∂+=∂,得xyxyz xyzyz x z --=∂∂两边关于y求导:20z y ∂+=∂得xyxyz xyzxz y z --=∂∂2两边关于y求导:20x y ∂+=∂得x y ∂=∂.dz =+解III:令(),,2F x y z x y z =++-则1x F =,2y F =1z F =故1x z F zx F ∂=-==∂-,1y z F z y F ∂=-==∂1y x F xy F ∂=-===∂.dz =+(2) 0ze xyz -=解: 设(,,).zF x y z e xyz =-则,x F yz =- ,z y z F xz F e xy =-=-,,x z z F z yz x F e xy ∂=-=∂- ,y z z F z xz y F e xy ∂=-=∂-.Fx x yF yy x∂∂∂=-=-∂∂∂ .z z yz xz dz dx dy e xy e xy=+--(3)yz z x ln = (3) 设),(y x z z =是由方程y zz x ln =所确定的隐函数,求x z ∂∂和yz ∂∂. 解I : 用隐函数求导公式(),,ln ln x F x y z z y z=-+,,1z x F =∂∂∴,1y y F =∂∂z z x z F 12--=∂∂ ,112z x z z z x z x z +=---=∂∂∴)(1122z x y z zz x yy z +=---=∂∂,11Fx z y yF yy xz∂∂∂=-=-=-∂∂∂. 2.()z z dz dx dy x z y x z =+++解II : 将z 看作y x ,的函数,两边对x 求导,得:xz z z x zxz ∂∂=∂∂-12 即zx zx z +=∂∂,同理两边对y 求导得)(2z x y z y z +=∂∂ 将x 看作,y z 的函数,两边对y 求导,得:1xyz y∂∂=-即.x z y y∂=-∂ 2.()z z dz dx dy x z y x z =+++解III : 将方程两边求全微分,得:y dyz dz z xdz zdx -=-2,解出dz 得:()dy z x y z dx x z z dz +++=2 zx zx z +=∂∂∴,)(2z x y z y z +=∂∂, 将方程两边求全微分,得:y dy z dz z xdz zdx -=-2,解出dx 得:z x z dx dy dz y z +=-+ .x z y y∂∴=-∂ (六)1、设333,z xyz a -= 求2zx y∂∂∂.解I : 设33(,,)3,.F x y z z xyz a =--则3,x F yz =- 23,33y z F xz F z xy =-=-,2,x z F z yz x F z xy ∂=-=∂- 2.y z F z xzy F z xy∂=-=∂- 2222()()(2)()()z zz yz xy yz z x z z y yx y y x z xy ∂∂+---∂∂∂∂∂==∂∂∂∂- 22222()()(2)()xz xzz y z xy yz z x z xy z xyz xy +-----=-22223[()]()[(2()]()z z xy yxz z xy yz zxz x z xy z xy -+----=- 322253222323()()2()()z z xy yz xz x y z xyz x y z z xy z xy --+--==--.解II :利用隐函数求导 方程两边同时对x 求导23330,z z zyz xy x x ∂∂--=∂∂20,z zz yz xy x x∂∂--=∂∂ 2,z yz x z xy ∂=∂-同理2,z xzy z xy∂=∂-对方程20,z zzyz xy x x∂∂--=∂∂两边同时再对y 求导 22220,z z z z z z z z z y x xy y x x y y x x y∂∂∂∂∂∂+----=∂∂∂∂∂∂∂∂ 22()2z z z z z z xy z x y zx y x y x y ∂∂∂∂∂-=++-∂∂∂∂∂∂22222yz xz yz xzz x y z z xy z xy z xy z xy =++-----33222z 2()z xy xyz z xy z xy +=---522322z 2()z x y xyz z xy --=-, 所以2522323z 2.()z z x y xyz x y z xy ∂--=∂∂-解III :333,z xyz a -=方程两边同时微分,23d 3(d d d )0z z yz x xz y xy z ---=,2()d d d z xy z yz x xz y -=+, 22d d d .yz xzz x y z xy z xy =+--所以 22,z yz z xz x z xy y z xy∂∂==∂-∂-. 222222222()()(2)()()(2)()()z z xz xz z y z xy yz z x z y z xy yz z x z y y z xy z xyx y z xy z xy ∂∂+---+---∂∂∂--==∂∂--22223[()]()[(2()]()z z xy yxz z xy yz zxz x z xy z xy -+----=- 322253222323()()2()()z z xy yz xz x y z xyz x y zz xy z xy --+--==--.2、设0ze xyz -=, 求22zx ∂∂.解: 设(,,).z F x y z e xyz =-则,x F yz =- ,zy z F xz F e xy =-=-,,x z z F z yz x F e xy ∂=-=∂- .y z z F z xzy F e xy∂=-=∂- 2222()()()()()()z z z z z z z z ze xy z e y e ze xy zyz z x x x y y x x x e xy e xy ∂∂∂-----+∂∂∂∂∂∂===∂∂∂-- 2()()z z z z yze ze xy zye xyy e xy --+-=-3()()()z z z z e ze xy yz zy e xy y e xy --+-=-22322()z z z yze yz e xy z y e xy --=-2223322.()z z z y ze y z e xy z e xy --=-十二、计算下列二重积分:1.22()Dx y d σ+⎰⎰其中D 是矩形区域:1,1x y ≤≤; 解: 积分区域可表示为D : -1≤x ≤1, -1≤y ≤1. 于是11222211()()Dx y d dx x y dy σ--+=+⎰⎰⎰⎰1231111[]3x y y dx --=+⎰ 1212(2)3x dx -=+⎰31122[]33x x -=+=8.3= 2.22()Dxy x d σ+-⎰⎰其中D 由直线22y y x y x ===、与所围成;解: 积分区域可表示为1,:202,y x y D y ⎧≤≤⎪⎨⎪≤≤⎩原式()222102yy dy x y x dx =+-⎰⎰132201211()32yyx y x x dx =+-⎰232019313().2486y y dy =-=⎰ 3.2Dxy d σ⎰⎰其中D 2y x y x ==由抛物线和直线所围成; 解: 积分区域可表示为201,:,x D x y x ≤≤⎧⎨≤≤⎩21220xx Dxy d dx xy dy σ=⎰⎰⎰⎰21301[]3x x xy dx =⎰ 14701()3x x dx =-⎰1111[].35840=-= 1题图 2题图 3题图11。
高等数学多元函数微分学习题集锦

第七章、多元函数微分法 习题课
解法3
隐函数求导法,
u = f ( x , y ( x , z ) ) = f ( x , y ( x , z ( x )) ) , dz ⎞ ⎛ du = f x + f y ⋅ ⎜ y x + yz ⋅ ⎟ , dx ⎠ dx ⎝ gx yx = − gy gz yz = − gy
的切平面,使切平面与三个坐标面所围成的 四面体体积最小,求切点坐标并求此最小体积
2
2
2
解
设 P ( x 0 , y 0 , z 0 )为椭球面上一点, 令
则 Fx′ |P =
2 x0 , F ′ | = 2 y0 , Fz′ |P = 2 z0 , y P a2 c2 b2 过 P ( x 0 , y 0 , z 0 ) 的切平面方程为
第七章 多元函数微分法及其应用 习 题 课
一、主要内容 二、典型例题 三、作业
一、主要内容
平面点集 平面点集 和区域 和区域
极 限 运 算 极 限 运 算 多元连续函数 多元连续函数 的性质 的性质
第七章、多元函数微分法 习题课
多元函数概念 多元函数概念
多元函数 多元函数 的极限 的极限
多元函数 多元函数 连续的概念 连续的概念
dz . 消去 d y 即可得 dx
第七章、多元函数微分法 习题课
⎧ x 2 + y 2 + z 2 − 3x = 0 例7. 求曲线 ⎨ 在点(1,1,1) ⎩2 x − 3 y + 5 z − 4 = 0 的切线与法平面. 解: 点 (1,1,1) 处两曲面的法向量为
n1 = (2 x − 3 , 2 y , 2 z ) (1,1,1) = (−1, 2 , 2 ) n 2 = (2 , − 3 , 5 )
高数二多元函数微分学课件

条件极值与无约束极值
条件极值
在给定附加条件下的极值问题,需要将条件转化为约束,然后求解无约束极值问题。
无约束极值
在没有任何限制条件下的极值问题,通常通过求导数并令其为零来找到可能的极值点,再 通过充分条件判断是否为真正的极值点。
解释
在实际问题中,常常会遇到附加条件的约束,如边界条件或特定条件。条件极值问题需要 将这些约束转化为数学表达形式,并求解对应的无约束极值问题。无约束极值问题则更常 见于未加任何限制的函数最优化问题。
答案解析
习题3答案解析
首先,根据全微分的定义,有$dz=u'dx+v'dy$。然后,将函数$z=x^2+y^2$代入全微分的定义中, 得到$dz=(2x)dx+(2y)dy=2xdx+2ydy$。最后,将点$(1,1)$代入全微分中,得到全微分为 $dz=(2cdot1)dx+(2cdot1)dy=2dx+2dy$。
答案解析
习题2答案解析
首先,根据题目给出的条件,有 $lim_{(x,y)to(0,0)}frac{f(x,y)}{x^2+y^2}=0$。然后, 利用极限的运算法则,得到 $lim_{(x,y)to(0,0)}frac{f(x,y)-f(0,0)}{x^2+y^2}=lim_{(x,y)to(0,0)}frac{f(0,0)}{x^2+y^2}=-f_{xx}(0,0)f_{yy}(0,0)$。最后,根据可微的定义,如果上述极限 存在且等于$f_{xx}(0,0)+f_{yy}(0,0)$,则函数$f(x,y)$ 在点$(0,0)$处可微。
偏导数与全微分的应用 在几何上,偏导数可以用来描述曲面在某一点的切线方向, 全微分可以用来计算函数在某一点的近似值。Fra bibliotek高阶偏导数
第二章多元函数微分法及其应用习题课(二)资料
y
2
y 2
2
z
2
z 4
八 在点(1,1,2) 处的切线平行的平面方程。
章
解 过已知直线的平面束方程为
多 元
x 2 y z 1 ( x y 2z 3) 0
函
数 即 (1 )x (2 ) y (1 2 )z 1 3 0
及
x yz0
其 应 用
其方向向量为
s
{2,1,1}
{1,1,1}
{0,3,3}
3{0,1,1}
所求曲线的法平面方程 ( y 1) (z 1) 0.
-6-
习 题 课(二)
第
例3
求过直线
x x
2 y
yz 2z
13且与曲线
2x2 x
第 处的切平面在三个坐标轴截距的平方和为常数。
八
章 证 设M0( x0 , y0 , z0 ) 为曲面上任意一点,则
多
2
22
2
元 函 数
的令
x03 y03 z03 a 3
2
22
2
F(x, y, z) x3 y3 z3 a3
微
分 法 及 其 应
则曲面在 M0 处的法向量为
{Fx
分 法
{ 3, 0, 1 }
及 其
切平面方程
3( x 1) (z 1) 0 或 3x z 4 0
应 用
法线方程 x1
y2
z1
或
3 0 1
y2 x 3z 2 0
-9-
习 题 课(二)
高等数学习题详解-第7章多元函数微分学
1. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。
2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z++=-。
多元函数微分学习题课 (2)
a
D,使
f
(最值定理)
(a) ;
(介值定理)
机动 目录 上页 下页 返回 结束
思考与练习
1. 讨论二重极限 lim
xy
时, 下列算法是否正确?
(x,y)(0,0) x y
解法1
原式
lim
x0
y0
1 y
1
1 x
0
解法2 令 y kx,
解法3 令 x r cos , y r sin ,
f3
机动 目录 上页 下页 返回 结束
例. 设 u f (x,t) , 而 t 是由 Fx, y, z 0确定,
其中f、F具有一阶连续偏导,
证明:
du dx
f F f F x t t x
f F F
t y t
三、多元函数微分法的应用
1. 极值与最值问题 • 极值的必要条件与充分条件 • 求条件极值的方法 (消元法, 拉格朗日乘数法)
f2 (x1, x2 , x3, y1, y2 ) y2 cos y1 6 y1 2x1 x3
x求0 由 (3,f2(,7x),Ty,)y0
0
(0,1)T
确定的隐函数
y
g(
x)在x0处的导数
机动 目录 上页 下页 返回 结束
多元函数微分法
显式结构 1. 分析复合结构 隐式结构
自变量个数 = 变量总个数 – 方程总个数 自变量与因变量由所求对象判定 2. 正确使用求导法则 注意正确使用求导符号 3. 利用一阶微分形式不变性
x y ( x, y)(0,0) 2
2
而其中 lim (x2 y2 ) ln( x2 y2 ) 0 ( x, y)(0,0)
lim
(完整版)多元函数微分法及其应用习题及答案
(完整版)多元函数微分法及其应⽤习题及答案第⼋章多元函数微分法及其应⽤(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z 2,xy z2 ,则在D 上,xy zy x z =22。
(2)函数()y x f z ,=在点()00,y x 处可微的条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的条件。
2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z 23及23y x z。
5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。
7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。
8.曲线??=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾⾓是多少?9.求⽅程1222222=++c11.设()y x f z ,=是由⽅程y z z x ln =确定的隐函数,求xz,y z ??。
12.设x y e e xy =+,求dxdy 。
13.设()y x f z ,=是由⽅程03=+-xy z e z确定的隐函数,求xz,y z ??,y x z 2。
14.设y ye z x cos 2+=,求全微分dz 。
15.求函数()222ln y x z ++=在点()2,1的全微分。