考研高数知识总结1
高数部分知识点总结

高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。
(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。
所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。
高考研高数一知识点总结

高考研高数一知识点总结高考、研究生考试的数学一科目一直以来都是考生们最为头疼的一门考试科目,而高数一作为其中的一大知识点,更是备受关注。
今天,我们就来总结一下高数一中的一些重要知识点。
一、极限与连续极限与连续是高数一中的基础知识点,掌握好了这部分内容,不仅能够帮助我们理解数学中的各种定理,也能为我们后面的学习打下坚实的基础。
极限的概念从直观上来讲,就是函数在某一点上无限接近一个确定的值。
而数学中,极限的概念有一套明确的定义和性质。
通过理解这些定义和性质,我们可以求解函数的极限,判断函数是否连续,还可以应用到一些微积分的问题中。
二、导数与微分导数与微分是高数一的重要知识点之一,也是微积分的基本概念。
导数的定义是函数在某一点上的变化率,它的几何意义是函数曲线在该点的斜率。
而微分则是导数的一个应用,它描述了一个函数在某一点上的局部线性近似。
通过掌握导数与微分的概念和性质,我们可以求解函数的导数,进而求解曲线的斜率,判断函数的单调性和极值点等问题。
在应用上,导数与微分也被广泛地应用于物理、经济等领域中。
三、定积分与不定积分定积分与不定积分是微积分的另一个重要知识点。
定积分的概念是曲线下的面积,它可以帮助我们求解曲线与坐标轴之间的几何关系。
而不定积分是定积分的逆运算,它可以帮助我们求解函数的原函数。
通过掌握定积分和不定积分的概念和性质,我们可以求解函数的定积分和不定积分,解决一些具体问题,如求解曲线下的面积、求解定积分方程等。
四、级数与数列级数与数列也是高数一的重要知识点之一,它们是数学中的一种重要的数学对象。
数列是按照一定规则排列起来的一串数,而级数则是数列的和。
通过掌握级数和数列的概念和性质,我们可以求解数列的极限,讨论级数的敛散性,掌握级数的收敛性判断方法等。
在应用上,级数和数列也被广泛地应用于物理、工程等领域中。
总结起来,高考研高数一中的重要知识点主要包括极限与连续、导数与微分、定积分与不定积分以及级数与数列等。
考研高数知识点总结

考研高数知识点总结一、函数、极限与连续1. 函数的概念与性质- 有界性- 奇偶性- 单调性- 周期性- 复合函数- 反函数2. 极限的定义与性质- 数列极限- 函数极限- 极限的四则运算- 极限存在的条件- 无穷小与无穷大的比较3. 连续函数- 连续性的定义- 间断点的类型- 连续函数的性质- 闭区间上连续函数的性质(确界存在定理、零点定理、介值定理)二、导数与微分1. 导数的定义- 概念与几何意义- 左导数与右导数- 高阶导数2. 导数的计算- 基本初等函数的导数 - 导数的四则运算- 链式法则- 隐函数求导- 参数方程求导3. 微分- 微分的定义- 微分的几何意义- 微分形式的变换三、中值定理与导数的应用1. 中值定理- 罗尔定理- 拉格朗日中值定理- 柯西中值定理2. 导数的应用- 函数的单调性- 函数的极值问题- 最值问题- 曲线的凹凸性与拐点 - 函数的渐近线四、积分1. 不定积分- 基本积分表- 换元积分法- 分部积分法- 有理函数的积分2. 定积分- 定义与性质- 微积分基本定理- 定积分的计算- 定积分的应用(面积、体积、弧长、工作量等)3. 积分技巧- 特殊技巧(三角函数的积分、积分区间的变换等) - 积分证明五、多元函数微分学1. 多元函数的基本概念- 定义域- 偏导数- 全微分2. 多元函数的极值问题- 偏导数与极值- 拉格朗日乘数法六、重积分1. 二重积分- 直角坐标系下的二重积分- 极坐标系下的二重积分- 积分的换元法2. 三重积分- 直角坐标系下的三重积分- 柱坐标系与球坐标系下的三重积分七、级数1. 数项级数- 收敛性的判别- 无穷级数的性质- 级数的运算2. 幂级数- 幂级数的收敛半径- 泰勒级数- 函数展开成幂级数八、常微分方程1. 一阶微分方程- 可分离变量的微分方程- 齐次微分方程- 一阶线性微分方程2. 二阶微分方程- 二阶线性微分方程- 常系数线性微分方程- 变系数线性微分方程九、傅里叶级数与变换1. 傅里叶级数- 三角级数- 傅里叶级数的收敛性- 正弦级数与余弦级数2. 傅里叶变换- 傅里叶变换的定义- 傅里叶变换的性质- 快速傅里叶变换(FFT)以上是考研高数的主要知识点总结。
考研高数笔记 (1)

第一章 函数、极限、连续第1节 函数 a) 反函数和原函数关于y=x 对称。
b) 只有定义域关于原点对称的函数才能讨论奇偶性。
c) 多个奇函数之和为奇函数;多个偶函数之和为偶函数。
d) 2k 个奇函数的乘积是偶函数;2k+1个奇函数的乘积是偶函数;任意个偶函数的乘积还是偶函数。
(k=0,1,2......)。
e) 如果f(x)是周期函数,周期为T ,则f(ax+b)也是周期函数,周期为|T/a|。
f) 基本初等函数包括:幂函数、指数函数、对数函数、三角函数、反三角函数。
初等函数即上述五大类函数,以及它们有限次的四则运算与复合而成的函数。
g) 一切初等函数在其定义域内都是连续的。
第2节 极限a) 左右极限存在且相等⇔极限存在。
b) 如果函数在X 0极限为A ,则可以将函数改写为f(X)=A+ɑ(x),其中0=(x)ɑlim 0x x →。
(等价无穷小)c) 极限存在⇔极限唯一。
(极限唯一性)d) A x =→)(f lim 0x x ,且A>0,则在x 的邻域内,f(x)>0。
(保号性)e) 函数f(x)在点x=x 0存在极限,则存在该点的一个去心邻域U ,在U 内f(x)有界。
(有界性)f) 当limf(x)=A ,limg(x)=B ,那么lim(f(x)+g(x))=limf(x)+limg(x)=A+Blim(f(x)-g(x))=limf(x)-limg(x)=A-B lim(f(x)*g(x))=limf(x)*limg(x)=A*Blim(f(x)/g(x))=limf(x)/limg(x)=A/Blimg(x)不等于0 lim(f(x))^n=(limf(x))^n=A nlim(f(x)^g(x))=A b(极限的四则运算)g) 有限个无穷小之和仍然是无穷小。
有限个无穷小之积仍然是无穷小。
无穷小和有界量乘积仍然是无穷小。
h) )()(lim x g x f =li. l=0,f(x)=o(g(x)).ii. l=∞,f(x)是g(x)低阶.iii. 0<l<∞或-∞<l<0,l ≠1,同阶.iv. l=1,等价无穷小,记作f(x)~g(x). 特别的,如果k x g x f )]([)(lim =l(l ≠0),则称f(x)是g(x)的k 阶无穷小。
高数考研知识点总结

高数考研知识点总结一、微积分微积分是一门研究变化的学问。
微积分包括微分学和积分学两个部分。
微分学主要包括导数的概念和性质、高阶导数、隐函数及参数方程求导,微分中值定理,泰勒公式及其应用,不定积分和定积分的概念,不定积分和定积分的计算方法,微分方程的基本概念和初等解法,以及常见微分方程的应用等知识点。
积分学主要包括定积分的概念和性质,定积分的计算方法,换元积分法,分部积分法,定积分的几何应用,定积分的物理应用,不定积分和定积分的基本定理,微分方程的解法和应用,广义积分,数列的敛散,函数项级数的一致收敛性等知识点。
二、级数级数是指由一列数按照一定规律相加而得到的一种算术运算。
级数分为数列和级数的概念,各种级数的审敛性的判别法,幂级数,傅里叶级数,函数项级数的一致收敛性,泰勒级数和洛朗级数等知识点。
三、空间解析几何空间解析几何是指研究空间内点、直线、平面、曲线、曲面及它们之间的相互位置关系等问题的一门数学学科。
空间解析几何主要包括三维空间中的向量及其运算,直线和平面的向量方程和参数方程,空间曲线的方程和参数方程,空间曲面的方程和参数方程,以及常见空间曲线和曲面的性质及应用等知识点。
四、常微分方程常微分方程是指自变量只有一个的微分方程,它是描述动力系统中的基本方程。
常微分方程包括一阶常微分方程的基本概念和解法,高阶常微分方程的概念和求解方法,常系数线性微分方程的解法,解微分方程的初值问题,二阶常微分方程常见的特殊解法,欧拉方程,伯努利方程,克莱罗方程,常见的非齐次线性微分方程的解法等知识点。
五、多元函数微分学多元函数微分学是研究多变量函数的导数、偏导数及其应用的一门数学学科。
多元函数微分学包括二元函数的概念及性质,多元函数的极值及其应用,隐函数存在定理,非线性方程组的解法,多元函数的泰勒公式,梯度、散度、旋度及拉普拉斯算子,二元函数积分学,重积分的概念和性质,重积分的计算方法,重积分的几何物理应用,累次积分的计算次序等知识点。
考研用到的高数基础知识

考研用到的高数基础知识高等数学是考研数学的重要部分,那些重点难点在下文中均有讲述,复习要掌握好一些基础知识. 考研必备高数基础知识在下文列出.第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)3、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解.2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)考研高数怎样学?考研数学考三个科目,分别为高等数学、线性代数、概率论与数理统计. 但是备考数学的考生们总喜欢从高数开始复习,这是为什么呢?原因有二:其一,高等数学在试卷中所占分值最高,达整张卷面分值的百分之五十六,而且难度也居三科之首. 其二,科目之间的先后联系导致先复习高数.线性代数和概率论与数理统计,尤其是概率论与数理统计是以高数为基础的学科,不学高数难以很明白的学习后继学科,大学数学在课程设置上也是按次顺序进行,可见其科学性.为了更好的了解考研高等数学这一科目,在复习它之前我们应该了解一下它的知识体系是很有必要的. 这样我们可以有一个全局观,能清晰的知道每一章节之间的联系和侧重点.高等数学从大的方面分为一元函数微积分和多元函数微积分.一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学. 另外还有微分方程和级数,这两章内容可看成是微积分的应用.除此之外还有向量代数与空间解析几何. 其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别,下面我们分章去介绍.一、一元微积分1.极限极限是高等数学中非常重要的一章,此概念贯穿整个高等数学始末,导数、定积分、偏导数、多元函数积分、级数等概念都是用极限来定义的.正是有了极限的概念数学才从有限升华到无限,这也是高等数学与初等数学的分水岭. 在考研数学中极限也是每年必考的内容,直接考查的分值高达14-18分.2.倒数有了极限的概念,那么导数的概念就有了理论根基,导数是一元函数微分学的灵魂,在考研中这章是重点,每年必考,而且灵活性和综合性较强. 这一章可从导数微分概念、计算、应用、中值定理三方面学复习.3.不定时积分不定积分本质上是求导的逆运算,本章重点是计算,其重要性怎样描述都不为过. 因为积分是决定高数学习成败的一个关键章节,后继章节如定积分、二重积分、三重积分、曲线曲面积分、微分方程中都会用到.4.定积分定积分是微积分所说的积分,除了掌握基本概念,还要掌握其计算相关内容及定积分的应用,每年必考. 微分方程本质上还是不定积分的计算. 二、多元微积分多元函数的微积分体系上与一元类似,微分学包括基本概念(二重极限、偏导数、可微)、偏导数计算、偏导数应用.多元函数积分学包括二重积分、三重积分、曲线曲面积分,考试重点在计算,属于每年必考题目. 最后一章级数包括三部分常数项级数(主要考查敛散性判别),幂级数(主要考查展开与求和)、傅里叶级数(数一单独考查),本章也属必考内容.►高数该怎样学?虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢.由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸. 同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.考研数学怎样自学成功?(一)抓住主干,突破重点,注重综合虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢. 以高等数学为例,由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸.同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.(二)注重联想记忆,筑起框架体系由于考试时间紧,复习任务重,知识点零散,很多知识都是会了但过了一段时间又忘了,想要做到长效记忆,就必须注重联想记忆,建立知识框架体系. 以线性代数为例,线性代数作为一门全新的学科,知识点分散,概念抽象,性质定理众多,如何快速的掌握所有考试要求的知识,这就需要我们先筑起知识框架,建立知识点间的联系,看到任何一个概念的时候都要多去发散,联想出跟它相关的所有知识点.比如当我们看到实对称矩阵的时候,我们就要想到实对称矩阵的三条重要性质:①实对称矩阵的特征值为实数,它主要应用于已知一个关于方阵A的矩阵方程去求矩阵A的特征值;②实对称矩阵不同特征值对应的特征向量相互正交,它在考试中应用的非常频繁,基本题目出现实对称矩阵八九不离十就是要利用这条性质;③实对称矩阵必能相似对角化,它主要用来判断一个矩阵是否可以相似对角化的问题. 只要这样重复的联想记忆,你就会对所有的知识点形成条件反射,运用起来才会毫无障碍.(三)突出核心考点,加强题型训练根据考研数学考试历年命题规律,有些知识点考查的相当频繁,甚至于每年都考,对于这样的知识点我们应该予以重视,作为我们最后冲刺阶段主攻的地方,通过加强该部分知识点大量题型训练,总结对应的解题技巧和方法,从而实现对该知识点的突破.以概率论与数理统计为例,二维连续型随机变量是历年考试的重点,因此与该知识点相关的所有题型都要掌握,相关题型主要有:①已知联合概率密度求边缘概率密度、条件概率密度,进而求随机变量的数字特征;②已知联合概率密度求二维随机变量落在区域D内的概率;③判断两个随机变量是否独立等,通过对相关题型的大量训练,总结解题套路,我们就能攻克该知识点.考研数学总体复习计划基础阶段基础阶段的主要任务是复习基础知识,掌握基本解题能力. 主要工作是把课本上的重要公式、定理、定义概念等熟练掌握,将课本例题和习题研究透彻. 复习完基础知识之后要做课后习题,进行知识巩固,确保能够准确、深刻地理解每一个知识点.【切忌】1.先做题再看书.2.做难题. 这一阶段不易做难题. 难的题目往往会打击考生基础阶段复习的信心,即使答案弄懂了也达不到复习的效果.【复习建议】1.以教材中的例题和习题为主,不适宜做综合性较强的题目. 做习题时一定要把题目中的考点与对应的基础知识结合起来,达到巩固基础知识的目的,切忌为了做题而做题.2.在考研大纲出来之前,不要轻易放弃任何一个知识点. 在基础复习阶段放弃的知识点,非常有可能成为后期备考的盲点,到最后往往需要花更多的时间来弥补.3.准备一个笔记本,用来整理复习当中遇到过的不懂的知识点. 弄懂后,写上自己的理解,并且将一些易出错、易混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,避免遗忘出错.4.对于基本知识、基本定理和基本方法,关键在理解,并且存在理解程度的问题. 所以不能仅仅停留在“看懂了”的层次上. 对一些易推导的定理,有时间一定要动手推一推;对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写. 这些基本功都很重要,到临场考试时就可以发挥作用了.PS:复习不下去的时候建议看看数学视频.【基础阶段复习教材】高数:同济版,讲解比较细致,例题难度适中,涉及内容广泛,是当前高校中采用比较广泛的教材,配套的辅导教材也很多.线代:同济版,轻薄短小,简明易懂,适合基础不好的学生;清华版,适合基础比较好的学生.概率论与数理统计:浙大版,基本的题型课后习题都有覆盖.强化阶段强化阶段的主要任务是建立完整的知识体系,提高综合解题能力.强化阶段的复习是提高考试成绩的关键,但是,如果没有基础阶段的知识储备,强化阶段的复习是很难取得良好效果的. 所以小伙伴们一定要注意,数学复习是环环相扣、步步承接的. 【强化阶段复习资料】以数学复习全书和历年考研数学真题为主. 要把考研中的题型归类练习,熟练掌握每一类题型的解题方法.(一)强化训练第一轮以题型与常考知识模块复习为主,通过练习测试巩固所学知识.【学习方法】1.使用教材配套的复习指导或习题集,通过做题巩固知识,遇到不会或似懂非懂的题目不要直接看参考答案,应当先温习教材相关章节,弄懂基本知识.2.按要求完成练习测试后,要留有一些时间对教材的内容进行梳理,对重点、难点做好笔记,以便之后的复习. 对于典型性、灵活性、启发性和综合性的题目要特别注重理解思路和技巧的培养.3.试题虽千变万化,知识结构却基本相同,题型也相对固定. 归纳题型与常考知识模块以便提高解题的针对性,进而提高解题速度和准确性.(二)强化训练第二轮通过综合基础题及考研真题来查漏补缺,训练解题速度.【需要做到】1.加大对综合题和应用题解题能力的训练,力求在解题思路上有所突破. 在综合题的解答中,迅速找到解题的切入点是关键,为此需要熟悉规范的解题思路,以便能够对做过的题目进行归纳分类、延伸拓展.2.在复习备考时对所学知识进行重组,搞清有关知识的纵向和横向联系,转化为自己掌握的东西. 应用题的解题步骤是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其转化为某个数学问题求解.【注】基础阶段与强化阶段的终极目标是对考研数学内容建立一个知识网,熟练掌握考研各常见考试题型与解题方法.冲刺阶段强化阶段完成后,实际上考研数学的复习已经基本完成. 这个时候大家应该已经熟悉考研数学中的每一类题型以及对应的解题方法,而且已经具备较强的计算能力. 因此抽时间要做真题、模拟题培养考试状态,进入冲刺阶段的复习.【注意事项】冲刺阶段需要通过真题和模拟题的训练体验实战感觉,找到做题技巧并摸索出题特点,以便更利于临场发挥. 这一阶段要做到:1.要记忆,不要脱离教材. 对考研数学必需掌握的基本概念、公式、定理进行记忆,尤其是平时记忆模糊的公式,都需要重新回到教材找出原型来记忆.2.要总结、思考. 这一阶段不能搞题海战术,需要对上一轮复习中做过的历年真题和模拟题进行总结(包括理清基本的解题思路,对遗忘的知识点查漏补缺)3.要练习考研数学的套题. 坚持练套题到最后,手不能生. 最后阶段一定要做高质量的模拟题,尽量少做难题、偏题、怪题.【冲刺阶段复习资料】这一阶段的主要任务是查漏补缺,培养考试状态. 所以,建议的复习资料是基础阶段和强化阶段总结的复习笔记,历年真题与模拟题.。
考研高数每章总结知识点

考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。
二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。
三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。
四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。
五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。
总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。
在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。
考研高数知识点超强归纳

(t )
连续,
公 式 2 . lim⎜⎛1 + 1 ⎟⎞n = e ; lim⎜⎛1 + 1 ⎟⎞u = e ;
n→∞⎝ n ⎠
u→∞⎝ u ⎠
lim (1
+
v
)1 v
=
e
v→0
则 dy dx
=
f [ϕ2 (x)]ϕ2′ (x) −
f [ϕ1(x)]ϕ1′(x)
4.用无穷小重要性质和等价无穷小代换 5.用泰勒公式(比用等价无穷小更深刻)(数学一和
2
( )e x ′ = e x
de x = e x dx
考研数学知识点-高等数学
ψ ′(t)存在,且ϕ ′(t) ≠ 0 ,则
(arcsin x)′ = 1
1− x2
d arcsin x = 1 dx 1− x2
(arccos x)′ = − 1
d arccos x = − 1 dx
1− x2
1− x2
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a, ]b 上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
且有
dy = dy du = f ′[ϕ(x)]ϕ ′(x)
dx du dx
对应地 dy = f ′(u)du = f ′[ϕ(x)]ϕ ′(x)dx
由于公式 dy = f ′(u)du 不管 u 是自变量或中间变量
6.隐函数运算法则
设 y = y(x) 是由方程 F (x, y) = 0 所确定,求 y′ 的方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学讲座(17)论证不能凭感觉一元微分学概念众多,非常讲究条件。
讨论问题时,要努力从概念出发,积极运用规范的算法与烂熟的基本素材。
绝不能凭感觉凭想象就下结论。
1. x趋于∞时,求极限 lim xsin(2x∕(x平方+1) ,你敢不敢作等价无穷小替换?分析只凭感觉,多半不敢。
依据定义与规则,能换就换。
x 趋于∞时,α = 2x∕(x平方+1)是无穷小,sinα是无穷小,sinα(x)~α(x)且sinα处于“因式”地位。
可以换。
等价无穷小替换后,有理分式求极限,是“化零项法”处理的标准∞∕∞型,答案为 22.设f(x)可导,若f(x)是奇(偶)函数(周期函数,单调函数,有界函数),它的导函数fˊ(x)有什么样的奇偶性(周期性,单调性,有界性)?分析有定义数学式的概念,一定要先写出其定义式。
简单一点也行。
比如奇函数 f(-x)= -f(x) 周期为T的函数 f(x+T)= f(x)等式两端分别求导,得 fˊ(-x) = fˊ(x) fˊ(x+T)= fˊ(x)(实际上,由复合函数求导法则,(f(-x))ˊ= fˊ(-x) (-x)ˊ= -fˊ(-x))所以,奇函数的导数是偶函数;偶函数的导数是奇函数。
(如果高阶可导,还可以逐阶说下去。
)周期函数的导数也是周期函数。
很有趣的是,因为 (x)ˊ= 1 ,有的非周期函数,比如y = x + sinx ,的导数却是周期函数。
(潜台词:周期函数的原函数不一定是周期函数。
)单调函数定义中没有等式的概念,可以先在基本初等函数中举例观察。
如y = x单增,yˊ = 1不是单调函数。
y = sinx在(0,π/2)单增,yˊ = conx 单减,没有确定的结论。
有界性讨论相对较为困难。
如果注意到导数的几何意义是函数图形的切线斜率。
即切线倾角的正切。
就可以想到,在x趋于x0时,要是导数值无限增大,相应的图形切线就趋向于与x轴垂直。
显然,圆周上就有具竖直切线的点。
取 y =√(1-x的平方),它在[0,1]有界,但是 x 趋于 1 时,其导数的绝对值趋于正无穷。
这个反例说明有界函数的导数不一定有界。
(画外音:写出来很吓人啊。
x → 1 时,lim f (x) = 0 ,而 lim fˊ(x)= -∞)3.连续函数的复合函数一定连续。
有间断点的函数的复合函数就一定间断吗?分析连续函数的复合,花样更多。
原因在于复合函数f(g(x))的定义域,是f(x)的定义域与g(x)值域的交。
有“病”的点可能恰好不在“交”内。
因而,有间断点的函数的复合函数不一定间断。
比如:取分段函数g(x)为,x > 0 时 g =1 , x ≤ 0 时 g = -1,0是其间断点。
取f(u)=√u ,则f(g(x))= 1 在 x > 0 时有定义且连续。
还有一些原因让“病态点”消失。
如果只图简单,你可以取f(u)为常函数。
以不变应万变。
取f(u)= u的平方,则f(g(x))= 1 ,显然是个连续函数。
4.设 f (x)可导,若x趋于 +∞时,lim f (x) = +∞ ,是否必有lim fˊ(x)= +∞分析稍为一想,就知为否。
例如 y = x更复杂但颇为有趣的是 y = ln x ,x 趋于 +∞时,它是无穷大。
但是 yˊ = 1∕x 趋于0 ,这就是对数函数异常缓慢增长的原因。
5.设f(x)可导,若x 趋于+∞时,lim fˊ(x) = +∞ , 是否必有 lim f(x) = +∞分析用导数研究函数,这是微积分的正道。
首先要体念极限(见指导(3)。
):因为 lim fˊ(x) = +∞,所以当 x 充分大时,不仿设 x > x0 时,总有 fˊ(x)>1用拉格朗日公式给函数一个新的表达式f (x)= f (x0)+ fˊ(ξ)(x-x0) , x0 <ξ< x(潜台词: ξ=ξ(x) 。
你有这种描述意识吗?)进而就有, x >x0 时, f (x) >f (x0) + 1(x-x0) (画外音:这一步是高级动作。
)因为f (x0)是个常数,x0是我们选择的定点,所以上式表明,必有 lim f (x) = +∞6 。
设 f (x)可导,若x 趋于 -∞时,lim fˊ(x)=-∞ , 是否必有 lim f (x)= -∞分析否。
你如果与上述问题5对比,认为情形相仿,结论必有。
那就太想当然了。
请你还是老老实实地象5中那样写出推理吧。
结论是若x 趋于 -∞时,lim fˊ(x)= -∞ , 则必有 lim f (x) = +∞7.设 f (x)可导,若x 趋于+∞时,lim f (x) = c(常数,)是否必有lim f ˊ(x) = 0分析否。
lim fˊ(x) 有可能不存在。
这是最容易凭感觉想当然的一个题目。
我读本科时,最初的想法就是,“lim f(x) = c 表示函数图形有水平渐近线,函数又可导,当然在 x 趋于+∞时,切线就趋于水平了。
”想当然的原因之一是我们见识太少,脑子里的函数都较简单,图形很光滑漂亮。
之二则是对于渐近线的初等理解有惯性。
由极限定义的水平渐近线,并不在乎曲线中途是否与其相交。
比如,曲线可以以渐近线为轴震荡,最终造成 lim fˊ(x) 不存在的后果。
对比条件强化——如果 lim fˊ(x) 存在,则必有 lim fˊ(x) = 0用反证法证明。
且不仿设 x 趋于 +∞时 lim fˊ(x) = A >0与前述5中同样,可以选定充分大的正数x0,使 x>x0 时,总有fˊ(x)>A/2 ,然后用拉格朗日公式给函数一个新的表达式,导数条件管住ξ,从而有f (x) >f (x0) + A(x-x0) /2 —→+∞矛盾。
8.函数在一点可导,且导数大于0 ,能说函数在这一点单增吗?分析不能。
函数的单调性是宏观特征,背景是区间。
函数在一点可导,且导数大于0,其间所蕴含的信息只能通过可导的定义去挖掘。
即先把条件还原成定义算式,即x 趋于x0 时,lim ( f (x)-f(x0))/ (x-x0)> 0如果没有别的条件,下一步就试试体念符号。
即在x0邻近,分子分母同号。
进而在其右侧邻近,分子分母皆为正,f (x) >f(x0)。
但是,我们不知道函数值相互间的大小。
*9 设f (x)可导,若fˊ(a)·fˊ(b) < 0 ,则(a,b)内必有点c ,fˊ(c) = 0分析对。
尽管可导函数的导函数不一定连续。
但是,导函数天然地满足介值定理。
这个结论在微积分中叫“达布定理”。
在本篇问题8中,我们讲了“一点导数大于0”的逻辑推理。
现在不仿设fˊ(a) > 0 而fˊ(b) < 0分别在a , b两点处写出导数定义式,体念极限符号,(本篇问题8。
)可以综合得到结论:函数的端值 f (a),f (b) 都不是 f (x)在[a,b] 上的最大值。
最大值只能在(a,b)内一点实现,该点处导数为0好啊,多少意外有趣事,尽在身边素材中。
要的是脚踏实地,切忌空想。
考研数学讲座(18)泰勒公式级数连中值定理是应用函数的导数研究函数变化特点的桥梁。
中值定理运用函数在选定的中心点x0的函数值、导数值以及可能的高阶导数值,把函数表示为一个多项式加尾项的形式。
再利用已知导函数的性质来处理尾项,对函数做进一步讨论。
中值定理的公式(可微分条件,有限增量公式,泰勒公式)都是描述型的数学公式。
描述型的数学公式并不难学。
什么条件下可以用什么样的公式描述,你记住公式,完整地写出来不就行了。
公式中的“点ξ”理解为客观存在的点。
在选定的中心点x0,函数的已知信息越丰富,相应的泰勒多项式与函数越贴近。
1.“微分是个新起点”——若函数f(x)在点x0可微,Δy = f′(x0)Δx +ο(Δx) ;其中,ο(Δx)表示“比Δx高阶的无穷小。
”则函数实际上就有了一个新的(微局部的)表达式:f(x)= f (x0) + f ′(x0)(x-x0) + ο(Δx) (ο(Δx) 尾项,比Δx高阶的无穷小)(潜台词:只有|Δx |充分小,“高阶无穷小”才有意义。
)历史上,这个表达式称为,“带皮阿诺余项的一阶泰勒公式”。
2.拉格郎日公式——若函数f (x)在闭区间 [a,b] 上连续,在(a,b)内可导,则(a,b)内至少有一点ξ,使得f (b)-f (a) = f ′(ξ)(b-a)定理说的是区间,应用时不能太死板。
在满足条件的区间内取任意两点,实际上也组成一个(子)区间。
比如,在区间内任意选定一点x0,对于区间内任意一点x,(任给一点,相对不变。
)也可以有f (x)-f (x0) = f ′(ξ)(x-x0),ξ在x 与x0之间,(潜台词:任意一点x,对应着一个客观存在的“点ξ”,ξ=ξ(x))即f(x)= f(x0)+ f ′(ξ)(x-x0),ξ在x 与x0之间,3. 泰勒公式——如果函数在点x0 邻近有二阶导数f(x)= f(x0)+ f ′(x0)(x-x0)+ (f ″(ξ) /2)(x-x0)²,ξ在x与x0之间式中的尾项叫拉格郎日尾项。
有时也把ξ表示为x0 +θ(x-x0) ,0<θ<1的结构、连续性等,只能依靠已知导函数的性质来限定尾项,一般情况下,我们无法知道ξ=ξ(x)实现应用目的。
如果函数仅在点x0二阶可导,我们可以用高阶无穷小尾项(皮阿诺余项)f(x)= f(x0)+ f ′(x0)(x-x0)+ (f″(x0) /2)(x-x0)²+ ο(|Δx| ²)泰勒系数——如果在点x0 邻近f(x)n+1 阶可导,则有泰勒系数f(x0),f ′(x0) , f″(x0) / 2!,f ′ ″(x0) / 3!,……可以写出,f(x)=n 次泰勒多项式 + 拉格朗日尾项4. 泰勒级数——如果在点x0邻近f(x)无穷阶可导,不妨取x0 = 0,则利用泰勒系数可以写出一个幂级数f(x)= f(0)+ f ′(0) x +(f″(0) /2)x²+(f ′ ″(0 ) / 3!)x³ + ……这个幂级数的和函数是否就是f(x)呢?不一定!(画外音:太诡异了,f(x)产生了泰勒系数列,由此泰勒系数列生成一个幂级数,它的和函数却不一定是f(x)。
就象鸡下的蛋,蛋孵出的却不一定是鸡。
)关键在余项。
当且仅当n →∞时,泰勒公式尾项的极限为0 ,f(x)一定是它的泰勒系数列生成的幂级数的和函数。
称为f(x)的泰勒展开式。
验证这个条件是否成立,往往十分困难。
故通常利用五个常用函数的泰勒展开式,依靠唯一性定理,用间接法求某些别的函数的泰勒展开式。
美国的学生特别轻松,他们的大学数学教材很有创意,早在极限部分就要求他们,当成定义记住指数函数与正弦函数的泰勒展开式。
exp(x)= 1 + x + x²/2!+ x³/3!+ ……-∞<x<∞sin x = x - x³/3! + ……-∞<x<∞(逐项求导, cos x = 1- x²/2!+ ……-∞<x<∞)此外还有 ln(1+x)= x - x²/2 + x³/3 + ……-1<x< 1 (1+x)的μ次方 = 1 + μ x +(μ (μ-1) / 2!)x²+(μ(μ-1)(μ-2) / 3!)x³+ ……1/ (1-x) = 1 + x² + x³ + ……-1<x< 1,上同泰勒公式基本应用(1)——等价无穷小相减产生高阶无穷小。