北师大九年级教案1.4角平分线1
北师大版九上1.4《角平分线》word教案1

3、课堂练习:
的点,一定在___________________.
⑵角平分线上的点到这个角的两边的距离________________ ___.
⑶画一个等腰直角三角形,在它的斜边上 求一点,使它到两条直角边的距离相等(不写画法).量一下这点到直角边 的距离与直角边长有什么关系?这一点与三个顶⑷已知:如图(1),CD⊥AB,BE⊥AC,垂足分别为D、E,BE和CD相交于点O.
求证:①当∠1=∠ 2时,O B=OC
②当OB=O C时,∠1=∠2 .
4、 作业
完成习题1.8
续1页
∴∠POC=∠POE(全等三角形对应角相等).
即点P在∠AOB的角平分线上
3、做一做:用尺规 作角的平分线。
已知:∠AOB
求作:射线OC,使∠AOC=∠BOC
作法:1、在OA和OB上分别截取OD、OE,使OD=OE
2、分别以D、E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C。
3、作射 线OC
教学流程
增删、点评、课后反思
已知:在 ∠AOB内部有一点P,且PD⊥OA,PE⊥OB,D、E为垂足且PD=PE,
求证:点P在∠AOB的角平分线上.
证明:PD⊥OA,PE⊥OB,
∴∠P DO=∠PEO=90 °.
在Rt△ODP 和Rt△OEP中
OP=OP,PD=PE,∴Rt△OD P≌Rt△OEP(HL定理).
1.4第1课时角平分线-北师大版八年级下册数学教案

解决方法:通过大量例题,引导学生发现角平分线性质的规律,培养学生的几何直观能力。
(3)尺规作图画出一个角的平分线:在尺规作图过程中,学生可能对作图步骤和方法掌握不熟练。
解决方法:教师分步骤演示作图过程,学生跟随练习,同时鼓励学生之间互相交流,提高作图技能。
3.重点难点解析:在讲授过程中,我会特别强调角平分线的定义和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与角平分线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何使用尺规作图画出一个角的平分线。
三、教学难点与重点
1.教学重点
(1)角平分线的定义:准确理解角平分线的概念,掌握角平分线将角分为两个相等角的特点。
举例:解释什么是角平分线,如何用图形表示,强调角平分线上的点到角的两边的距离相等。
(2)角平分线的性质:熟练掌握角平分线的性质,并能够运用性质解决相关问题。
举例:通过具体图形,展示角平分线的性质,如角平分线上的点到角的两边的距离相等。
五、教学反思
在本次《角平分线》的教学中,我发现学生们对于角平分线的定义和性质的理解存在一定的困难。在讲授过程中,我尽量用简单的语言和生动的例子来解释这些概念,但感觉效果并不如预期。这可能是因为我对学生的前置知识掌握情况估计不足,导致讲解的深度和广度不够。
在实践活动中,学生们分组讨论和实验操作的环节较为顺利。他们能够积极参与,互相交流,展示自己的成果。但我也注意到,有些学生在操作过程中仍然对尺规作图不够熟练,这需要我在今后的教学中加强个别辅导,帮助他们掌握作图技巧。
【教案】1.4角平分线1 北师大版 九年级数学上册

强湾中学导学案学科:数学年级:九年级主备人:王花香辅备人:张晓霞审批:教师活动(环节、措施)学生活动(自主参与、合作探究、展示交流)明确目标合作交流三、合作交流:(做一做)用尺规怎样做已知角的平分线呢?并对自己的做法加以证明.四、归纳总结:1、角平分线的性质及判定的内容是什么?2、如何用尺规作已知角的平分线?五五、例题解析:如图,已知AD为△ABC的角平分线,∠B=90°,DF⊥AC,垂足为F,DE=DC,求证BE=CF.[解析]要证BE=CF,只需证△ADE≌△FDC课题 1.4角平分线(1)课时1课时课型导学+展示课学习目标1、通过学习角平分线定理及逆定理的过程,掌握该定理及逆定理,并运用之进行证明、计算、作图,以及掌握该定理在三角形中的应用;2、通过探索与证明,进一步发展推理意识及能力;3、证明是严密推理的方法,并培养自身的逆向思维能力.流程课前自测——新课探究——例题解析——自我测验——应用拓展重难点重点:掌握角平分线定理及逆定理.难点:运用角平分线定理及逆定理进行证明、计算、作图.课前准备一、前置准备角平分线的定义:______________________________________二、自主学习:问题1:还记得角平分线上的点有什么性质吗?你是怎样得到的?你能证明它吗?定理归纳:问题2:你能写出这个定理的逆命题?它是真命题吗?如果是,你作证明它?定理归纳:达标检测六、当堂训练:1、如图在△ABC中AQ=PQ,PR=PS,PR⊥AB于R,PS⊥于S,则三个结论:①AS=AR,②QP∥AR,③△BRP≌△QSP中()A、全部正确B、仅①和②正确C、仅①正确D、仅①和③正确2、在△ABC中∠C=90°,∠A的平分线交BC于D,BC=CM,BD:DC:=4:3,则点D到AB的距离为___________.3、在RT△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE是是斜边AB的垂直平分线,且DE=1CM,则AC=_______________.七、课下训练:1、OM平分∠BOA,P是OM上的任意一点,PD⊥OA,PE⊥OB,垂足分别为D、E,下列结论中错误的是()A:PD=PE B:OD=OE C:∠DPO=∠EPO D:PD=OD2、如图所示,AD平分∠BAC,DE⊥AB,垂足为E,DF⊥AC,垂足为F,则下列结论不正确的是()A、△AEG≌△AFGB、△AED≌△AFDC、△DEG≌△DFGD、△BDE≌△CDF3、△ABC中, ∠ABC、∠ACB的平分线交于点O,连结AO,若∠OBC=25°,∠OCB=30°,则∠OAC=_____________°4、与相交的两直线距离相等的点在()A、一条直线上B、一条射线上C、两条互相垂直的直线上D、以上都不对5、∠AOB的平分线上一点M,M到OA的距离为2CM,则M到OB的距离为____________.6、在RT△ABC中,∠C=90°,AD是∠BAC的平分线,若BC=16,BD=10,则D到AB的距离是________.课后训练7、如图在两条交叉的公路L1与L2之间有两家工厂A、B,现在要修一个货物中转站,使它到两条公路的距离相等,以及到两个工厂距离相等,你能帮助确定中转站的地址吗?请试试.八、拓广探索如图,梯形ABCD,ABCD,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F,(1)请写出图中4组相等的线段(已知的相等线段除外)(2)选择(1)中你所写的一组相等的线段,说说它们相等的理由.。
北师大版数学九年级上册1.4《角平分线》教学设计1

北师大版数学九年级上册1.4《角平分线》教学设计1一. 教材分析《角平分线》是北师大版数学九年级上册第1章“几何图形变换”中的一个知识点。
本节课主要介绍了角平分线的概念、性质及运用。
教材通过引入角平分线来让学生进一步理解角的性质,培养学生的几何思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段等基本几何概念,并了解了垂线的性质。
在此基础上,学生需要进一步理解角平分线的概念,并能够运用角平分线解决实际问题。
三. 教学目标1.知识与技能目标:让学生掌握角平分线的概念、性质和运用。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:角平分线的概念、性质和运用。
2.难点:角平分线的证明和运用。
五. 教学方法1.引导发现法:教师引导学生观察、操作、思考,发现角平分线的性质。
2.合作学习法:学生分组讨论,共同解决问题。
3.实践操作法:学生动手操作,加深对角平分线性质的理解。
六. 教学准备1.教具:三角板、直尺、圆规等。
2.学具:学生每人一份三角板、直尺、圆规等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直线、射线、线段的性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过展示三角板,引导学生观察角平分线的定义,并用几何画板软件动态展示角平分线的性质。
3.操练(10分钟)学生分组讨论,利用三角板、直尺、圆规等工具,自行探索角平分线的性质。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师选取几组学生得出的结论,让学生进行分析、判断、验证。
学生通过互相交流,巩固对角平分线性质的理解。
5.拓展(10分钟)教师提出一些实际问题,让学生运用角平分线的性质进行解决。
例如:在平面直角坐标系中,如何找到一点,使得该点到两点的距离相等?6.小结(5分钟)教师引导学生总结本节课所学内容,巩固角平分线的性质及运用。
数学:第一章-4.角平分线-第1课时-角平分线的性质与判定--课件(北师大版九年级上)

两边的距离相等(写出作法).
图6
答案:略
线段垂直平分线与角平分线的区别与联系: (1)都有“平分、距离相等”的特点. (2)线段的垂直平分线是一条直线;角平分线是一条射线. (3)三角形三边的垂直平分线的交点到三角形三个顶点的距 离相等,三角形角平分线的交点到三边的距离相等.
; / 金华修电脑 金华打印机租赁 金华打印机加粉
图2
角平分线的性质定理(重点) 1.如图 3,P 是∠AOB 平分线上的一点,PC⊥OA,PD⊥ =PD,OC=OD OB,垂足分别为 C、D,图中的两组相等的线段是PC ________________ .
图3 2.两条小河相交成一个三角区,土壤肥沃,气候宜人,小 猪看重了这块宝地,想在这里建一个小房子,并使房子到两条 小河的距离相等,但它不知该如何选址,你能帮帮它吗? 答案:略
角平分线性质定理的逆定(难点)
3 .如图 4 ,CD ⊥OA ,CE ⊥OB ,若 CD =CE ,则 C 在
∠ AOB 的角平分线. ________________
图4 4.如图 5,已知 AB=CD,△PAB 的面积与△PCD 的面积 相等.求证:OP 平分∠AOD.
图5
答案:略
用尺规作角的平分线 5.如图 6,在直线 MN 上求作一点 P,使点 P 到∠AOB 的
4.角平分线
第 1 课时 角平分线的性质与判定
1.角平分线的性质定理 探究: 如图 1,条件:①OP 平分∠AOB;②HM⊥OA,HN⊥OB. HM =______. HN 结论:______ 相等 . 归纳:角平分线上的点到这个角的两边的距离______
图1
2.角平分线性质定理的逆定理
在一个角的内部,且到角的两边距离相等的点,在这个角
九上北师大版线段垂直平分线和角平分线专题教案

教师: 科目: 学生:上课时间: 授课内容:线段的垂直平分线与角平分线专题知识要点详解:1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等。
(2)线段关于它的垂直平分线对称。
(折叠问题)2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上. 定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC. 定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部。
反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形。
4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等。
定理的数学表示:如图4,已知OE 是∠AOB 的平分线,F 是OE 上一点,若CF ⊥OA于点C ,DF ⊥OB 于点D ,则CF =DF. 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线。
【配套K12】九年级数学上册 1.4.1角平分线(二)导学案 北师大版
5、Rt△ABC中,∠C=900,BD平分∠ABC,CD=n,AB=m,则△ABD的面积是。
课后训练:
1、已知:如图,∠C=900,∠B=300,AD是Rt△ABC的角平分线。求证:BD=2CD。
2、已知:OP是∠MON内的一条射线,AC⊥OM,AD⊥ON,BE⊥OM,BF⊥ON,垂足分别为C、D、E、F,且AC=AD,求证:BE=BF
学习困惑记录
二、讲授新课
自主学习:
如图:设△ABC的角平分线BM、CN交于P,求证:P点在∠BAC的平分线上
(提示:过P点分别作AB、AC、BC的垂线)
定理:三角形的三条角平分线交于点,并且这一点到三条边的距离。
引申:三角形的三条角平分线交于一点,若设这一点到其中一边的距离为m,三边长分别为a、b、c,则三角形的面积S=。
(1)△ABC内有一点P到各边的距离相等?如果有,请作出这一点,并说明理由;
(2)求这个距离。
中考真题:三条公路围成了一个三角形区域,今要在这个三角形区域内建一果品批发市场到这三条公路的距离相等,试找出批发市场的位置。
随时纠错
三、小结反馈
课后反思
(1)已知:CD=4cm,求AC长
(2)求证:AB=AC+CD
学习离相等的点在。
2、△ABC中,∠C=900,∠A的平分线交BC于D,BC=21cm,BD:DC=4:3,则D到AB的距离为.
3、Rt△ABC中,AB=AC,BD平分∠ABC,DE⊥BC于E,AB=8cm,则DE+DC=cm。
3、已知:如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F。
求证:点F在∠DAE的平分线上。
北师大版《角平分线》ppt优秀课件1
PE⊥BC,其中D、E、F是垂足
B
∵BM是△ABC的角平分线,点P在BM上
∴PD=PE.同理:PE=PF.∴PD=PF.
∴点P在∠BAC的平分线上
∴△ABC的三条角平分线相交于点P.
A
M
D
PF
EC
定理:三角形的三条角平分线相交于一点,并且这一点到
三边的距离相等.
A
如图,在△ABC中, ②点P在∠CBE的平分线上;
A. ①②③④ B. ①②③ C. ④ D. ②③
2.如图,已知 BG 是∠ABC 的平分线,DE⊥AB 于点 E, DF⊥BC 于点 F,DE=6,则 DF 的长度是( )
A. 2 B. 3 C. 4 D. 6
3.如图,三条公路把A、B、C三个村庄连成一个三角形区域, 政府决定在这个三角形区域内修建一个集贸市场,使集贸市场 到三条公路的距离相等,则该集贸市场应建在( )
离相等(这个交点叫做三角形的内心).
三 角 形 一 个 内 角 和 与 它 不 相 邻 的 两
外 角 的 平 分 线交于 一点 , 这 个 的 点
O
DA
1P
2
C
叫 做 三 角 形 的傍心 . 这样点 有三个.
E B
提升练习
已分知别:为C如、图D,,P求是证∠:AO(B平1)分O线C=上O的D;一(点2,)POC⊥P是OCAD,的P垂D⊥直O平B垂分足线 老定 实AB同如点 (已证∴A:定已如点逆A证∵(已 定定外(A∵命如点老证四 老A②求实三 ∠∵已求已②P四 证(A剪已 ∴③实证已外 第在在在222CMCCCECCBPBAP△)))师理际理图到知明理知图到定明知理理角题图到师明、师点作际角知作知点、明一知点际明知角2OOO一A一一⊥MMD、D、、、、、、、课B提 :操 : ,三:: ::,三 理 : :::的 :,三 提 : 提 P:操 形::: P: 个 :P操 : :的PPP⊥⊥,,三 已如个 三如已∠三三三已巩 射如射巩 如 如个个B∠BBBBBBCCC时C是是在在是在A示作P角 过角过平角示过示作一 如过三作过平CCCCCCCBOONNN角 知图角 角图知在角角角知固 线图线固 图 图角角的OECC∠∠C∠,两两两两 两两两三AA,,相:,形 P形P分形:P:,个 图P角,P分PAA三形 △,的 形,△一形形形△三运 三O,O运 ,,的的=三CCBDDDB,,PPPPP点 点 点 点 点F内边边边 边边边PP角HHAAAP交你一 一线一你内 ,形你线CCCBB,的的的是是是是 是角的 内 的个的的三角用 角用⊥内内条如EEBBBF相分作作作作作角EED高垂中 高中,,垂形于又边 边交边又角 纸又交P使使垂垂垂⊥⊥.CCC∠∠∠∠∠形三 部 三角三三个形、 形、A部部角图的的的交别PPP是PP平线直线 线线直三AAAAA点,,,C能的 的于的能和 片能于∠∠直直直OO∴作作作一条 条的条条角一深 一深,,,DDDDD平.平平平且于是OOOOO且且∠(分AA的平的 的的平条PBBP发距 距一距发与 ,发一已⊥⊥⊥⊥⊥平平平△△△个角 角内角角的个化 个化分ABBBBBOO分分分到D一△,,,到到线交分交 交交分AAA内垂垂现离 离点离现它 通现点知O平平平平 平AAAAA分分分ACC内平 平部平平平内拓 内拓=线线 线线BBB角点角角BBBBB的点线点 点点线B角BP足足==什为为为什不过什,,)分分分分 分线线线CCC角分 分分分分角展 角展,,相,,,,,上上上平∠∠CF且这这的P的的交处的处 处处的的一一一分分么半 半半么相 折么线线线线 线...,.BB的和线 线线线线和和交PPPPP且;;;分到个个两两两点交交CC平OO个个个别别?径 径径?邻 叠?上上上上 上FFFFF与相 相相相相与与于P线..角的的边边边CC⊥⊥⊥⊥⊥处点点分内内内是是作 作作的 找的的的的 的D它交 交交交交它它点..上的点点距距距AAAAA处处=线角角角DD圆 圆圆两 出一一一一 一不于 于于于于不不CCCCCPP的两离BB离离,,和和和EE每,,,.E点点点点 点,,,,,..相一 一一一一相相你 你你一((边相相相=与与与已已DD个,,,,,邻点 点点点点邻邻能 能能PPPPPP点距等等等..它它它知知F角CCCCC的的的,作 ,作,,.作,并 并离并并的(的的⊥⊥⊥⊥ ⊥不不不))三的,,两两两出 出出P相点且 且且且点点OOOOO且且相相相角角C个个个这 这这AAAAA等,这 这这这,,PP在邻邻邻⊥在在形平,,,,,外外外个个 个DDPPPPP的一 一一一这的的的O这这的分DDDDD==角角角图 图图点点 点点点APP⊥⊥⊥⊥ ⊥个两两两个个三线的的的形 形形,EE,到 到到到OO在OOO角个个个角角条,,,平平平吗 吗吗P三 三三三BBBBB这的外外外的的角观D分分分???,,,,,垂垂垂垂 垂边 边边边⊥个平角角角平平平察线线线足足足足 足的 的的的O角分的的的分分分这交交交B分分分分 分距 距距距的线平平平线线线三垂于于于别别别别 别离 离离离平上分分分上上相条足一一一CCCCC相 相相相.分线线线))交角分..点点点,,,,,DDDDD等 等等等线,,,于平看看看别,,,.....(.(.上这 这一分它它它为这这这.个 个点线们们们C个个个交 交、,,是是是并的的的点 点D你否否否且点点点,叫 叫是交交交这叫叫叫求做 做否于于于一做做做证三 三发一一一点三三三:角 角现点点点到角角角(形 形同???三形形形1这这这的 的样)边的的的样样样内 内的O的傍傍傍的的的心心C结距心心心=点点点))论离..O,,,有有有?D相这这这几几几;与等样样样个个个同)点点点.???伴有有有如如如交三三三果果果流个个个以以以.。。。这这这个个个点点点为为为圆圆圆心心心,,,这这这一一一
数学:第一章-4.角平分线-第1课时-角平分线的性质与判定--课件(北师大版九年级上)
线段垂直平分线与角平分线的区别与联系: (1)都有“平分、距离相等”的特点. (2)线段的垂直平分线是一条直线;角平分线是一条射线. (3)三角形三边的垂直平分线的交点到三角形三个顶点的距 离相等,三角形角平分线的交点到三边的距离相等.
角平分线性质定理的逆定理(难点) 3 .如图 4 ,CD ⊥OA ,CE ⊥OB ,若 CD =CE ,则 C 在 ∠__A__O_B__的__角__平__分__线_.
图4 4.如图 5,已知 AB=CD,△PAB 的面积与△PCD 的面积 相等.求证:OP 平分∠AOD.
图5 答案:略
用尺规作角的平分线 5.如图 6,在直线 MN 上求作一点 P,使点 P 到∠AOB 的 两边的距离相等(写出作法).
图2
角平分线的性质定理(重点) 1.如图 3,P 是∠AOB 平分线上的一点,PC⊥OA,PD⊥ OB,垂足分别为 C、D,图中的两组相等的线段是P__C_=__P_D__,__O_C_=__O__D.
图3 2.两条小河相交成一个三角建一个小房子,并使房子到两条 小河的距离相等,但它不知该如何选址,你能帮帮它吗? 答案:略
4.角平分线
第 1 课时 角平分线的性质与判定
1.角平分线的性质定理 探究: 如图 1,条件:①OP 平分∠AOB;②HM⊥OA,HN⊥OB. 结论:__H_M___=__H__N__. 归纳:角平分线上的点到这个角的两边的距离__相__等__.
图1
2.角平分线性质定理的逆定理 在一个角的内部,且到角的两边距离相等的点,在这个角
的_平__分__线__形_上.
3.用尺规作角的平分线 已知:∠AOB(如图 2).求作:射线 OC,使∠AOC=∠BOC. 作法: ①在 OA 和 OB 上,分别截取 OD、OE,使 OD=OE; ②分别以点 D、E 为圆心,大于___12_D_E___的长为半径作弧, 在∠AOB 内,两弧交于点 C; ③作射线____O_C___,则 OC 就是所求的射线.
北师大版数学八年级下册1.4《角平分线》(第1课时)教案
北师大版数学八年级下册1.4《角平分线》(第1课时)教案一. 教材分析《角平分线》是北师大版数学八年级下册第1.4节的内容,本节课主要介绍角平分线的定义、性质及运用。
通过对角平分线的探讨,使学生掌握角平分线的基本概念,培养学生的逻辑思维能力和空间想象力。
教材通过丰富的例题和练习题,让学生在实践中掌握角平分线的性质和运用。
二. 学情分析学生在学习本节课之前,已经掌握了角的概念、线的性质等基础知识,具备一定的逻辑思维能力。
但部分学生对空间想象力较弱,对角平分线的理解可能存在一定的困难。
因此,在教学过程中,要关注学生的个体差异,注重启发引导,激发学生的学习兴趣,提高学生的空间想象力。
三. 教学目标1.知识与技能:掌握角平分线的定义、性质,能运用角平分线解决简单问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象力、逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生在解决问题的过程中体验到数学的乐趣。
四. 教学重难点1.角平分线的定义及其性质。
2.运用角平分线解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究角平分线的性质。
2.运用多媒体辅助教学,直观展示角平分线的形成过程,增强学生的空间想象力。
3.采用合作学习法,让学生在小组讨论中互相启发,共同解决问题。
4.注重实践操作,让学生动手画一画、折一折,提高学生的动手能力。
六. 教学准备1.多媒体教学设备。
2.角平分线的课件和教学素材。
3.练习题及答案。
七. 教学过程1.导入(5分钟)利用多媒体展示一个角的平分线,引导学生观察并思考:什么是角平分线?角平分线有什么特点?2.呈现(10分钟)介绍角平分线的定义和性质,通过PPT展示角的平分线的性质,让学生初步了解角平分线的作用。
3.操练(10分钟)让学生动手画一画,尝试找出一个角的平分线。
在画图过程中,引导学生思考:如何确保画出的线是角的平分线?邀请部分学生上台展示自己的作品,并讲解画图过程中的思路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.说出猜想:折痕和角的两边垂直,并且对应的折痕长度相等。说明白已是通过折纸的过程和观察得到上述猜测的。
6.在老师的表扬和鼓励中,树立起自信,知道思考的重要性。继续思考刚才的问题,发现实例中应用角平分线性质的几个例子都有类似的特点。
2.在老师的启发下想到:其实就是要证明自己所说的线是角平分线,思考证明这个命题都需要什么条件,如何证明。
3.回忆有关线段垂直平分线的知识,知道线段垂直平分线的性质定理和判定定理互为逆定理,通过类比联想,知道对于角平分线,也有类似的结论。4.回答:角平分线和要证明的命题是互逆命题。
5.得到老师的肯定,知道猜测是正确的。回忆线段垂直平分线性质定理的逆定理的构造方法,写出角平分线性质定理的逆定理。与同桌互相检查。
作业:P34,1、2、3题
板书设计:
1.积极踊跃地到黑板上画出自己收集到的例子,并说出它们分别的作用在哪里。
2.受到老师的表扬和鼓励,很有成就感,增加了学习数学、探索数学、研究数学的兴趣,同时体会数学和现实生活的联系。
3.对于自己的发现进行深入探索,很有兴趣。但是对于从实际问题中提炼观点,感到有难度。
10.一位同学到黑板上画出图形(示意图)、写出已知和求证,然后证明,其他同学在练习本上完成。大多数学生可以顺利地证明出来。
11.在老师讲解的同时自己修正自己的练习,听讲,加深对角平分线性质定理的理解。朗读:角平分线上的点到这个角的两边的距离相等。在读的同时加强记忆和理解。
1.继续回到自己收集的成果上,思考老师的问题,对这个问题的正面有较好的理解,但是不知道该怎么证明它就是角平分线。有感性认识,但还不能提炼出一般的结论
2.听老师讲学会画图的必要性,联想到上节课图形对于发现数学结论的帮助,对老师的话有很好的认识,做好了学习新知识的积极的心理准备。3.与老师同步,在练习本上作一个角的平分线。
4.依据作图的过程,参照老师的讲解,写出已知和求作以及作法。有的学生可能写得不够规范。
5.对照老师的讲解,完善自己的写法。看书,体会书上写的作法。
5.选取学生有代表性的错误或不规范的地方予以修正,然后让学生仔细看书上写的作法,体会数学语言的精炼和严谨。
6.让学生思考:这样作角平分线的理由是什么?为什么作出的射线就是角的平分线?让学生对这个作法有一个很好的理解,而不只是机械的模仿。
7.综合学生的作法,总结作角平分线的方法,明确作图的数学语言即作法该如何写,向学生强调:要知其然,还要知其所以然。生可能写得不够规范。
课题
1.4、角平分线(一)
课型
新授课
教学Байду номын сангаас标
1.要求学生掌握角平分线的性质定理及其逆定理——判定定理,会用这两个定理解决一些简单问题。
2.理解角平分线的性质定理和判定定理的证明。
3.能够作已知角的角平分线,并会熟练地写出已知、求作和作法,可以说明为什么所作的直线是角平分线。
教学重点
角平分线性质定理及其逆定理。
6.认真听讲,体会定理的内涵,联想线段垂直平分线性质定理和判定定理的关系,有助于理解角平分线性质定理和判定定理的关系。对照自己的表述,,进行修正使其更加严谨、规范。记下课后作业。
1.饶有趣味地听讲,对数学史知识很感兴趣,对古希腊学者的工作有了一点了解,开阔了视野,同时被数学家的精神所感染,增强了学习数学的毅力。
二、角平分线判定定理
1.从学生收集的生活中角平分线应用的例子提出问题:大家都知道了这几个例子中应用了角平分线的性质,那你如何说服别人,你说的那条线就是角平分线呢?引导学生从判断的角度思考问题。
2.启发学生思考:要说服别人你说的那条线就是角平分线,是不是就是要证明它是角平分线?那现在的问题是不是就转化成了:你如何证明或者说判定它是角平分线?都需要什么条件?
9.让学生思考该如何证明。给学生留出思考的时间和空间,不要代替学生思考,要给他们机会。
10.让一位学生到黑板上画出图形(示意图)、写出已知和求证,然后证明。其他学生在练习本上完成。提醒学生写已知、证明要规范,证明要严谨,要做到说理有据。
11.以黑板上学生的板演为样本,讲解定理及其证明,对学生不规范的书写和表达予以纠正,同时理顺学生的证明。让学生对定理的理解深入一步,o同时,让学生把书上的定理读一遍以加深记忆。
2.告诉学生:知道了角平分线的性质定理和逆定理,还要学会怎么用直尺和圆规来画出它,这样有助于理解已经学习的知识,而且画图会帮助我们解决好多问题。
3.在黑板上演示图和作角平分线,一边作图,一边口述作法。
4.让学生根据老师的口述、演示和自己的实际操作,自己写出已知和求作,并写出作法。锻炼学生的数学表达能力。
6.给出规范的表述并进一部阐释它的内涵和与角平分线性质定理的关系。因学生已经接触过线段垂直平分线判定定理的证明,所以不妨把这个证明的任务留给学生课后完成。知道对于角平分线,也有类似的结论。
三、用直尺和圆规作角的平分线
1.讲述与作图有关的数学史知识,尤其是与本节课内容接近的三等分任意角问题;让学生对此有初步的了解,开阔学生的视野,让学生体会数学家坚韧不拔的科学探索精神。
3.综合学生的发现,对于其中应用角平分线性质的几个例子,让学生猜想:它们应用的性质有没有什么相同的地方?
4.让学生拿出纸折的角,把角对折至两条边完全重合,注意角的顶点处要折好;然后把角的两条边对折几次,让学生观察折痕的特点。可以带学生完成上述操作,以便学生顺利地把注意力集中到观察折痕上。
5.让学生说出他们的猜想,并说明他们怎么想到的,暴露学生的思维过程,一是为了让学生理顺自己的思路,二是可以找到学生思维的进程。
教学难点
掌握角平分线性质定理及其逆定理并进行证明。
教学方法
教学后记
教学内容及过程
教师活动
学生活动
一、角平分线性质定理
1.让学生到黑板上画出他们收集到的日常生活中应用角平分线的例子,并分别说出它们的作用。
2.高度评价学生的参与热情和学习成果,激励学生继续努力。尤其是对于其中很有创意的发现,可以以该学生名字命名,以此鼓励、保护学生的积极性。
7.把自己的猜想表述出来:角平分线上的点到这个角的两边的距离相等。对照实例和折的角,加深对上述结论的理解。
8.回答:需要证明。因为老师已经提示过学生多次:猜测的命题需要证明才能判断其真假。在老师的提示下意识到这个必要性。
9、积极思考如何证明。大多数学生可以想到:先证明三角形全等,然后利用三角形全等的性质得到结论。
6.肯定学生的发现,鼓励学生以后也要通过积极动脑思考,自己探索发现结论。引导学生再来看他们找的生活中的实例,是不是也有利用这个性质的?
7.让学生口述他们的结论,在口述的时候注意纠正学生不正确的数学语言,锻炼学生的数学语言表达能力,同时使学生加深对结论的理解。
8.提醒学生在猜测了数学结论之后,下一步该干什么了?在此时不直接提出猜测需要证明的要求,让学生自己意识到这样做的必要性,培养学生养成说理的好习惯。数学的兴趣,同时体会了数学和现实生活的联系。
6.思考这样的作法的合理性,添加辅助线,对作出来的射线给以证明。找到思路后,与同伴交流。大多数学生可以通过证明三角形全等说出理由。
7.认真听讲,对如何作角的平分线和如何写出作法有更好的理解。同时,加深了不管是猜测还是作图都需要理性证明的意识。
3.引导学生回忆有关线段垂直平分线的知识:它的判定定理和性质定理有什么关系?在这里,角平分线的性质定理和要证明的命题是不是也有这个关系?
4.提问刚才的问题,让学生明确心中的猜测。
5.肯定学生的回答,说明类比的方法。让学生类比线段垂直平分线性质定理的逆定理的构造方法,写出角平分线性质定理的逆定理,写完之后,让同桌俩人互相检查。