4.2 一元二次方程的解法(5)
一元二次方程的第五种解法

←关键步骤
∴ [ax +(ax+b)]2=[ ax -(ax+b)]2+4(-ac)
即 (2ax+b)2= b2-4ac 当b2-4ac≥0时, 2ax+b= b2 4ac
当b2-4ac≥0时,
2ax+b= b2 4ac
2ax= -b b2 4ac
b b2 4ac X=
2a
课时小结
谈一谈,这节课你有什么收获?
1、利用图形解一元二次方程的主要依据 是恒等式:(a+b)2=(a-b)2+4ab
2、利用图形法解一元二次方程可适用于形如 (ax+m)(ax+n)=b (a≠0,b≠0)的一元二次方程
3、“图形法”同样具有一般性,可解任意一道 一元二次方程
4、要自觉培养“发现问题,解决问题”的创新意识。
X+2
小正方形面积: [(x+2)-x]2=4 大正方形的面积:[(x+2)+x]2=4+35x4 X
X+2
X X+2
此图形反映了哪一个恒等式: (a+b)2=(a-b)2+4ab
(这正是利用图形解一元二次方程的依据)
学以致用 例题解析
例1:解方程 (32-2x)(20-2x)=540
解: 原方程可整理为 (x-16)(x-10)=135 ∴ [(x-16)+(x-10)]2= [ (x-16)-(x-10)]2+135x4 即 (2x-26)2=576 (x-13)2=144 x-13=±12 x=13±12 ∴ x1=25 ,x2=1
数学-沪科版-八年级下-第17章 一元二次方程
一元二次方程经典例题及答案

一元二次方程经典例题及答案1、下列方程:(1)x 2-1=0; (2)4 x 2+y 2=0; (3)(x-1)(x-3)=0; (4)xy+1=3. (5)3212=-x x其中,一元二次方程有( ) A .1个 B .2个 C .3个 D .4个2、一元二次方程(x+1)(3x-2)=10的一般形式是 ,二次项 ,二次项系数 ,一次项 ,一次项系数 ,常数项 。
二、牛刀小试正当时,课堂上我们来小试一下身手!3、小区在每两幢楼之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?4、一个数比另一个数大3,且两个数之积为10,求这两个数。
5、下列方程中,关于x 的一元二次方程是( )A.3(x+1)2= 2(x+1) B .05112=-+xx C.ax 2+bx+c= 0 D.x 2+2x= x 2-16、把下列方程化成ax 2+bx+c= 0的形式,写出a 、b 、c 的值:(1)3x 2= 7x-2 (2)3(x-1)2 = 2(4-3x)7、当m 为何值时,关于x 的方程(m-2)x 2-mx+2=m-x 2是关于x 的一元二次方程?8、若关于的方程(a-5)x ∣a ∣-3+2x-1=0是一元二次方程,求a 的值?三、新知识你都掌握了吗?课后来这里显显身手吧!9、一个正方形的面积的2倍等于15,这个正方形的边长是多少?10、一块面积为600平方厘米的长方形纸片,把它的一边剪短10厘米,恰好得到一个正方形。
求这个正方形的边长。
11、判断下列关于x 的方程是否为一元二次方程:(1)2(x 2-1)=3y ; (2)4112=+x ; (3)(x -3)2=(x +5)2; (4)mx 2+3x -2=0;(5)(a 2+1)x 2+(2a -1)x +5―a =0.12、把下列方程化成一元二次方程的一般形式,并写出它们的二次项系数,一次项系数及常数项。
(1)(3x-1)(2x+3)=4; (2)(x+1)(x-2)=-2.13、关于x 的方程(2m 2+m-3)x m+1-5x+2=13是一元二次方程吗?为什么?4.2一元二次方程的解法(1)第一课时一、磨刀不误砍柴工,上新课之前先来热一下身吧!1、3的平方根是 ;0的平方根是 ;-4的平方根 。
初三一元二次方程的解法

一元二次方程的解法一、结构特殊的直接开平方法利用平方根的定义,直接开平方求一元二次方程的根的方法叫做直接开平方法.直接开平方法的理论依据是平方根的定义.形如2(0)x a a =≥或2()(0)ax b c c +=≥的方程可以直接运用“直接开平方法”求解.例1.解方程2256x =.解:∵2256x =,∴25616x =±=±.∴121616x x ==-,.例2.解方程2536x -=(). 解:∵2536x -=(),∴56x -=±.∴12111x x ==-,. 有的方程可以通过整理,变形化为形如2(0)x a a =≥或2()(0)ax b c c +=≥的形式后,再采用直接开平方法来解.例3.解方程290x -=.解:∵290x -=,∴29x =.∴1233x x ==-,.例4.解方程21120x +-=(). 解:∵21120x +-=(),∴2112x +=().∴123x +=±. ∴12231231x x =-=--,.通过以上例子,我们可以归纳出运用“直接开平方法”解一元二次方程的一般步骤: 1.将方程化为2(0)x a a =≥或2()(0)ax b c c +=≥的形式; 2.两边开平方,得x a =±或b cx a-±=. 这里要特别注意00a c ≥或≥的条件.若00a c <<或,则方程无实数根,只有当00a c ≥或≥时,方程才有实数根,而运用“直接开平方法”解应用题的关键是将方程化为2(0)x a a =≥或2()(0)ax b c c +=≥的形式.练习:用直接开平方法一元二次方程:1.9x 2-25=0;2.(3x+2)2-4=0; 4.(2x+3)2=3(4x+3) .二、法力无边的配方法把一个式子或一个式子的某一部分化成完全平方式或几个完全平方式的和、差形式,这种方法叫“配方法”.“直接开平方法”告我们根据完全平方公式2222a ab b a b ±+=±()可以将一元二次方程化为形如2()(0)ax b c c +=≥的形式后求解,这就自然而然地导出了另一种解一元二次方程的解法 —— “配方法”.它的理论依据是完全平方公式2222a ab b a b ±+=±().例5.解方程2210x x +-=.解:方程两边都除以2,得21022x x +-=,移项,得2122x x +=, 配方,得2111216216x x ++=+,即219416x +=().开方,得12112x x ==-,.通过本例可以归纳出用“配方法”解一元二次方程的一般步骤: 1.方程两边同除以二次项系数,化二次项系数为1;2.移项,使方程左边为二次项和一次项,右边为常数项;3.配方,方程两边都加上一次项系数一半的平方,把原方程化为2()ax b c +=的形式; 4.若0c ≥,用“直接开平方法”解出;若0c <,则原方程无实数根即原方程无解. “配方法”是一种重要的数学方法,它不仅可应用于解一元二次方程,而且在数学的其它领域中也有着广泛的应用.练习:用配方法解一元二次方程:1.x 2-4x -3=0; 2.6x 2+x =35;3.4x 2+4x+1=7; 4.2x 2-3x -3=0.三、神通广大的公式法公式法是解一元二次方程的一般方法,它是直接利用了“配方法”的结果,求根公式为224(40)2b b ac x b ac a-±-=-≥.例6.解方程28103x x +=.解:把该方程化为一般形式: 281030x x +-=.∵8103a b c ===-,,,22410483196b ac -=-⨯⨯-=(), ∴2410196101422816b b ac x a -±--±-±===⨯.∴121342x x ==-,.通过本例可以看出,用公式法解一元二次方程的一般步骤是: 1.将方程化为一般形式:200ax bx c a ++=≠();2.正确确定a b c ,,的值;3.代入公式242b b acx a -±-=求解,若240b ac -≥则方程有实数根,若240b ac -<则方程无实数解即无解.练习:用公式法解一元二次方程:2.2x 2+7x -4=0; 3 .2y 2 -y=5 4.3x 2+5(2x+1)=0四、简便易行的因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,它是解一元二次方程的基本方法,它的理论依据是两个因式的积等于零的充分必要条件是这两个因式至少要有一个等于零,即0a b =,则00a b ==或,这种方法简便易行.是最常用的一种方法.例7.解方程23520x x --=.解:方程左边因式分解,得3120x x +-=()(),∴31020x x +=-=,,∴12123x x =-=,.用因式分解法解一元二次方程的一般步骤是: 1.将方程的右边化为零;2.将方程的左边分解为两个一次因式的积; 3.令每个因式分别为零,得到两个一元一次方程; 4.解这两个一元一次方程,它们的解就是原方程的解.用因式分解法解一元二次方程的关键是: 1.要将方程右边化为零; 2.要熟练掌握因式分解的方法. 练习:用因式分解法解一元二次方程:1. )7(5)7(2+=+x x x2.223)(x 3)-(4x +=3.0822=--x x 4.06)23(2=---x x这四种方法既有区别又有联系.公式法比配方法简单,它直接由配方法导出的求根公式求解,但不如直接开平方法和因式分解法快捷,具体解方程时,要根据题目的特点,选择适当的方法求解.一般顺序为:先特殊后一般.直接开平方法→因式分解法→公式法.没有特别说明,一般不用配方法.遇到特殊结构或次数较高的方程,就需用到下面要讲的“换元法”.五、出奇制胜的换元法把一个数学式子或者其中的一部分看作一个整体,用一个中间变量去代替,从而达到繁为简,化难为易的目的,这种方法叫“换元法”,有些一元二次方程数式结构复杂,或次数较高,或字母个数过多,用常规的四种一元二次方程的解法计算既繁琐也困难,甚至根本无法求解,这时用“换元法”就会出奇制胜.例8.解方程25425430x x -+--=()().解:设54x y -=,则原方程可化为2230y y +-=,130y y -+=()(),1030y y -=+=或,∴13y y ==-或,即541543x x -=-=-或.∴12115x x ==,.例9. 解方程42440x x -+=.解:设2x y =,则原方程变为2440y y -+=,解之,得2y =.∴22x =,∴2x =±. 练习:用适当的方法解关于x 的方程1、095162=-+)(x 2、8)4(2=-x 3、8)32)(2(=++y y4、02x 3x 2=+-5、04x 3x 22=-+ 6、y 249y 162=+;7、0x 7)1x (52=-+ 8、(3 x-1)2-9x+3=4 9、(x-5)2+x 2=510、)7(5)7(2+=+x x x 11、01224=--x x 12、012222=--x x13、012)(8)(222=+---x x x x 14、02)32(3)32(2=++-+x xx x六、一元二次方程根的两个特性例1、先阅读,再填空解题:(1)方程:x 2-4x-12=0 的根是:x 1=6, x 2=-2,则x 1+x 2=4,x 1·x 2=-12; (2)方程2x 2-7x+3=0的根是:x 1=12, x 2=3,则x 1+x 2=72,x 1·x 2=32;(3)方程3x 2+6x-2=0的根是:x 1= , x 2= .则x 1+x 2= ,x 1·x 2= ; 根据以上(1)(2)(3)你能否猜出:如果关于x 的一元二次方程ax 2+bx+c=0(a ≠0且a 、b 、c 为常数)的两根为x 1、x 2,那么x 1+x 2、x 1x 2与系数a 、b 、c 有什么关系?请写出来你的猜想并说明理由。
4.2 一元二次方程的解法(5)

4.2 一元二次方程的解法(5)备课时间:2007年月日主备人:孙祥课时计划:第6课时学习目标1、用公式法解一元二次方程中,进一步理解代数式b2-4ac对根的情况的判断作用2、能用b2-4ac的值判别一元二次方程根的情况学习重、难点重点:一元二次方程根与系数的关系难点:由一元二次方程的根的情况求方程中字母系数的取值学习过程:一、情境创设不解方程,你能判断下列方程根的情况吗?⑴x2+2x-8 = 0 ⑵x2 = 4x-4 ⑶x2-3x = -3二、探索活动1、一元二次方程根的情况与一元二次方程中二次项系数、一次项系数及常数项有关吗?能否根据这个关系不解方程得出方程的解的情况呢?例解下列方程:⑴x2+x-1 = 0 ⑵x2-23x+3 = 0 ⑶ 2x2-2x+1 = 0分析:本题三个方程的解法都是用公式法来解,由公式法解一元二次方程的过程中先求出b2-4ac的值可以发现它的符号决定着方程的解。
由此可以发现一元二次方程ax2+bx+c = 0(a≠0)的根的情况可由b2-4ac来判定:当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac = 0时,方程有两个相等的实数根;当b2-4ac <0时,方程没有实数根。
我们把b2-4ac叫做一元二次方程ax2+bx+c = 0(a≠0)的根的判别式。
2、若已知一个一元二次方程的根的情况,是否能得到的值的符号呢?当一元二次方程有两个不相等的实数根时,b2-4ac>0当一元二次方程有两个相等的实数根时, b2-4ac = 0当一元二次方程没有实数根时,b2-4ac <0三、例题教学例 1 不解方程,判断下列方程根的情况:⑴3x2-x+1 = 3x ⑵ 5(x2+1)= 7x ⑶ 3x2-43x = -4分析:先把方程化为一般形式,确认a、b、c后,再算出b2-4ac的值,对方程给予判定。
例 2 若方程8x2-(m-1)x+m-7 = 0有两个不相等的实数根,求m的值。
一元二次方程的解法总结

x a 0或x a 0
x1 a
形如
2
x2 a
的式子运用完全平方公式得:
x2 2ax a 2 0
( x a) 0 x1 x2 a 或 x1 x2 a
例题讲解
例1 解下列方程
16(2 x) 9 0 (1) 解:原方程变形为: 9 2 (2 x) 16
解:提公因式得:
(3x 2)( x 6) 0
(3x 5)( x 2) 0
3x 5 0或x 2 0
3x 2 0或x 6 0
2 x1 3
5 x1 3
x2 6
x2 2
平方差公式与完全平方公式
形如
x2 a2 0 运用平方差公式得:
2
(2) x( x 2) 1 0 解:原方程变形为:
直接开平方得:
x2 2 x 1 0
( x 1)2 0
3 2 x 4 11 5 x2 x1 4 4
x1 x2 1
2 十字相乘法
步骤:
1 二次项系数为1的情况:
将一元二次方程常数项进行分解成两个数(式)p , q的乘 积的形式,且p + q = 一次项系数。
例题讲解
例1. 用配方法解下列方程
x2+6x-7=0
解:
x 6x 7 2 x 6x 9 7 9 2 x 3 16 x 3 4 x1 1 x2 7
2
例题讲解
例2. 用配方法解下列方程
2x2+8x-5=0
5 解: x 4x 2 5 2 x 4x 4 4 2
一元二次方程的解

一元二次方程的解一元二次方程是指只含有一个未知数的二次方程,通常的形式为:ax² + bx + c = 0,其中 a、b、c 分别为已知常数且a ≠ 0。
解一元二次方程的过程从古至今一直是数学领域中的重要问题,本文将介绍一元二次方程的解法和相关概念。
1. 一元二次方程的解法解一元二次方程可以使用多种方法,包括公式法、配方法和因式分解法等。
下面将介绍其中两种常用的解法。
1.1 公式法公式法是解一元二次方程的基本方法,根据求根公式可以得到一元二次方程的解。
求根公式如下所示:x = (-b ±√(b² - 4ac)) / (2a)其中,√为平方根,±表示两个不同的解,分别是加号和减号形式。
对于一元二次方程 ax² + bx + c = 0,只需将 a、b、c 的值代入公式中即可求得解。
1.2 配方法当一元二次方程无法直接使用公式法解时,可采用配方法进行处理。
配方法的基本思想是通过变换将方程转化为完全平方形式,进而求得解。
首先,对一元二次方程的二次项和一次项进行配方,使其变成一个完全平方形式。
例如,对于方程 x² + 6x + 9 = 0,可以通过将一次项的系数除以 2,然后再平方,得到新的完全平方形式 (x + 3)² = 0。
接下来,利用开平方的性质求解方程。
对于上述方程,解为x = -3。
2. 一元二次方程的解的特点一元二次方程的解的特点包括判别式、重根和虚根。
2.1 判别式判别式是一个与一元二次方程的系数相关的数值,可用于判断方程的解的情况。
判别式的计算公式为Δ = b² - 4ac,其中Δ 表示判别式的值。
根据判别式的值与零的关系,可以分为以下三种情况:- 当Δ > 0 时,方程有两个不相等的实根;- 当Δ = 0 时,方程有两个相等的实根,也称为重根;- 当Δ < 0 时,方程没有实根,但有两个虚根。
苏科版数学七年级上册4.2《一元二次方程的解法》(第2课时)教学设计
苏科版数学七年级上册4.2《一元二次方程的解法》(第2课时)教学设计一. 教材分析《一元二次方程的解法》是苏科版数学七年级上册4.2节的内容,本节课主要介绍了一元二次方程的解法–因式分解法和求根公式法。
通过本节课的学习,学生能够理解一元二次方程的解法,并能够运用因式分解法和求根公式法求解一元二次方程。
二. 学情分析学生在学习本节课之前,已经学习了一元一次方程的解法,对解方程有一定的了解。
但一元二次方程的解法与一元一次方程的解法有很大的不同,需要学生能够理解并掌握一元二次方程的解法。
同时,学生需要具备一定的逻辑思维能力和运算能力。
三. 教学目标1.知识与技能目标:理解一元二次方程的解法,能够运用因式分解法和求根公式法求解一元二次方程。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生的解决问题能力和团队合作能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生的学习积极性。
四. 教学重难点1.重点:一元二次方程的解法。
2.难点:理解并掌握求根公式法,能够灵活运用求根公式法求解一元二次方程。
五. 教学方法采用问题驱动法、自主学习法、合作交流法、案例分析法等教学方法,引导学生主动探究,提高学生的学习兴趣和积极性。
六. 教学准备1.准备相关的一元二次方程的案例,用于讲解和练习。
2.准备课件,用于辅助讲解和展示。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入一元二次方程的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解一元二次方程的解法–因式分解法和求根公式法,并通过课件展示解题过程。
3.操练(10分钟)让学生独立完成一些一元二次方程的解题案例,巩固所学知识。
4.巩固(10分钟)对学生的解题情况进行反馈,针对学生的错误进行讲解和指导。
5.拓展(10分钟)讲解一些一元二次方程的特殊情况,如无解和有多个解的情况,提高学生的解决问题的能力。
6.小结(5分钟)对本节课的内容进行总结,强调一元二次方程的解法和注意事项。
湘教版数学九年级上册教学课件 一元二次方程的解法(第5课时)
简记歌诀: 右化零 左分解 两因式 各求解
于是得
r1
5 2
1
,
r2
5 1 2
(舍去).
答:小圆形场地的半径是 5 m.
2 1
课堂小结
概念
因 式 分 原理 解 法
步骤
将方程左边 因式分解, 右边=0.
因式分解的方法有
ma+mb+mc=m(a+b+c); a2 ±2ab+b2=(a ±b)2; a2 -b2=(a +b)(a -b).
如果a ·b=0,那么a=0或b=0.
所以原方程的解为x1=8或x2=4.
3.解方程:
1 3x2 6x 3; 2 4x2 121 0.
解:化为一般式为
解:因式分解,得
x2-2x+1 = 0. ( 2x + 11 )( 2x- 11 ) = 0.
因式分解,得
有 2x + 11 = 0 或 2x - 11= 0,
( x-1 )( x-1 ) = 0. 有 x - 1 = 0 或 x - 1 = 0,
10x-4.9x2 =0 ①
配方法解方程10x-4.9x2=0. 公式法解方程10x-4.9x2=0.
解: x2 100 x 0,
解: 10x-4.9x2=0.
49
x2
100 49
x
50 49
2
0
50 49
2
,
∵ a=4.9,b=-10,c=0. ∴ b2-4ac
x
50 49
2
50 49
x1
11, 2
x2
11. 2
x1=x2=1.
4.把小圆形场地的半径增加5m得到大圆形场地,场地 面积增加了一倍,求小圆形场地的半径.
4.2一元二次方程的解法(5)
4.2 一元二次方程的解法(5)--[ 教案]备课时间: 主备人:【学习目标】1、用公式法解一元二次方程的过程中,进一步理解代数式b 2-4ac 对根的情况的判断作用2、能用b 2-4ac 的值判别一元二次方程根的情况【重点和难点】重点:一元二次方程根与系数的关系难点:由一元二次方程的根的情况求方程中字母系数的值【知识回顾】1、一元二次方程ax 2+bx +c = 0(a ≠0)当240b ac -≥时,X 1,2 = 2、运用公式法解下例方程:(1)x 2 -4x+4=0 (2)2x 2 -3x -4=0 (3) x 2+3x+5=0【预习指导】1、引导学生思考:不解方程,你能判断下列方程根的情况吗?⑴ x 2+2x -8 = 0 ⑵ x 2 = 4x -4 ⑶ x 2-3x = -32、思考:一元二次方程根的情况与一元二次方程中二次项系数、一次项系数及常数项有关吗?能否根据这个关系不解方程得出方程的解的情况呢?3、解下列方程:⑴ x 2+x -1 = 0 ⑵ x 2-23x +3 = 0 ⑶ 2x 2-2x +1 = 04、 探索一元二次方程的根的情况与b 2-4ac 的符号有什么关系?【知识梳理】1、一元二次方程ax 2+bx +c = 0(a ≠0)有两个不相等的实数根时 , b 2-4ac有两个相等的实数根时, b 2-4ac没有实数根时, b 2-4ac2、方程的根与系数又有怎样的关系?【例题解析】例1、解下列方程:(1)2x +x-1=0;(2)2x -23x+3=0;(3)22x -2x+1=0;例2、当k 为何值时,关于x 的方程k x 2-(2k +1)x +k +3 = 0有两个不相等的实数根?【课堂练习】1、不解方程,判断下列方程根的情况:(1)2260x x +-=; (2)242x x +=; (3)x x 3142-=+(4) 3x 2-x +1 = 3x (5)5(x 2+1)= 7x (6)3x 2-43x =-4 2、当k 为何值时,关于x 的方程x 2-kx +4= 0有两个相等的实数根?求这时方程的根。
一元二次方程的6种解法
一元二次方程的6种解法
一元二次方程的6种解法如下:
1、因式分解法:将一元二次方程化成 ax^2+bx+c=0 的形式,先将两边同乘以a后,即a(x^2+ b/ax + c/a),然后将此形式拆解为(x+())(x+(/))的形式,得到两个一元一次方程,求出x的值,即可求出原方程的解。
2、公式法:用公式法求解一元二次方程,即通过求解公式:x=(-
b±√(b^2-4ac))/2a来求解,此公式中,b和c为方程的系数,a为系数前的系数。
3、图像法:使用图像法求解一元二次方程,即作出ax^2+bx+c=0方程图象,然后根据图象上的交点判断出方程的解。
4、判别式法:此法根据一元二次方程的判别式来求解,即当判别式b^2-4ac>0时,方程有两个不等实根;当判别式b^2-4ac=0时,方程有一个实根;当判别式b^2-4ac<0时,方程没有实根。
5、求根公式法:此法可以用来求解一元二次方程的实根,即用求根公式x1=(-b+ √(b2- 4ac))÷2a和x2=(-b-√(b2- 4ac))÷2a,其中,b 为系数前的系数,a和c分别为方程的系数。
6、特殊值法:此法适用于一元二次方程中特殊的系数或解。
如当
a=0,系数b和c任意时,可将该方程化为一元一次方程,求解即可;当a=b=0时,可直接算出方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6课时 一元二次方程的解法(5)
班级________姓名________学号________
一、教学目标:
1、在用公式法解一元二次方程中,进一步理解代数式ac b 42
-对根的情况的判断作用. 2、能用ac b 42
-的值判别一元二次方程根的情况. 二、典例精析
例1、不解方程,判别下列关于x 的方程根的情况. (1)2
2410x x -+=
(2)4(5)250y y -+=
(3
2)10-+=
(4)22(21)0x kx k -+-= 练习:
1、不解方程,判别下列关于x 的方程根的情况. (1)224350x x ++=
(2)4(1)10m m -+=
(3
)2
12
x =
(4
)2
1
2)5
t t =+
2、下列方程没有实根的是( ) A .2
2290x x --=
B
2
0=
C
.2340m ++=
D
.210y +=
例2、关于x 的一元二次方程032
=+-m x x 有实根,求m 的取值范围.
练习:1、方程22(4)60x kx x ---=没有实数根,则k 的最小整数值是( )
A .1
B .2
C .3
D .4
2、关于x 的方程2
210ax x -+=中,如果0a <,那么根的情况是( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .没有实数根
D .不能确定
3、若一元二次方程22(21)10x k x k +-+-=有两个不相等实根,求k 的取值范围.
例3、求证:方程0)1(2)1(22=-++-k x k x 有两个不相等的实数根
★例4、k 为何值时,关于x 的一元二次方程2
(1)(21)10k x k x k --+++= ①有两个不相等的实数根;②有两个相等的实根;③没有实数根.
四、课后作业
1
、方程2
30x x -=的根的情况是( ) A .有两个不相等的实数根
B .有两个相等的实数根
C .有一个实根
D .没有实数根
2、若关于y 的一元二次方程2210ay y -+=有实数根,则a 的取值范围是( )
A .1a <
B .1a <且0a ≠
C .a ≤1
D .a ≤1且0a ≠
3、关于x 的方程2
()04
a c
a c x bx -+++=有两个相等实根,则以,,a
b
c 为三边的三角形是( )A .以a 为斜边的Rt △
B .以c 为斜边的Rt △
C .以b 为底边的等腰三角形
D .以c 为底边的等腰三角形
4、不解方程,判别下列关于x 的方程根的情况.
(1
)23102x x +=
(2)2
94(31)x x =-
(3)2
2
(21)1y y -=-
(4)2
3
0.252
x x -=
(5)4(1)10x x -+=
(6)22
(21)()0x m x m m ++--=
5、关于x 的方程0)54()1(222=-++++a a x a x 有实根,试求正整数a 的值.
6、已知关于x 的方程2
2
1204
x mx n -+
=,其中m 、n 是等腰三角形的腰和底边的长,求证:这个方程有两个不相等的实数根.
7、已知关于x 的方程014
1)1(2
2
=++
+-k x k x , (1)k 为何值时,方程有两个相等实根?
(2)若方程的两个实数根x 1 ,x 2满足x 1 =x 2 ,求k 的值.
★8、k 为何值时,关于x 的一元二次方程2
(1)210k x x ---=.
①有两个不相等的实根 ②有两个相等实根 ③没有实数根。