综合法与分析法 课件
合集下载
1.5.2综合法和分析法课件人教新课标B版

D.取 x=-1,f(-1)=-1 +
1
1
-1
= −2.
∵f(1)=1 + 1 = 2,∴f(-1)=-f(1),则 f(x)是奇函数
答案:D
-4-
1.5.2 综合法和分析法
目标导航
Z 知识梳理 Z 重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析 S随堂演练
IANLITOUXI
UITANGLIANXI
2.分析法
从需要证明的命题出发,分析使这个命题成立的充分条件,利用
已知的一些定理,逐步探索,最后到达命题所给出的条件(或者一个
已证明过的定理或一个明显的事实),这种证明方法称为分析法.
归纳总结
证明的起
方法
始步骤
综
基本不等式
合
或已经证明
法
过的不等式
分
要求证的不
析
等式
法
求证过程
证题方
求证目标
向
实施一系列的推出或等
∴(a2+b2)+(b2+c2)+(a2+c2)≥2ab+2bc+2ac,即
a2+b2+c2≥ab+bc+ac,这严重背离了原题的证明意图.
分析二:设f(a)=a2+b2+c2-2(ab+bc+ac),即f(a)=a2-2a(b+c)+b2+c22bc.
Δ=4(b+c)2-4(b2+c2-2bc)=16bc>0.
证明
4
sin x+
≥5,x∈
sin
π
1
1
-1
= −2.
∵f(1)=1 + 1 = 2,∴f(-1)=-f(1),则 f(x)是奇函数
答案:D
-4-
1.5.2 综合法和分析法
目标导航
Z 知识梳理 Z 重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析 S随堂演练
IANLITOUXI
UITANGLIANXI
2.分析法
从需要证明的命题出发,分析使这个命题成立的充分条件,利用
已知的一些定理,逐步探索,最后到达命题所给出的条件(或者一个
已证明过的定理或一个明显的事实),这种证明方法称为分析法.
归纳总结
证明的起
方法
始步骤
综
基本不等式
合
或已经证明
法
过的不等式
分
要求证的不
析
等式
法
求证过程
证题方
求证目标
向
实施一系列的推出或等
∴(a2+b2)+(b2+c2)+(a2+c2)≥2ab+2bc+2ac,即
a2+b2+c2≥ab+bc+ac,这严重背离了原题的证明意图.
分析二:设f(a)=a2+b2+c2-2(ab+bc+ac),即f(a)=a2-2a(b+c)+b2+c22bc.
Δ=4(b+c)2-4(b2+c2-2bc)=16bc>0.
证明
4
sin x+
≥5,x∈
sin
π
1.2 综合法与分析法 课件1 (北师大选修2-2)

练习2:求证:
3- 2>
6- 5
练习3:设a,b为互不相等的正数,且a+b=1, 证明: 1 + 1 > 4
a b
变题: 已知 a, b, c R ,且 a b c 1
1 求证:(1)a b c ; 3 (2) a b c 3.
2 2 2
例2.如图,四棱锥 P ABCD 中,
2.分析法
从问题的结论出发,追溯导致结论的成 立的条件,逐步上溯,直到使结论成立的 条件和已知条件吻合为止.
其推证过程为:
结论 已知条件
特点:
从“未知”看“需知”,逐步靠拢 “已知”
3.直接证明
直接从原命题的条件逐步推得命题成立.
(综合法和分析法是直接证明的两种基本方法)
注:直接证明的一般形式为:
2 2
证: 求
直接证明
π 1 例. 已知α, β≠ kπ+ (k Z),且 2 sinθ+ cosθ= 2sinα sinθcosθ= sin 2 β 1 - tan α 1 - tan β = . 2 2 1 + tan α 2(1 + tan β)
2 2
证: 求
练习1:平行四边形ABCD中,AE⊥BD,垂足为E, CF⊥BD,垂足为F, 求证:AE=CF C D E F A B
PC 平面ABCD, PC 2,
在四边形 ABCD 中,点M 在PB上,
PB与平面ABC成 30 角.
CM // 面PAD; (1)求证:
面PAB 面PAD. (2)求证:
例3.已知数列 {an }的通项 an 为3,公差为1的等差数列.
2.2.1综合法与分析法课件人教新课标2

sinθ + cosθ = 2sinα (1) sinθgcosθ = sin2β (2)
1 - tan2α 1 - tan2β 求证 1 + tan2α = 2(1 + tan2β) .
证明:
因为(sin2θ + cos2θ)2 - 2sinθcosθ = 1,
所以将(1)(2)代入,可得
4sin2α - 2sin2β = 1. 另一方面要证
4.作业:89页1 2 3
练习.如图,SA⊥平面ABC,AB⊥BC,过A作 SB的垂线,垂足为E,过E作SC的垂线,垂足为 F,求证 AF⊥SC.
S
判断
F E
应该用综合法还
是分析法?
A
C
B
1 - 2sin2α = 1 (1 - 2sin2β), 2
4sin2α - 2sin2β = 1.
由于上式与③相同,于是问题得证.
课堂小结
1.综合法的概念:
一般地,利用已知条件和某些数学定 义、公理、定理等,经过一系列的推理论证, 最后推导出所要证明的结论成立,这种证明 方法叫做综合法.
2.分析法的概念:
则综合法可用 框图表示如下:
P Q1 Q1 Q2 Q2 Q3 … Qn Q
例题1
在△ABC中,三个内角A、B、C对应的 边分别为a、b、c,且A、B、C成等差数列, a、b、c成等比数列,求证△ABC为等边三 角形.
分析
•将A,B,C成等差数列,转化为符号 语言就是2B=A+C;
•A,B,C为△ABC的内角,这是一个隐含 条件,即A+B+C=180°;
这就是另一种证 明方法——分析法.
一般地,从要证明的结论出发,逐 步寻求推证过程中,使每一步结论成立 的充分条件,直至最后,把要证明的结 论归结为判定一个明显成立的条件(已 知条件、定理、定义、公理等)为止, 这种证明的方法叫做分析法.
1 - tan2α 1 - tan2β 求证 1 + tan2α = 2(1 + tan2β) .
证明:
因为(sin2θ + cos2θ)2 - 2sinθcosθ = 1,
所以将(1)(2)代入,可得
4sin2α - 2sin2β = 1. 另一方面要证
4.作业:89页1 2 3
练习.如图,SA⊥平面ABC,AB⊥BC,过A作 SB的垂线,垂足为E,过E作SC的垂线,垂足为 F,求证 AF⊥SC.
S
判断
F E
应该用综合法还
是分析法?
A
C
B
1 - 2sin2α = 1 (1 - 2sin2β), 2
4sin2α - 2sin2β = 1.
由于上式与③相同,于是问题得证.
课堂小结
1.综合法的概念:
一般地,利用已知条件和某些数学定 义、公理、定理等,经过一系列的推理论证, 最后推导出所要证明的结论成立,这种证明 方法叫做综合法.
2.分析法的概念:
则综合法可用 框图表示如下:
P Q1 Q1 Q2 Q2 Q3 … Qn Q
例题1
在△ABC中,三个内角A、B、C对应的 边分别为a、b、c,且A、B、C成等差数列, a、b、c成等比数列,求证△ABC为等边三 角形.
分析
•将A,B,C成等差数列,转化为符号 语言就是2B=A+C;
•A,B,C为△ABC的内角,这是一个隐含 条件,即A+B+C=180°;
这就是另一种证 明方法——分析法.
一般地,从要证明的结论出发,逐 步寻求推证过程中,使每一步结论成立 的充分条件,直至最后,把要证明的结 论归结为判定一个明显成立的条件(已 知条件、定理、定义、公理等)为止, 这种证明的方法叫做分析法.
5.3.2综合法与分析法(1) 课件(人教A版选修4-5)

2 2 2 2 2
例 7 已 知 a , b , c都 是 正 数 , 求 证 : a b c 3 abc , 并 指 出 等 号 成 立 的 条 件 .
3 3 3
5.3.2不等式的证明—综合法和分析法
从已知条件出发, 利用不等式的性质和定理 逐步下推, 推导出所要证明的不等式成立,这种证 明方法叫做综合法。 综合法的思路是“由因导果”. 证明不等式时,有时可以从要证明的不等 式出发,逐步上溯 , 寻求使它成立的充分条件, 直至最后,把要证明的不等式归结为判定条件是 否具备的问题。这种证明的方法叫做分析法。 分析法的思路是“执果索 因”. … A B 综合法: 条件 结论
天才就是百分之一的灵感,百分之九十九的汗水! 书 小 不 学 勤 径,学 徒 伤 悲 作 功! 天 才 在 于 为 奋,努 力 才 能 成功=艰苦的劳动+正确的方法+少谈空话 少 山 有 路 勤习,老 来 海 无 崖 苦成 舟
例1 已 知 a , b都 是 正 数 , 求 证 :
3 3
a b
2
b a
分析法: 结论
B
…
A
条件补Biblioteka 作业(1) 求 证: 1 x
2
1 y
2
2
1 z
2
1 xy
1 yz
1 zx
( 2 ) 求 证: a b ab a b 1
2
( 3 ) 已 知 a , b , c 为 不 全 相 等 的 正 数 , 且 abc 1 . 求证 : a b c 1 a 1 b 1 c
2.
2
例 2 设 a 0 , b 0 , 求 证 : a b a b ab
例 7 已 知 a , b , c都 是 正 数 , 求 证 : a b c 3 abc , 并 指 出 等 号 成 立 的 条 件 .
3 3 3
5.3.2不等式的证明—综合法和分析法
从已知条件出发, 利用不等式的性质和定理 逐步下推, 推导出所要证明的不等式成立,这种证 明方法叫做综合法。 综合法的思路是“由因导果”. 证明不等式时,有时可以从要证明的不等 式出发,逐步上溯 , 寻求使它成立的充分条件, 直至最后,把要证明的不等式归结为判定条件是 否具备的问题。这种证明的方法叫做分析法。 分析法的思路是“执果索 因”. … A B 综合法: 条件 结论
天才就是百分之一的灵感,百分之九十九的汗水! 书 小 不 学 勤 径,学 徒 伤 悲 作 功! 天 才 在 于 为 奋,努 力 才 能 成功=艰苦的劳动+正确的方法+少谈空话 少 山 有 路 勤习,老 来 海 无 崖 苦成 舟
例1 已 知 a , b都 是 正 数 , 求 证 :
3 3
a b
2
b a
分析法: 结论
B
…
A
条件补Biblioteka 作业(1) 求 证: 1 x
2
1 y
2
2
1 z
2
1 xy
1 yz
1 zx
( 2 ) 求 证: a b ab a b 1
2
( 3 ) 已 知 a , b , c 为 不 全 相 等 的 正 数 , 且 abc 1 . 求证 : a b c 1 a 1 b 1 c
2.
2
例 2 设 a 0 , b 0 , 求 证 : a b a b ab
综合法分析法PPT课件

例 3. 已 知 α ,β≠
k π+ π( k 2
Z),且
sinθ+ cosθ = 2sinα
sinθ cosθ = sin 2β
求 证:
1 - tan 2α = 1 - tan 2β . 1 + tan 2α 2(1 + tan 2β )
.
.
用P表示已知条件,定义,定理,公理等,用Q表 示要证的结论,则上述过程可用框图表示为:
A
C
B
因为:SA⊥平面ABC成立 所以. AF⊥SC成立
.
例3:设a,b,c为一个三角形的三边,且s2=2ab,
s = 1(a + b+c), 试证: s < 2a 2
解:欲证s<2a,只需证
s
s2 b
即证b<s,也即证 b 1 (a bc)
2
即证b<a+c
因为a,b,c为一个三角形的三边,所以 b<a+c成立.
b
ab
(a>0,b>0)的证明.
证明:要证;a
+ 2
b
ab
还原成综合法: 证明:
只需证;a+b2 ab
因为;( a b)2 0
只需证;a+b2 ab0 所以 a+b2 ab0
只需证;( a b)2 0
所以 a+b2 ab
因为;( a b)2 0成立
所以 a
+ 2
b
a b成立
所以
a+b 2
a b 成立
.
小结
1.在数学证明中,综合法和分析法是 两种最常用的数学方法,若从已知入手 能找到证明的途径,则用综合法,否则 用分析法.
综合法和分析法 课件

用分析法证明不等式 设 x≥1,y≥1,证明 x+y+x1y≤1x+1y+xy. 证明:由于 x≥1,y≥1, 要证 x+y+x1y≤1x+1y+xy, 只需证 xy(x+y)+1≤y+x+(xy)2.
因为[y+x+(xy)2]-[xy(x+y)+1] =[(xy)2-1]-[xy(x+y)-(x+y)] =(xy+1)(xy-1)-(x+y)(xy-1) =(xy-1)(xy-x-y+1) =(xy-1)(x-1)(y-1), 因为 x≥1,y≥1, 所以(xy-1)(x-1)(y-1)≥0, 从而所要证明的不等式成立.
综合法与分析法
1.综合法
一般地,从_已__知__条__件___出发,利用定义、公理、定理、性质等, 经过一系列的__推__理__、__论__证__而得出__命__题__成立,这种证明方 法叫做综合法.综合法又叫__顺__推__证__法__或__由__因__导__果__法__.
2.分析法 证明命题时 , 从 _要__证__的__结__论___出 发 , 逐步寻求使它成立的 _充__分___条件,直到所需条件为_已__知___条件或一个__明__显__成__立__的
事实(定义、公理或已证明的定理、性质等),从而得出 __要__证__的__命__题__成 立 ,这种证明方法叫做分析法.这是一种 _执__果__索__因___的思考和证明方法.
用综合法证明不等式 设 a>b>c>0,证明:2a2+a1b+a(a1-b)-10ac+25c2 ≥4.
【证明】 因为 a>b>c>0, 所以 2a2+a1b+a(a1-b)-10ac+25c2 =(a-5c)2+a2-ab+ab+a1b+a(a1-b) =(a-5c)2+ab+a1b+a(a-b)+a(a1-b) ≥0+2+2=4, 当且仅当 2,c= 52时,等号成立.
第2讲不等式的基本方法-综合法与分析法课件人教新课标
∴3x2+3y2>2xy成立.
1
1
∴(x2+y22) >(x3明不等式 例 3 设 a>0,b>0,且 a+b=1,求证 a+1+ b+1≤ 6. 证明 要证 a+1+ b+1≤ 6,
只需证( a+1+ b+1)2≤6,
即证(a+b)+2+2 ab+a+b+1≤6.
A.1a<1b
B.a+1b>b+1a
√C.b+1a>a+1b
D.ba<ba+ +11
解析 ∵a<b<0,∴ab>0,∴aab<abb<0,即1b<1a<0.
∴a+1b<b+1a.
1234
解析 答案
2.已知函数 f(x)=12x,a>0,b>0,a≠b,A=f a+2 b,B=f( ab),C= 2ab
第二讲 证明不等式的基本方法
二 综合法与分析法
学习目标 1.理解综合法、分析法证明不等式的原理和思维特点. 2.掌握综合法、分析法证明不等式的方法和步骤. 3.会用综合法、分析法证明一些不等式.
内容索引
问题导学 题型探究 达标检测
问题导学
知识点 综合法与分析法
思考1 在“推理与证明”中,学习过分析法、综合法,请回顾分析法、 综合法的基本特征. 答案 分析法是逆推证法或执果索因法,综合法是顺推证法或由因导 果法.
Q⇐P1 → P1⇐P2 → P2⇐P3 →…→ 得到一个明显成立的条件
题型探究
类型一 综合法证明不等式 例 1 已知 a,b∈R+,且 a+b=1, 求证:a+1a2+b+1b2≥225.
证明
反思与感悟 综合法证明不等式,揭示出条件和结论之间的因果联系, 为此要着力分析已知与求证之间,不等式的左右两端之间的差异与联系. 合理进行转换,恰当选择已知不等式,这是证明的关键.
综合法和分析法 课件
综合法与分析法
1.综合法和分析法是数学中常用的两种直接证明方 法,也是不等式证明中的基本方法.由于两者在证明思路 上存在着明显的互逆性,这里将其放在一起加以认识、学 习,以便于对比研究两种思路方法的特点.
2.所谓综合法,即从已知条件出发,根据不等式的 性质或已知的不等式,逐步推导出要证的不等式.综合法 是“由因及果”.
分析:注意不等式左、右两端的差异,思考 如何脱去左端根号或如何去掉右端的分母
a= b1c<121b+1c,而1a=bc.
证明:法一:因为 a,b,c 是不等正数,且 abc=1,
所以 a+ b+ c=
b1c+
a1c+
1 ab
<121b+1c+121a+1c+121a+1b=1a+1b+1c.
法二:a,b,c 是不等正数,且 abc=1,
设 x,y∈(0,+∞).求证: 12(x+y)2+14(x+y)≥x y+y x.
证明:原不等式⇔2(x+y)2+(x+y)≥4x y+4y x ⇔(x+y)[2(x+y)+1]≥2 xy(2 x+2 y). ∵x+y≥2 xy>0, ∴只需证 2(x+y)+1≥2 x+2 y. 即证(x+14)+(y+14)≥ x+ y.
2
只需证 2ab+ma+b < c , 即证 1+2abm+2m-aab+b<1+mc , 只需证 m2c-abc<2mab+m2(a+b)成立, 只需证 m2[c-(a+b)]<ab(2m+c)成立, ∵a,b,c 分别是△ABC 的三边长,∴a+b>c. 即 c-(a+b)<0,而 m2>0, ∴m2[c-(a+b)]<0. 而 ab(2m+c)>0, ∴m2[c-(a+b)]<ab(2m+c)成立. ∴原不等式成立.
(当且仅当 a=b=c=13时,等式成立)
1.综合法和分析法是数学中常用的两种直接证明方 法,也是不等式证明中的基本方法.由于两者在证明思路 上存在着明显的互逆性,这里将其放在一起加以认识、学 习,以便于对比研究两种思路方法的特点.
2.所谓综合法,即从已知条件出发,根据不等式的 性质或已知的不等式,逐步推导出要证的不等式.综合法 是“由因及果”.
分析:注意不等式左、右两端的差异,思考 如何脱去左端根号或如何去掉右端的分母
a= b1c<121b+1c,而1a=bc.
证明:法一:因为 a,b,c 是不等正数,且 abc=1,
所以 a+ b+ c=
b1c+
a1c+
1 ab
<121b+1c+121a+1c+121a+1b=1a+1b+1c.
法二:a,b,c 是不等正数,且 abc=1,
设 x,y∈(0,+∞).求证: 12(x+y)2+14(x+y)≥x y+y x.
证明:原不等式⇔2(x+y)2+(x+y)≥4x y+4y x ⇔(x+y)[2(x+y)+1]≥2 xy(2 x+2 y). ∵x+y≥2 xy>0, ∴只需证 2(x+y)+1≥2 x+2 y. 即证(x+14)+(y+14)≥ x+ y.
2
只需证 2ab+ma+b < c , 即证 1+2abm+2m-aab+b<1+mc , 只需证 m2c-abc<2mab+m2(a+b)成立, 只需证 m2[c-(a+b)]<ab(2m+c)成立, ∵a,b,c 分别是△ABC 的三边长,∴a+b>c. 即 c-(a+b)<0,而 m2>0, ∴m2[c-(a+b)]<0. 而 ab(2m+c)>0, ∴m2[c-(a+b)]<ab(2m+c)成立. ∴原不等式成立.
(当且仅当 a=b=c=13时,等式成立)
【高中数学优质课件】推理与证明03综合法与分析法 课件(31张)
第3课时 综合法与分析法
• 预学3:用框图表示综合法与分析法的证明过 程
• (1)综合法可用框图表示:(用P表示已知条件, 已有的定义、公理、定理等,Q表示所要证 明的结论)
• P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Qn⇒Q • (2)若用Q表示所要证明的结论,分析法可用
框图表示: • Q⇐P1→P1⇐P2➝P2⇐P3→…→得到一个明
• 即证b2c2+a2d2≥2abcd, • 只需证(bc-ad)2≥0. • 因为(bc-ad)2≥0显然成立, • 所以(a2+b2)(c2+d2)≥(ac+bd)2成立.
No.1 middle school ,my love !
第3课时 综合法与分析法
• (综合法)因为b2c2+a2d2≥2abcd(当且仅当bc =ad时取等号),
第3课时 综合法与分析法
No.1 middle school ,my love !
第3课时 综合法与分析法
No.1 middle school ,my love !
第3课时 综合法与分析法
• 变式训练3设a≥b>0,求证:3a3+2b3≥3a2b+ 2ab2.
• 【解析】(法一)综合法: • 3a3+2b3-(3a2b+2ab2) • =3a2(a-b)+2b2(b-a) • =(3a2-2b2)(a-b). • 因为a≥b>0,所以a-b≥0,3a2-2b2>0, • 所以(3a2-2b2)(a-b)≥0, • 所以3a3+2b3≥3a2b+2ab2成立.
No.1 middle school ,my love !
第3课时 综合法与分析法
• 分析法与综合法的关系 • (1)区别:综合法是“由因导果”,而分析法则
是“执果索因”,它们是截然相反的两种证 明方法.分析法便于我们去寻找思路,而综 合法便于过程的叙述,两种方法各有所长, 在解决具体问题时,结合起来运用效果会 更好.
• 预学3:用框图表示综合法与分析法的证明过 程
• (1)综合法可用框图表示:(用P表示已知条件, 已有的定义、公理、定理等,Q表示所要证 明的结论)
• P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Qn⇒Q • (2)若用Q表示所要证明的结论,分析法可用
框图表示: • Q⇐P1→P1⇐P2➝P2⇐P3→…→得到一个明
• 即证b2c2+a2d2≥2abcd, • 只需证(bc-ad)2≥0. • 因为(bc-ad)2≥0显然成立, • 所以(a2+b2)(c2+d2)≥(ac+bd)2成立.
No.1 middle school ,my love !
第3课时 综合法与分析法
• (综合法)因为b2c2+a2d2≥2abcd(当且仅当bc =ad时取等号),
第3课时 综合法与分析法
No.1 middle school ,my love !
第3课时 综合法与分析法
No.1 middle school ,my love !
第3课时 综合法与分析法
• 变式训练3设a≥b>0,求证:3a3+2b3≥3a2b+ 2ab2.
• 【解析】(法一)综合法: • 3a3+2b3-(3a2b+2ab2) • =3a2(a-b)+2b2(b-a) • =(3a2-2b2)(a-b). • 因为a≥b>0,所以a-b≥0,3a2-2b2>0, • 所以(3a2-2b2)(a-b)≥0, • 所以3a3+2b3≥3a2b+2ab2成立.
No.1 middle school ,my love !
第3课时 综合法与分析法
• 分析法与综合法的关系 • (1)区别:综合法是“由因导果”,而分析法则
是“执果索因”,它们是截然相反的两种证 明方法.分析法便于我们去寻找思路,而综 合法便于过程的叙述,两种方法各有所长, 在解决具体问题时,结合起来运用效果会 更好.
2.2.1综合法和分析法PPT课件
()
❖ A.既不充分也不必要条件
❖ B.充要条件
❖ C.充分条件
❖ D.必要条件
❖ [答案] D
❖ [解析] ∵②⇒①,但①不一定推出②.故•18 应选D.
2.若 a,b,c∈R,且 ab+bc+ac=1,则下列不等
式成立的是
()
A.a2+b2+c2≥2 B.(a+b+c)2≥3 C.1a+1b+1c≥2 3 D.abc(a+b+c)≤13 ❖ [答案] B
步反推,寻找使当前命题成立的充分条件,
即用分析法证明.
[证明] ∵a>0,b>0,要证
a+ b
b≥ a
a+
b成立,
只需证
a+ b
ba2≥(
a+
b)2 成立,
即证ab2+ba2+2 ab≥a+b+2 ab成立.
•5
即证a3a+bb3≥a+b.
也就是证(a+b)(a2-ab+b2)≥ab(a+b)成立.
要证a+1 b+b+1 c=a+3b+c,
即证a+a+b+b c+a+b+b+c c=3,
也就是a+c b+b+a c=1,
❖ 只需证c(b+c)+a(a+b)=(a+b)(b+c),
❖ 需证c2+a2=ac+b2,
❖ 又△ABC三内角A、B、C成等差数列,故B
=60°,
•11
❖ 由余弦定理,有 ❖ b2=c2+a2-2accos60°,即b2=c2+a2-ac, ❖ 故c2+a2=ac+b2得证. ❖ 综合法: ❖ 证明:∵△ABC三内角A、B、C成等差数列, ❖ ∴B=60°. ❖ 由余弦定理,有b2=c2+a2-2cacos60°, ❖ 得c2+a2=ac+b2, ❖ 等式两边同时加上ab+bc得 ❖ c(b+c)+a(a+b)=(a+b)(b+c),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习2:求证:
3- 2>
6- 5
练习3:设a,b为互不相等的正数,且a+b=1, 证明: 1 + 1 > 4
a b
变题: 已知 a, b, c R ,且 a b c 1
1 求证:(1)a b c ; 3 (2) a b c 3.
2 2 2
例2.如图,四棱锥 P ABCD 中,
2.分析法
从问题的结论出发,追溯导致结论的成 立的条件,逐步上溯,直到使结论成立的 条件和已知条件吻合为止.
其推证过程为:
结论 已知条件
特点:
从“未知”看“需知”,逐步靠拢 “已知”
3.直接证明
直接从原命题的条件逐步推得命题成立.
(综合法和分析法是直接证明的两种基本方法)
注:直接证明的一般形式为:
数学:1.2《综合法与分析法》
综合法和分析法
复习
1.推 理
合情推理
(或然性推理)
演绎推理 (必然性推理)
三段论 (一般到特殊)
归纳
(特殊到一般)
类比 (特殊到特殊)
两种推理的作用?
合情推理为演绎推理确定了目标和方向 演绎推理为合情推理提供了前提且对猜想作出判决和证明
猜想需要推理
否定猜想?
肯定猜想?
本题条件 已知定义 ⇒ A⇒ B⇒ C ⇒ 本题结论 已知公理 已知定理
例1:如图,已知AB,CD相交于点O, △ACO≌△BDO,AE=BF, 求证:CE=DF C F E O D
A
B
4.分析法和综合法的优缺点:
分析法的优点: 解题方向明确,容易找到解题的思路和方法; 缺点:思路逆行,叙述较繁.
2 2
证: 求
直接证明
π 1 例. 已知α, β≠ kπ+ (k Z),且 2 sinθ+ cosθ= 2sinα sinθcosθ= sin 2 β 1 - tan α 1 - tan β = . 2 2 1 + tan α 2(1 + tan β)
2 2
证: 求
练习1:平行四边形ABCD中,AE⊥BD,垂足为E, CF⊥BD,垂足为F, 求证:AE=CF C D E F A B
an 与 Sn 的解析式; (2)试比较Sn与 3nan (n∈N*),的大小.
(1)求
PC 平面ABCD, PC 2,
在四边形 ABCD 中,点M 在PB上,
PB与平面ABC成 30 角.
CM // 面PAD; (1)求证:
面PAB 面PAD. (2)求证:
例3.已知数列 {an }的通项 an 为3,公差为1的等差数列.
0(n∈N*),
2 n
它的前n项的和记为 Sn ,数列{S } 是首项
举反例
证明
回顾证明基本不等式:
a+b 2 ab a>0,b>0
直 接 证 明
1.综合法 从已知条件出发,以已知的定义、公理、 定理为依据,逐步下推,直到推出要证明的 结论为止.
其推证过程为:
P Q1
Q1 Q 2
Q2 Q3
…
Qn Байду номын сангаасQ
特点: 从“已知”看“可知”,逐步推向“未知” (由因导果)
综合法的优点: 从条件推出结论,较简捷地解决问题; 缺点:不便于思考. 注:解题时,一般用分析法寻找解题 思路,再用综合法写解题过程
例2.已知 a 0, b 0 ,
a b a b 求证: b a
π 3 例. 已知α, β≠ kπ+ (k Z),且 2 sinθ+ cosθ= 2sinα sinθcosθ= sin 2 β 1 - tan α 1 - tan β = . 2 2 1 + tan α 2(1 + tan β)