导学案(函数及其图像)

合集下载

第一轮导学案2013-18二次函数及图象

第一轮导学案2013-18二次函数及图象

OyxBAyx O课时18 二次函数及其图像【考点链接】1. 二次函数2()y a x h k =-+的图像和性质a >0a <0图 象开 口 对 称 轴 顶点坐标最 值 当x = 时,y 有最 值 当x = 时,y 有最 值 增减性在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧y 随x 的增大而y 随x 的增大而2. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = k = . 3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.4. 二次函数c bx ax y ++=2中c b a ,,的符号的确定方法:( )确定a ,( )和( )确定b ,( )确定c. 【典例精析】例1 (06遂宁)已知二次函数24y x x =+,(1) 用配方法把该函数化为2()y a x h k =++ (其中a 、h 、k 都是常数且a ≠0)形式,并画出这个函数的图像,根据图象指出函数的对称轴和顶点坐标. (2) 求函数的图象与x 轴的交点坐标.例2 (08大连)如图,直线m x y +=和抛物线c bx x y ++=2都经过点A(1,0),B(3,2).⑴ 求m 的值和抛物线的解析式; ⑵ 求不等式m x c bx x +>++2的解集.(直接写出答案)D C B Ao y x o y x oy x o yxyxO【巩固练习】1. (08南昌)将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 .2. (07四川) 如图1所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .3.(08贵阳)二次函数2(1)2y x =-+的最小值是( )A.-2 B.2 C.-1 D.14.(08沈阳)二次函数22(1)3y x =-+的图象的顶点坐标是( )A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3) 5. 二次函数y ax bx c =++2的图象如图所示,则下列结论正确的是( )A. a b c ><>000,,B. a b c <<>000,,C. a b c <><000,,D. a b c <>>000,,【中考演练】1. 抛物线()22-=x y 的顶点坐标是 .2. (2012威海 3分)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x -1)2+1的图象上,若 x 1>x 2>1,则y 1 y 2.3.(07江西)已知二次函数22y x x m =-++的部分图象如右图所示,则关于x 的一元二次方程220x x m -++=的解为 .4. 函数2y ax =与(0,0)y ax b a b =+>>在同一坐标系中的大致图象是( )5. (06浙江) 二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论:①a >0; ②c >0; ③ b 2-4a c >0,其中正确的个数是( )A.0个B.1个C.2个D.3个6. 二次函数y =ax 2+bx +c(a≠0)的图象的对称轴是直线x =1,其图象的一部分如图所示.下列说法正确的是 (填正确结论的序号).① abc <0;②a-b +c <0;③3a+c <0;④当-1<x <3时,y >0.7.已知二次函数y=ax 2+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0 ②b 2-4ac<0 ⑤c<4b ④a+b>0,则其中正确结论的个数是【 】A .1个 B .2个 C .3个 D .4个8. (2012山东威海3分)已知二次函数()2y=ax +bx+c a 0≠的图象如图所示,下列结论错误的是【 】A.abc >0B.3a >2bC.m (am +b )≤a-bD.4a -2b +c <。

八年级数学下册19.1.2函数的图象第1课时导学案新版新人教版2

八年级数学下册19.1.2函数的图象第1课时导学案新版新人教版2

19.1.2函数的图象(第一课时)学习目标:我能知道函数图象的意义,能使用描点法画出简单的函数图像。

学习重难点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

一、自主学习:请认真阅读教材第75页至76页思考止,第77页的例3至79页的思考止。

思考以下问题:1、回忆平面直角坐标系的相关概念:如各个象限内的点的特征,点P(x,y)关于x轴、y轴和原点对称的点的坐标分别是,过坐标平面内的点向x 轴作垂线可以找坐标、向y轴作垂线可以找坐标。

2、一般地,在一个变化过程中,有个变量x和y,对于变量x的每一个值,变量y都有的值和它对应,我们就把x称为,y是x的。

如果当x=a时y=b,那么b叫做当自变量的值为a时的。

3、什么是函数图像?函数的图像是由直角坐标系中的一系列点组成的,图像上的每一点坐标(x,y)代表了函数的一对对应值,即把自变量x与函数y的每一对对应值分别作为点的坐标和纵坐标,在直角坐标系中描出相应的点,这些点组成的图像,就是这个函数的图像。

4、如何作函数图像?具体步骤有哪些?5、如何判定一个图像是函数图像,你判断的依据是什么?6、有哪些方法表示函数关系?二、合作交流:1.画函数 (x>0)的图像(函数图像画在课前自己设计的坐标纸上)解:第一步:列表X 0 0.5 1 1.5 2 2.5 3 …Y第二步:描点:以x的值为坐标,相应的函数值为坐标,描出表格中数值对应的各点。

第三步:连线:按照坐标由小到大的顺序,把所描各点从左到右用平滑的曲线连接起来。

注意:原点要排除(为什么?)从所画的图像上可以看出,曲线从左向右 ,即当x 由小变大时,y 随x 的增大而 。

(1)一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的 坐标,那么坐标平面内由这些点组成的图形就是这个函数的 。

(2)函数图像上的点的坐标与解析式的关系:A .函数图像上任意一点(x,y )中的x 与y 满足函数的 。

正切函数的图像与性质学习的教案导学案.doc

正切函数的图像与性质学习的教案导学案.doc

正切函数的图像与性质一、教学目标:,π内的性质 (重点 ).1. 推导并理解正切函数在区间-π2 22.能画出 y=tan x 的图象通过正切函数的图象的作图过程,进一步体会函数线的作用 (重点 ).3.会用正切函数的性质解决有关问题二、教学重点1、推导并理解正切函数在区间π π内的性质-2,22、能画出 y=tan x 的图象通过正切函数的图象的作图过程,进一步体会函数线的作用.3.会用正切函数的性质解决有关问题三、教学难点1、推导并理解正切函数在区间π π- 2 , 2内的性质2、能画出 y=tan x 的图象通过正切函数的图象的作图过程,进一步体会函数线的作用,会用正切函数的性质解决有关问题四、教学过程解析式y=tan x图象定义域_________________________ 值域R周期π奇偶性奇单调性上都是增函数提示函数 y= tan x 的对称中心的坐标是kπ,0 , (k∈Z) ,不是 (kπ,0)(k∈Z) 2思考尝试1.思考判断 (正确的打“√”,错误的打“×” ) (1)正切函数在整个定义域内是增函数. ( )(2)存在某个区间,使正切函数为减函数.( ) (3)正切函数图象相邻两个对称中心的距离为周期 π .()(4)函数 y =tan x 为奇函数,故对任意 x ∈ R 都有 tan(-x)=- tan x. () 2.函数 y =tan 2x 的最小正周期是 ()ππ A . 2π B .π C. 2 D. 4.函数 = tan x -π的定义域是 ( )3 y 4ππA. x x ≠ 4B. x x ≠- 4C x x≠ π+ π,k ∈ ZD. ≠ π+3π,k ∈Zk4x x k 44. 函数 = tan x - π≤ x ≤π且x ≠0 的值域是 ____________ y 4 45.函数 y =- tan x 的单调递减区间是 __________ 正切函数的定义域、值域问题例 1、 (1)函数 y =lg( 3-tan x)的定义域为 ____.π π(2)函数 y =sin x +tan x , x ∈ - 4 , 3 的值域为 ___.1.求与正切函数有关的函数的定义域时, 除了求函数定义域的一般要求外, 还要π 保证正切函数 y = tan x 有意义即 x ≠ 2 + k π,k ∈Z2.求解与正切函数有关的函数的值域时, 要注意函数的定义域, 在定义域内求值域;对于求由正切函数复合而成的函数的值域时,常利用换元法,但要注意新 “ 元” 的范围.变式训练、(1)函数 y = 1 的定义域为 ()tan xA . {x|x ≠0}B .{x|x ≠k π, k ∈ Z}C. x x ≠ π+ π,k ∈ZD. x x ≠k π, k ∈ Z k 22(2)函数 tan(sin x)的值域为 ________________.正切函数的单调性及其应用 (互动探究 )例 2、(1)比较下列两个数的大小 (用“>”或 “<”填空 ):① tan 2π10π 7 ________tan7 .② tan 6π________tan 13π.5 - 51π(2)求函数 y=tan 2x+4的单调增区间.1π迁移探究、(变换条件、改变问法 )把本例 (2)中改为:求函数 y=tan -2x+4的单调减区间.归纳升华1.求函数 y= Atan(ωx+φ)(A,ω,φ都是常数 )的单调区间的方法:(1)若ω>0,由于 y=tan x 在每一个单调区间上都是增函数,故可用“整体代换”的思想,令 kπ -πω +φπ+π∈Z),解得x的范围.2 <x <k 2 (k(2)若ω<0,可利用诱导公式先把y=Atan(ωx+φ)转化为 y=Atan[- (-ωx-φ)] =- Atan(-ωx-φ),即把 x 的系数化为正值,再利用“整体代换”的思想.2.运用正切函数单调性比较大小的方法:(1)运用函数的周期性或诱导公式将角化到同一单调区间内.(2)运用单调性比较大小的关系.正切函数的奇偶性与周期性π例 3、(1)函数 y=4tan 3x+6的周期为 _______.(2)判断下列函数的奇偶性:①y= tan2x- tan x;1- tan x②y= xtan 2x+ x4.归纳π1.一般地,函数 y= Atan(ωx+φ)的最小正周期为T=|ω|,常常利用此公式来求周期.2.判断函数的奇偶性要先求函数的定义域,判断其是否关于原点对称.若不对称,则该函数无奇偶性,若对称,再判断f(-x)与 f(x)的关系.变式训练、直线 y=3 与函数 y= tan ωx(ω>0)的图象相交,则相邻两交点间的距离是 ()A.π2πB. ωπC.2ωπD.ω五、课堂练习:见变式训练六、教学小结: 1. 正切函数的性质(1)正切函数常用的三条性质.k π①对称性:正切函数图象的对称中心是2 ,0 (k ∈Z) ,不存在对称轴.ππ②单调性:正切函数在每个区间 k π- 2 ,k π+ 2 (k ∈Z) 内是单调递增的,但不能说其在定义域内是递增的.2.“三点两线法 ”作正切曲线的简图(1) “三点”分别为 π, , π +π, 1 , π -π,- 1 ,其中 k ∈ Z ;(k0) k 4 k 4ππ两线为直线 x = k π + 2 和直线 x = k π-2 ,其中 k ∈Z( 两线也称为正切曲线的渐近线,即无限接近但不相交 ).(2)作简图时,只需先作出一个周期中的两条渐近线,然后描出三个点,用光滑的曲线连接得到一条曲线,最后平行移动至各个周期内.七、教学反思正切函数的图像与性质一、学习目标:1.推导并理解正切函数在区间 - π π内的性质.2 , 2 2.能画出 y =tan x 的图象通过正切函数的图象的作图过程,进一步体会函数线的作用.3.会用正切函数的性质解决有关问题 二、学习过程解析式 y = tan x图象定义域_________________________值域R周期π奇偶性奇单调性上都是增函数提示 函数 y = tan x 的对称中心的坐标是 k π,0 , (k ∈Z) ,不是 (k π ,0)(k ∈Z) 2思考尝试1.思考判断 (正确的打“√”,错误的打“×” )(1)正切函数在整个定义域内是增函数. ()(2)存在某个区间,使正切函数为减函数.() (3)正切函数图象相邻两个对称中心的距离为周期 π .()(4)函数 y =tan x 为奇函数,故对任意 x ∈ R 都有 tan(-x)=- tan x. () 2.函数 y =tan 2x 的最小正周期是 ()ππ A . 2π B .πC. 2D. 4.函数 = tan x -π的定义域是 ( )3 y 4ππA. x x ≠ 4B. x x ≠- 4C x x≠ π+ π,k ∈ ZD. ≠ π+3π,k ∈Zk4x x k 44. 函数 = tan x - π≤ ≤π且 ≠ 的值域是 ____________ y 4 x 4 x 05.函数 y =- tan x 的单调递减区间是 __________ 正切函数的定义域、值域问题例 1、 (1)函数 y =lg( 3-tan x)的定义域为 ____.π π(2)函数 y =sin x +tan x , x ∈ - 4 , 3 的值域为 ___.1.求与正切函数有关的函数的定义域时, 除了求函数定义域的一般要求外, 还要π 保证正切函数 y = tan x 有意义即 x ≠ 2 + k π,k ∈Z2.求解与正切函数有关的函数的值域时, 要注意函数的定义域, 在定义域内求值域;对于求由正切函数复合而成的函数的值域时,常利用换元法,但要注意新“ 元” 的范围.变式训练、(1)函数1y =tan x 的定义域为()A . {x|x ≠0}B .{x|x ≠k π, k ∈ Z}≠ π+ π,k ∈Z D. x x ≠k π, k ∈ Z C. x x k 22(2)函数 tan(sin x)的值域为 ________________.正切函数的单调性及其应用 (互动探究 )例 2、 (1)比较下列两个数的大小 (用“>”或 “<”填空 ):① tan2π10π 7 ________tan7.6ππ② tan135 ________tan - 5.(2)求函数 y =tan 1π的单调增区间.2x +4迁移探究、 (变换条件、改变问法 )把本例 (2)中改为:求函数 y =tan -1+ π 的2x4单调减区间.归纳升华1. 求函数 y = Atan(ωx+ φ)(A , ω,φ都是常数 )的单调区间的方法:(1)若 ω>0,由于 y =tan x 在每一个单调区间上都是增函数,故可用“整体代换 ”的思想,令 k π -πω +φ π+ π ∈ Z) ,解得 x 的范围.2 <x <k 2 (k(2)若 ω<0,可利用诱导公式先把 y =Atan(ωx+φ)转化为 y =Atan[- (-ωx-φ)]=- Atan(- ωx- φ),即把 x 的系数化为正值,再利用“整体代换 ”的思想.2.运用正切函数单调性比较大小的方法:(1)运用函数的周期性或诱导公式将角化到同一单调区间内.(2)运用单调性比较大小的关系.正切函数的奇偶性与周期性π例 3、 (1)函数 y =4tan 3x + 6 的周期为 _______.(2)判断下列函数的奇偶性:① y =tan 2x - tan x ;1- tan x② y = xtan 2x + x 4.归纳π1.一般地,函数 y= Atan(ωx+φ)的最小正周期为T=|ω|,常常利用此公式来求周期.2.判断函数的奇偶性要先求函数的定义域,判断其是否关于原点对称.若不对称,则该函数无奇偶性,若对称,再判断f(-x)与 f(x)的关系.变式训练、直线 y=3 与函数 y= tan ωx(ω>0)的图象相交,则相邻两交点间的距离是 ()A.π2πB. ωπC.2ωπD.ω五、课堂练习:见变式训练六、教学小结:1.正切函数的性质(1)正切函数常用的三条性质.kπ①对称性:正切函数图象的对称中心是 2 ,0 (k∈Z) ,不存在对称轴.ππ②单调性:正切函数在每个区间 kπ-2 ,kπ+2 (k∈Z) 内是单调递增的,但不能说其在定义域内是递增的.2.“三点两线法”作正切曲线的简图(1)“三点”分别为 (kπ, 0),π, 1 ,π,其中 k∈ Z;π +π -,- 1k4 k 4ππ两线为直线 x= kπ+2和直线 x= kπ-2,其中 k∈Z( 两线也称为正切曲线的渐近线,即无限接近但不相交 ).(2)作简图时,只需先作出一个周期中的两条渐近线,然后描出三个点,用光滑的曲线连接得到一条曲线,最后平行移动至各个周期内.七、教学反思。

2019-2020学年八年级数学 《函数的图像》导学案 人教新课标版.doc

2019-2020学年八年级数学 《函数的图像》导学案 人教新课标版.doc

备课时间2019-2020学年八年级数学 《函数的图像》导学案 人教新课标版 月日 上课时间月 日 星期 第 节课 题第课时 累计课时 学习目标学习重点 学习难点学 习 过 程学习内容及预见性问题时间学习要求一、巩固旧知,激趣导入:二、明确目标,自主学习:三、合作探究,落实目标:函数的图像知识与技能:1、能根据函数图像所提供的信息获取函数的性质;2、判断点与函数图形的位置关系;过程与方法:1、通过图像可以数形结合地研究函数; 2、让学生观察分析,获得变量之间关系的直观体验情感、态度与价值观:渗透数形结合思想,体会到数学来源于生活,又应用于生活,培养学生的团结协作精神、探索精神和合作交流能力。

函数的图像正确无误的观察函数图形。

下图是自动测温仪记录的图像,它反映了北京的春季某天气温T 如何随时间t 的变化而变化,你从图像中得到什么信息? (1)这一天中凌晨4时气温最低(-3℃),14时气温最低最高(8℃) (2)从0时至4时气温呈下降状态(即温度随时间的增长而下降,从4时到14时气温呈上升状态,从14时至24时的气温又呈下降状态。

从图中得到气温T 是时间t 的函数。

1、正方形边长x 与面积S 的函数关系是S=x ²(x>0) 思考:(1)能否利用在坐标系中画图的方法来表示S 和x 的关系? (2)自变量x 的一个确定的值与它所对应的唯一的数值S ,是否确定了一个点(x ,S)?2、根据上面的例子,思考什么事函数图像?3、用描点法画函数图像的一般步骤是什么? 1、函数图像的定义:一般地,对于一个函数,如果把自变量和函数的每对对应值分别作为点的横、纵左边,那么坐标平面内由这些点组成的图形,就是这个函数的图像。

学习内容及预见性问题学习要求四、交流展示,体验成功:五、抽测达标,拓展延伸。

备课组 学科组 教务处2、用描点法画函数图像的一般步骤: (1)列表:给出自变量和函数的一些对应值。

一次函数和它的图像(第一课时)导学案

一次函数和它的图像(第一课时)导学案

11.5 一次函数和它的图象(第一课时) 导学案学习目标1、理解正比例函数、一次函数的概念。

2、会根据数量关系,求正比例函数、一次函数的解析式。

3、会求一次函数的值。

重点、难点1、 一次函数和正比例函数的概念、。

2、 求正比例函数、一次函数的解析式。

学习过程一、课前延伸:1、列车自上海机场出发,运行1000米后,以110米/秒的速度匀速行驶,写出列车离开浦东机场的距离s(单位:米)和时间t (单位:秒)的关系: 。

2、指出下列函数中的常量和变量,并比较下列各函数,它们有哪些共同特征: 。

,6t m = ,2x y -= ,32+=x y 9362.3+-=t Q二、合作探究:1、形如________________________的函数叫做x 的一次函数,其中,在k,x,y,b 中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中k,b 符合什么条件?2、在什么条件下,y=kx+b(k ≠0)为正比例函数?3、已知函数y=2x+b ,当x=1时,y 的值为7,则b=__________.4、一次函数Y=(k-3)x+(k+3),当k=__________时,它是x 的正比例函数。

三、巩固新知:1、下列函数中,哪些是一次函数?哪些是正比例函数?系数k 和常数项b 的值各为多少?C=2∏r, y=32x+200, t=v200 , (),32x y -= ()x x s -=502、某农场种植玉米,每平方米种玉米6株,玉米株数y 与种植面积)(2m x 之间的关系。

3、已知一次函数y=kx+3,当x=-1时,y=-1那么当x=1时,y 等于( ).(A) 1 (B) -1 (C) 7 (D) -7四、拓展提升:例1、已知函数y=(m-3)x 113m -+m+2.(1)当m 为何值时,y 是x 的正比例函数?∣(2)当m 为何值时,y 是x 的一次函数?例2.已知y 是x 的一次函数,当1-=x 时,2=y ;当2=x 时,3-=y(1)、求y 关于x 的一次函数关系式。

《正弦函数、余弦函数的图像》教案与导学案

《正弦函数、余弦函数的图像》教案与导学案

《第五章三角函数》《5.4.1正弦函数、余弦函数的图像》教案【教材分析】由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.【教学目标与核心素养】课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系.数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念;2.逻辑推理:正弦曲线与余弦曲线的联系;3.直观想象:正弦函数余弦函数的图像;4.数学运算:五点作图;5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.【教学重难点】重点:正弦函数、余弦函数的图象.难点:正弦函数与余弦函数图象间的关系.【教学方法】:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。

【教学过程】一、情景导入遇到一个新的函数,非常自然地是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然地想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们图象的(列表描点法:列表、描点、连线)?请学生尝试画出当x∈[0,2π]时,y=sinx 的图象.要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本196-199页,思考并完成以下问题1.任意角的正弦函数在单位圆中是怎样定义的?2.怎样作出正弦函数y=sinx的图像?3.怎样作出余弦函数y=cosx的图像?4.正弦曲线与余弦曲线的区别与联系.要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

人教版高中数学必修四导学案1.4正切函数的定义、图像及性质 Word版

人教版高中数学必修四导学案1.4正切函数的定义、图像及性质 Word版

普兰店市第一高一年级数学导学案
正切函数的定义、图像及性质
编制人:季士春校对:刘莹
学习目标:()了解任意角的正切函数概念;()理解正切函数中的自变量取值范围;()掌握正切线的画法;()能用单位圆中的正切线画出正切函数的图像;()熟练根据正切函数的图像推导出正切函数的性质;()掌握利用数形结合思想分析问题、解决问题的技能;
重点:正切函数的图象及其主要性质
难点:利用正切线画出函数的图象,并认识到直线是
此图象的两条渐近线
学习过程:
活动一(知识回顾):
.指出下列各角的正切线:
活动二(自主学习)
类比正弦函数用几何法做出正切函数的图像:
.
把上述图像向左、右扩展,得到正切函数,且的
图像,称为
.观察正切曲线,回答正切函数的性质:
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中: 一.合作探究:。

正切函数的定义图像及性质(北师版必修4) 导学案

正切函数的定义图像及性质(北师版必修4)   导学案

宁陕中学导学案(数学.北师大版必修四)高一级 班 小组 姓名正切函数的定义、图像及性质学习目标:1.能借助单位圆理解任意角的正切函数的定义2.能画出y =tan x 的图像3.掌握正切函数的基本性质学习重点:正切函数的图像和性质;学习难点:画正切函数的图像,探索正切函数的诱导公式一.自主学习:(认真阅读课本第35----37页内容,完成下列自学要求)1.指出下列各角的正切线:2.类比正弦函数用几何法做出正切函数⎪⎭⎫⎝⎛∈=22-tan ππ,x x y 的图象:3.把上述图象向左、右扩展,得到正切函数Rx x y ∈=tan ,且()z k k x ∈+≠ππ2的图象,称为 __________________________4.观察正切曲线,回答正切函数的性质:同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中:二.合作探究:例1.画出函数⎪⎭⎫⎝⎛+=4tan πx y 的图像并讨论其性质变式.求函数y =tan2x 的定义域、值域和周期.例2. 2tan ,3αα=若借助三角函数定义求角的正弦函数值和余弦函数值例3. tan 135tan 138︒︒比较与的大小三、反思总结:1、数学知识:2、数学思想方法:四.训练检测1. 1317tan()tan()45ππ--比较与的大小2. 函数)4tan(x y -=π的定义域为 ( )(A)},4|{R x x x ∈≠π(B)},4|{R x x x ∈-≠π(C) },,4|{Z k R x k x x ∈∈+≠ππ (D)},,43|{Z k R x k x x ∈∈+≠ππ3.下列函数中,同时满足(1)在(0, 2π)上递增, (2)以2π为周期, (3)是奇函数的是 ( )(A)x y tan = (B)x y cos = (C)xy 21tan = (D)x y tan -=4. 若tan 0x ≤,则( ).A .22,2k x k k Zπππ-<<∈ B .2(21),2k x k k Zπππ+≤<+∈C .,2k x k k Zπππ-<≤∈ D .,2k x k k Zπππ-≤≤∈5.tan 315tan 570tan(60)tan 675︒+︒-︒-︒求的值.(能力提升)6. 求出函数y =.7. 求函数y=lg(1-tanx)的定义域8.已知0cos 〉x ,且0tan 〈x ,求 (1)角x 的集合; (2)判断2x tan ,2cos x ,的符号.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档