半导体 第七章 金属和半导体的接触

合集下载

半导体物理第七章金属与半导体的接触

半导体物理第七章金属与半导体的接触

eV kT
⎞ ⎟⎠
J
V<0 当e|V|>>kT J = − J ST
V
-J0
反向饱和电流JsT与外加电压无关,强烈依赖温度
热场发射理论:
适用于平均自由程较长,迁移率较高材料,如硅锗等
半导体物理
25
三. 镜像力(image force)的影响
理论与实际的偏差
当半导体中的电子到达金属-半导体的界面附近时,该 电子将在金属表面感生正电荷。由于金属表面的电力线 必须垂直于表面,因此该电子在金属表面感生电荷的总 和必定等价于金属内部与该电子镜面对称处的一大小相 等的正电荷。
P
E0
E0


Wm

EC
Ws
Wm
EC
Ws Ef

Ef
EV
EV
反阻挡层
半导体物理
阻挡层
8
表面态对接触势垒的影响
理想肖特基势垒接触: qΦB = Wm − χ
金属与半导体接触是否形成接触势垒,取决于它们的功函 数大小。
同一种半导体与不同金属接触时,形成的势垒高度同金属 的功函数成正比。
实际金-半接触: 90%的金属和半导体接触形成势垒,与功函数关系不大。
2o Wm < Ws 时仍有肖特基势垒
半导体物理
肖特基势垒
Φ BN
=
EC
− EFs =
2 Eg 3
13
势垒区的电势分布
假设: (耗尽层近似) 空间电荷区载流子全耗尽;
d 2V dx 2
=
⎪⎧− ⎨ ⎪⎩
qN D
ε 0ε r
0
0≤ x≤d x>d
E( x) = − dV = qN D (x − d )

第七章-金属和半导体的接触

第七章-金属和半导体的接触

解上方程并代入边界条件:
得到 J J SD e
2qN D
qV k 0T
1 13
qV D k 0T
其中
J SD
r 0
VD V e
14
其中,
0
qn0 n
电流密度变化的讨论:
J J SD e
二、金属和半导体的功函数Wm
1、金属的功函数Wm
、Ws
表示一个起始能量等于费米能级的电子, 由金属内部逸出到表面外的真空中所需 要的最小能量。
即:Wm E0 ( EF )m
Wm (EF)m
E0
功函数大小标致电子在金属中被束缚的强弱
2、半导体的功函数Ws
E0与费米能级之差称为半导体 的功函数。
新的物理效应 和应用
三、金属与半导体的接触及接触电势差
1. 阻挡层接触
设想有一块金属和一块n型半导体,并假定 金属的功函数大于半导体的功函数,即:
Wm Ws
即半导体的费米能EFs 高于金属的费米能EFm
金属的传导电子的浓度 很高,1022~1023cm-3 半导体载流子的浓度比 较低,1010~1019cm-3
金属和p型半导体Wm<Ws 空穴阻挡层
E0 Wm
EFm Ws EFs Ev
电场 E
EF
Ec

Ec
Ev
接触后
qVd
xd
半导体一边的势垒高度是:qVD=Ws-Wm
金属-p型半导体接触的反阻挡层
金属与P型半导体接触时,若Wm>Ws,即金属的 费米能级比半导体的费米能级低,半导体的电 子流向金属,使得金属表面带负电,半导体表 面带正电,半导体表面能带向上弯曲。在半导 体表面的多子(空穴)浓度较大,高电导区, 形成反阻挡层。

半导体第七章金属和半导体的接触PPT课件

半导体第七章金属和半导体的接触PPT课件
=qVD En
假设Wm>Ws,半导体外表形成正的空间电荷区, 电场由体内指向外表,Vs<0,形成外表势垒〔阻 挡层〕。
χ
Wm qΦns
qVD
Ec
En
(EF)s
Ev
能带向上弯曲,形成外表势垒。势垒区电子浓度 比体内小得多→高阻区(阻挡层)。
• 假设Wm<Ws,电子从金属流向半导体,半导体外 表形成负的空间电荷区,电场由外表指向体内, Vs>0。形成高电导区〔反阻挡层〕。
Wm E0 (EF )m E0为真空中静止电子的能量。
金属功函数随原子序数的递增呈现周期性变化
关于功函数的几点说明:
对金属而言, 功函数Wm可看作是固定的. 功 函数Wm标志了电子在金属中被束缚的程度.
对半导体而言, 功函数与掺杂有关 功函数与外表有关. 功函数是一个统计物理量。
半导体的功函数Ws
在一个距离价带顶为qФ0的能级。 • 电子正好填满qФ0以下所有的外表态时,外表呈电
中性。假设qФ0以下外表态为空,外表带正电,呈 现施主型; • qФ0以上外表态被电子填充,外表带负电,呈现受 主型。对于大多数半导体,qФ0约为禁带宽度的三 分之一。
• 假设n型半导体存在外表态,费米能级高于qФ0,如果qФ0以上存 在有受主型外表态,在EF与qФ0之间的能级将被电子填满,外表 带负电。外表附近出现正的空间电荷区,形成电子势垒。势垒 高度qVD恰好使外表态上的负电荷与势垒区的正电荷相等。
m(V)
0.95 0.80 0.94
说明金属的功函数对势垒高度的影响并不显著。
原因:半导体外Leabharlann 存在外表态。巴丁〔Bardeen〕提出应该考虑到半导体外表存在密度相当大的 外表态。如果认为在金属和半导体之间存在原子线度的间隙,外 表态中的电荷可通过在间隙中产生的电势差对势垒高度起到钳制 作用。

金属和半导体的接触ppt课件

金属和半导体的接触ppt课件

解: 设室温下杂质全部电离,那么

E F E n0 C N kD l T n N N N C C D e E xC p E 0 C .k (0 E T F l2 )n 2 .6 8 1 1 1 0 1 70 9E C 0 .147

EFEC0.1(5 eV )
故n-Si的功函数为 W S ( E C E F ) 4 . 0 0 . 5 1 4 5 . 2 ( e 0 )V
电子亲和能χ:真空能级与导带底之差〔导带底电子逸出体外的最小能量〕
金属中的功函数
半导体中的功函数 和电子亲和能
二、接触电势差
7.1 金属半导体接触及其能级图2
〔Wm> Ws〕
接触电势差
外表势:半导体外表 和体内的电势差
金属和n型半导体接触能带图
阻挠层:高阻, 整流
反阻挠层:低 阻,欧姆
整流
欧姆
欧姆
➢ 与pn结二极管异同
一样点:都具有单导游电性 不同点:
——SBD主要运用于高速集成电路、微波技术等领域
作业-课后习题8
第七章 金属和半导体的接触
施主浓度ND=10 16cm-3的 n型Ge资料,在它的〔111〕面上与金属接触制成 肖特基二级管。知VD=0.4V,求加上0.3V电压时的正向电流密度。设εr=16, ε0=8.85×10-14F/cm 。室温下硅的NC=4×1018cm-3, 有效理查逊常数 A*=120 (mn*/m0) =120×1.11A/cm2.K2。
7.2 金属半导体接触整流实际10
➢ 镜像力影响
——金属外面的电子在金属外表感应出正电荷;电子所遭到感应电 荷的作用,相当于金属体内与电子等间隔位置等量正电荷的作用
镜像力

半导体物理_第七章_金属和半导体接触

半导体物理_第七章_金属和半导体接触
电子通过M-S接触时,能够不受势垒的阻挡,从一种材料输运到另一种 材料,即其正反偏置的电流输运特征没有差别。
2、如何实现欧姆接触?
总结
总结
总结
总结
总结
需修正:①镜像力;②隧道效应
总结
习题
习题
习题
Ehvhc6.62103470301100891.61019 1.78eV Ehvhc6.621034 40301100891.61019 3.10eV
实质上是半导体价带顶部附近的电子流向金属,填充金 属中EF以下的空能级,而在价带顶附近产生空穴。
加正向电压时,少数载流子电流与总电流值比称为少数 载流子的注入比,用 表示。对n型阻挡层而言:
7.3.2 欧姆接触
1、什么是欧姆接触?
欧姆接触应满足以下三点: 1、伏安特性近似为线性,且是对称的; 2、接触引入的电阻很小(不产生明显的附加阻抗); 3、不会使半导体内部的平衡载流子浓度发生显著改变。
空间电荷区 电子从体内到表面,势能增加,表面能带向上弯曲
2、WS >Wm 电子系统在热平衡状态时应有统一的费米能级
电子反阻挡层;低阻 ——欧姆接触
考虑价带的电子转移,留下更多的空穴,形成空间 电荷区。空穴从体内到表面,势能降低,能带向上 弯曲。
7.1.3 表面态对接触势垒的影响
金属和半导体接触前
7.2.2 热电子发射理论
1.热电子发射理论的适用范围:
——适用于薄阻挡层 ——势垒高度 >>k0T ——非简并半导体
lபைடு நூலகம் >> d
2.热电子发射理论的基本思想:
薄阻挡层,势垒高度起主要作用。 能够越过势垒的电子才对电流有贡献 ——计算超越势垒的载流子数目,从而求出电流密度。

半导体物理第七章金属和半导体的接触

半导体物理第七章金属和半导体的接触
半导体
半导体的导电性能介于金属和绝缘体 之间。其内部存在一个或多个能隙, 使得电子在特定条件下才能跃迁到导 带。常见的半导体材料有硅、锗等。
接触的物理意义
01
金属和半导体的接触在电子器件 中具有重要应用,如接触电阻、 欧姆接触等。
02
理解金属和半导体的接触性质有 助于优化电子器件的性能,如减 小接触电阻、提高器件稳定性等 。
03
肖特基结模型适用于描述金属 和p型半导体之间的接触。
06
金属和半导体的接触实验 研究
实验设备和方法
实验设备
高真空镀膜系统、电子显微镜、 霍尔效应测量仪等。
实验方法
制备金属薄膜,将其与半导体材 料进行接触,观察接触表面的形 貌、电子输运特性等。
实验结果分析
接触表面的形貌分析
通过电子显微镜观察接触表面的微观结构, 了解金属与半导体之间的相互作用。
详细描述
当金属与半导体相接触时,由于金属和半导体的功函数不同,会产生电子的转移。这种电子的转移会 导致在接触区域形成一个势垒,阻碍电子的流动,从而产生接触电阻。接触电阻的大小与金属和半导 体的性质、接触面的清洁度、温度等因素有关。
热导率
总结词
热导率是指材料传导热量的能力,金属 和半导体的热导率差异较大,这会影响 它们之间的热交换效率。
详细描述
欧姆接触的形成需要满足一定的条件,包括金属与半导体之间要有良好的化学相容性和冶金相容性,以及半导体 内部载流子浓度要足够高。欧姆接触在集成电路和电子器件中具有广泛应用。
隧道结
总结词
隧道结是指金属和半导体之间形成的 具有隧道传输特性的结,当外加电压 达到一定阈值时,电流可以通过隧道 效应穿过势垒。
2
这个接触势垒会影响金属和半导体之间的电流传 输和热传导,进而影响电子器件的性能。

金属和半导体接触引言金属与半导体接触类型1整流接触

金属和半导体接触引言金属与半导体接触类型1整流接触

第七章 金属和半导体接触引言:金属与半导体接触类型:1、 整流接触:金属与轻掺杂半导体形成的接触表现为单向导电性,即具有整流特性,但电流通常由多子所荷载。

由于这种器件主要靠电子导电,消除了非平衡少子的 存储,因而频率特性优于p –n 结;又由于它是在半导体表面上形成的接触,便于散热,所以可以做成大功率的整流器;在集成电路中用作箝位二极管,可以提高集成电路的速度,通常称为肖特基势垒二极管,简称肖特基二极管。

2、 欧姆接触:这种接触正反向偏压均表现为低阻特性,没有整流作用,故也称为非整流接触。

任何半导体器件最后都要用金属与之接触并由导线引出,因此,获得良好的欧姆接触是十分必要的。

§7.1 金属半导体接触及其能带图本节内容:1、 金属和半导体的功函数2、 接触电势差3、 阻挡层与反阻挡层4、 表面态对接触势垒的影响课程重点:金属的功函数:在绝对零度的电子填满了费米能级F E 以下的所有能级,而高于F E 的能级则全部是空着的。

在一定温度下,只有F E 附近的少数电子受到热激发,由低于F E 的能级跃迁到高于F E 的能级上去,但是绝大部分电子仍不能脱离金属而逸出体外,这说明金属中的电子虽然能在金属中自由运动,但绝大多数所处的能级都低于体外能级。

要使电子从金属中逸出,必须由外界给它以足够的能量。

所以,金属内部的电子是在一个势阱中运动。

用0E 表示真空中静止电子的能量,金属功函数的定义是0E 与F E 能量之差,用m W 表示,即m F m E E W )(0-=它表示一个起始能量等于费米能级的电子,由金属内部逸出到真空中所需要的最小能量。

功函数的大小标志着电子在金属中束缚的强弱,m W 越大,电子越不容易离开金属。

半导体的功函数和金属类似:即把真空电子静止能量0E 与半导体费米能级S F E )(之差定义为半导体的函数,即s F s E E W )(0-=。

因为半导体的费米能级随杂质浓度变化,所以半导体的功函数也与杂质浓度有关。

半导体物理:金属和半导体的接触

半导体物理:金属和半导体的接触
WM<WS, 金属的费米能级高于 n型半导体的费米能级,金属 中的电子向半导体中移动,在 半导体表面形成电子累积的 负空间电荷区.
Wm<Ws
n型反阻挡层(理想欧姆接触)
半导体表面带负电,空间电荷区电场的方向由半导体表面指向 体内,表面电子的能量低于体内,能带向下弯曲,表面处电子 浓度远大于体内。所以此时的空间电荷区是一个很薄的高电导 层,称之为反阻挡层(表面电子积累),对半导体和金属的接 触电阻影响很小。
在空间电荷区内便存在一定的电场,造成能带弯曲,使半 导体表面和内部之间存在电势差Vs,即表面势。
这时接触电势差一部分降落在空间电荷区,另一部分降落 在金属和半导体表面之间。
Ws
Wm q
Vms
Vs
若D小到可以与原子间 距相比较,电子可自由 穿过间隙
接触电势差绝大部分降 落在空间电荷区。
电子亲合能X
定义:E0与Ec之差
E0 EC
半导体功函数
半导体功函数
Ws E0 (EF )s
电子亲合能,它表示要使半导
体导带底的电子逸出体外所 需要的
Ws [Ec (EF )s ] En
En Ec (EF )s
n
=
En q
半导体的功函数与杂质浓度的关系
的流动。
它们之间的电势差完全补偿了原来费米能级的不同
Vms
Vm
Vs Ws
Wm q
随着D的减小,靠近半导体一侧的金属表面负电荷密度增 加,同时,靠近金属一侧的半导体表面的正电荷密度也随 之增加。
由于半导体中电荷密度的限制,这些正电荷分布在半导体 表面相当厚的一层表面层内,即空间电荷区。
半导体中的电子将向金属流动,使金属表面带负电,半导体表
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=qVD En
若Wm>Ws,半导体表面形成正的空间电荷区, 电场由体内指向表面,Vs<0,形成表面势垒(阻 挡层)。 χ
Wm qΦns
qVD
Ec
En
(EF)s
Ev
能带向上弯曲,形成表面势垒。势垒区电子浓度 比体内小得多→高阻区(阻挡层)。
若Wm<Ws,电子从金属流向半导体,半导体表面 形成负的空间电荷区,电场由表面指向体内,Vs>0。 形成高电导区(反阻挡层)。
qVD Eg q0 En
Wm qns Ws
➢ 流向金属的电子由受主表面提供。由于表面态密度很高,半导体 势垒区的情形基本不变。
➢ 平衡后,半导体EF相对金属EF下降了(Wm-Ws)。空间电荷区的正 电荷等于表面受主态留下的负电荷与金属表面负电荷之和。
存在表面态即使不与金属接触,表面也形成势 垒。
镜像力的影响
隧道效应
微观粒子要越过一个势垒时,能量超过势垒高度的微粒 子,可以越过势垒,而能量低于势垒高度的粒子也有一定 的概率穿过势垒,其他的则被反射。这就是所谓微粒子的 隧道效应。
隧道效应的影响
结论:只有在反向电压较高时,电子的动能较大,使有效势垒高 度下降较多,对反向电流的影响才是显著的。
理论解释
①扩散理论
当势垒宽度大于电子的平均自由程,电子通过势垒要 经过多次碰撞,这样的阻挡层称为厚阻挡层。
扩散理论适用于厚阻挡层。 计算通过势垒的电流时, 必须同时考虑漂移和扩散运动。 势 垒垒区区可的近电似势为分一布个是耗比尽较层复。杂的,当势垒高度远大于k0T时,势
根据边界条件:半导体内部电场为零; 以金属费米能级除以-q为电势零点, 可得
上述金半接触模型即为Schottky 模型:
n型
p型
Wm>Ws 阻挡层 反阻挡层
Wm<Ws 反阻挡层 阻挡层
7.1.3表面态对接触电势的影响
势垒高度qns Wm
实验表明:不同金属的功函数虽然相差很大,但与半 导体接触时形成的势垒高度却相差很小。
半导体 金属
n-GaAs Au Al Pt
功函数
EF
s
EF
m
EF
s
EF
m
Wm Ws
接触前:
E0
Wm
(EF)m
χ Ws Ec En (EF)s Ev
金属和半导体间距离D远大于原子间距
由于Wm>Ws,即 EFm< EFN
半导体中电子能量较大—易进入金 属—金属带负电—半导体带正电 (施主离子 )—形成空间电荷区 (类似P-N结)—能带将弯曲—形 成势垒—接触电位差—到平衡—费 米能级统一
Wm E0 (EF )m E0为真空中静止电子的能量。
金属功函数随原子序数的递增呈现周期性变化
关于功函数的几点说明:
➢ 对金属而言, 功函数Wm可看作是固定的. 功 函数Wm标志了电子在金属中被束缚的程度. 对半导体而言, 功函数与掺杂有关
➢ 功函数与表面有关. ➢ 功函数是一个统计物理量。
假定,由于越过势垒的电子数只占半导体总电 子数很少一部分,故半导体内的电子浓度可以 视为常数。
讨论非简并半导体的情况。
针对n型半导体,电流密度
qV J JsT [exp( k0T ) 1]
J sT
A*T 2 exp( qns ) k0T
其中理查逊常数
A*
4qmn*
k
2 0
h3
Ge、Si、GaAs有较高的载流子迁移率,有较大的 平均自由程,因此在室温下主要是多数载流子的热 电子发射。
Ws
Wm q
Vms
Vs
若D小到可以与原子间距相比较
电子可自由穿过间隙,这时Vms很小,接触电势差大部分降落在 空间电荷区。
忽略间隙中电势差的极限情况
Ws
Wm q
Vs
➢ 半导体一侧电子的势垒高度(接触势垒)
qVD Wm Ws EFs EFm
➢ 金属一侧电子的势垒高度
qns EC EFm Wm
7.2.1整流特性
电导的非对称性(整流特性) 在某一方向电压作用下的电导与反方向电 压作用下的电导相差悬殊的器件特性 首要条件:接触必须形成半导体表面的阻挡层 (形成多子的接触势垒)
(1)V=0
半导体接触表面能带向上弯,形成n型阻挡层。当阻挡层无外 加电压作用,从半导体流向金属的电子与从金属流向半导体的 电子数量相等,处于动态平衡,因而没有净的电子流流过阻挡 层。
当半导体的表面态密度很高时,可以屏蔽金属 接触的影响,使半导体内的势垒高度和金属的 功函数几乎无关,由半导体表面性质决定。
由于表面态密度的不同,紧密接触时,接触电 势差将有部分降落在半导体内,金属功函数对 表面势垒将产生不同程度的影响,但影响不大。 (所以当Wm〈Ws时,也可能形成n型阻挡层)
7.2金属半导体接触整流理论
4.8 4.25 5.36
m(V)
0.95 0.80 0.94
说明金属的功函数对势垒高度的影响并不显著。
原因:半导体表面存在表面态。
巴丁(Bardeen)提出应该考虑到半导体表面存在密度相当大的 表面态。如果认为在金属和半导体之间存在原子线度的间隙, 表面态中的电荷可通过在间隙中产生的电势差对势垒高度起到 钳制作用。
肖特基势垒二极管
与p-n结的相同点:
单向导电性 。
与p-n结的不同点:
(1)多数载流子器件和少数载流子器件 (2)无电荷存贮效应和有电荷存贮效应 (3)高频特性好。 (4)正向导通电压小。
肖特基二极管JsD和JsT比p-n结反向饱和电流Js大 得多。即肖特基二极管有较低的正向导通电压。 用途:钳位二极管(提高电路速度)等。
X-Wm
qVD
Ec En (EF)s
Ev
能带向下弯曲。这里电子浓度比体内大得多, 因而是一个高电导的区域,称之为反阻挡层。
金属与p型半导体接触时,若Wm<Ws,形成空穴的 表面势垒。在势垒区,空间电荷主要由电离受主形
成,空穴浓度比体内小得多,也是一个高阻区域,
形成P型阻挡层。
金属与p型半导体接触时,若Wm>Ws,能带向上 弯曲,形成P型反阻挡层。
P
exp{4
(
2mn*
)
1 2
d0 [qV ( y)]12 dy}
h2
0
exp{4
(
mn* R
h2ND
0
)
1 2
[(Vs
)0
]}
有外加电压时,势垒宽度为d,表面势为
[(Vs)0+V],则隧道概率
P
exp{4
( mn* R 0
h2ND
1
) 2 [(Vs
两种理论结果表示的阻挡层电流与外加电压变 化关系基本一致,体现了电导非对称性
正向电压,电流随电压指数增加;负向电压, 电流基本不随外加电压而变化
JSD与外加电压有关;JST与外加电压无关,强 烈依赖温度T。当温度一定,JST随反向电压增 加处于饱和状态,称之为反向饱和电流。
③镜像力和隧道效应的影响
7.3少数载流子的注入和欧姆接触
7.3.1少数载流子的注入
n型阻挡层,体内电子浓度为n0, 接触面处的电子浓度是
n(0)
n0
exp(
qVD k0T
)
电子的阻挡层就是空穴积累层。
在势垒区,空穴的浓度在表面处
最 大 。 体 内 空 穴 浓 度 为 p0 , 则 表面浓度为
p(0)
p0
exp(
qVD k0T
其中
En Ec (EF )s
对半导体,电子亲和能χ是固定的,功函数与掺杂有关
半导体功函数与杂质浓度的关系

n型半导体:
Ws
Байду номын сангаас
Ec
EF
s
En
♦ p型半导体: Ws Eo (EF )s Eg (EF Ev )
7.1.2 接触电势差
设想有一块金属和一块n型半导体,并假定
金属的功函数大于半导体的功函数,即:Wm Ws
半导体的功函数Ws
E0与费米能级之差称为半导体的功函数。
Ws E0 (EF )s
E0
χ表示从Ec到E0的能量间隔:
E0 Ec
χ Ws Ec
En Ep
(EF)s Ev
称χ为电子的亲和能,它表示要使半导体导带底的 电子逸出体外所需要的最小能量。

Ws [Ec (EF )s ] En
当V>0时,若qV>>k0T,则
J
J sD
exp(
qV k0T
)
当V<0时,若|qV|>>k0T,则
J J sD
该理论适用于迁移率较小,平均自由程较短的半导体, 如氧化亚铜。
②热电子发射理论
当n型阻挡层很薄,电子平均自由程远大于势 垒宽度。起作用的是势垒高度而不是势垒宽度。 电流的计算归结为超越势垒的载流子数目。
(2)V>0
若金属接电源正极,n型半导体接电源负极,则外加电压降方向 由金属指向半导体,外加电压方向和接触表面势方向相反,使 势垒高度下降,电子顺利的流过降低了的势垒。从半导体流向 金属的电子数超过从金属流向半导体的电子数,形成从金属流 向半导体的正向电流。
(3)V<0
当电源极性接法反过来,外加电压方向和接触表面势方向相同, 势垒高度上升,金属流向半导体的电子数占优势,形成从半导 体流到金属的反向电流。由于金属中的电子要越过相当高的势 垒qФns才能达到半导体,因此反向电流很小。
接触电阻:零偏压下的微分电阻
Rc
( I V
) 1 V 0
把导带底Ec选作电势能的零点,可得
V
(x)
qN D
相关文档
最新文档