材料力学习题及答案
材料力学习题及答案

材料⼒学习题及答案材料⼒学习题⼀⼀、计算题1.(12分)图⽰⽔平放置圆截⾯直⾓钢杆(2ABC π=∠),直径mm 100d =,m l 2=,m N k 1q =,[]MPa 160=σ,试校核该杆的强度。
2.(12分)悬臂梁受⼒如图,试作出其剪⼒图与弯矩图。
3.(10分)图⽰三⾓架受⼒P 作⽤,杆的截⾯积为A ,弹性模量为E ,试求杆的内⼒和A 点的铅垂位移Ay δ。
4.(15分)图⽰结构中CD 为刚性杆,C ,D 处为铰接,AB 与DE 梁的EI 相同,试求E 端约束反⼒。
5. (15分) 作⽤于图⽰矩形截⾯悬臂⽊梁上的载荷为:在⽔平平⾯内P 1=800N ,在垂直平⾯内P 2=1650N 。
⽊材的许⽤应⼒[σ]=10MPa 。
若矩形截⾯h/b=2,试确定其尺⼨。
三.填空题(23分)1.(4分)设单元体的主应⼒为321σσσ、、,则单元体只有体积改变⽽⽆形状改变的条件是__________;单元体只有形状改变⽽⽆体积改变的条件是__________________________。
2.(6分)杆件的基本变形⼀般有______、________、_________、________四种;⽽应变只有________、________两种。
3.(6分)影响实际构件持久极限的因素通常有_________、_________、_________,它们分别⽤__________、_____________、______________来加以修正。
4.(5分)平⾯弯曲的定义为______________________________________。
5.(2分)低碳钢圆截⾯试件受扭时,沿____________截⾯破坏;铸铁圆截⾯试件受扭时,沿____________⾯破坏。
四、选择题(共2题,9分)2.(5分)图⽰四根压杆的材料与横截⾯均相同,试判断哪⼀根最容易失稳。
答案:()材料⼒学习题⼆⼆、选择题:(每⼩题3分,共24分)1、危险截⾯是______所在的截⾯。
材料力学试题及答案

材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 导电性答案:D2. 根据胡克定律,当材料受到正应力时,其应变与应力成正比,比例系数称为:A. 杨氏模量B. 剪切模量C. 泊松比D. 屈服强度答案:A3. 在材料力学中,材料的屈服强度是指:A. 材料开始发生塑性变形的应力B. 材料发生断裂的应力C. 材料发生弹性变形的应力D. 材料发生脆性断裂的应力答案:A4. 材料的疲劳寿命与下列哪一项无关?A. 材料的疲劳极限B. 应力循环次数C. 材料的弹性模量D. 应力循环的幅度答案:C5. 在材料力学中,下列哪一项不是材料的力学性能指标?A. 硬度B. 韧性C. 密度D. 冲击韧性答案:C二、简答题(每题5分,共10分)6. 简述材料力学中弹性模量和剪切模量的区别。
答:弹性模量,也称为杨氏模量,是描述材料在受到正应力作用时,材料的纵向应变与应力成正比的比例系数。
剪切模量,也称为刚度模量,是描述材料在受到剪切应力作用时,材料的剪切应变与剪切应力成正比的比例系数。
7. 什么是材料的疲劳寿命,它与哪些因素有关?答:材料的疲劳寿命是指材料在反复加载和卸载过程中,从开始加载到发生疲劳断裂所需的循环次数。
它与材料的疲劳极限、应力循环的幅度、材料的微观结构和环境因素等有关。
三、计算题(每题15分,共30分)8. 一根直径为20mm的圆杆,材料的杨氏模量为200GPa,当受到100N的拉力时,求圆杆的伸长量。
答:首先计算圆杆的截面积A = π * (d/2)^2 = π * (0.02/2)^2m^2 = 3.14 * 0.01 m^2。
然后根据胡克定律ΔL = F * L / (A * E),其中 L 为杆长,假设 L = 1m,代入数值得ΔL = 100 * 1 / (3.14* 0.01 * 200 * 10^9) m = 7.96 * 10^-6 m。
材料力学考试题及答案

材料力学考试题及答案一、选择题(每题2分,共10分)1. 材料力学中,下列哪项不是应力的分类?A. 正应力B. 剪应力C. 拉应力D. 扭应力答案:C2. 材料力学中,下列哪项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 硬度答案:D3. 在拉伸试验中,下列哪项是正确的?A. 弹性模量是应力与应变的比值B. 屈服强度是材料开始发生塑性变形的应力C. 抗拉强度是材料在拉伸过程中的最大应力D. 所有选项都是正确的答案:D4. 根据胡克定律,下列哪项描述是错误的?A. 弹性范围内,应力与应变成正比B. 弹性模量是比例极限C. 应力是单位面积上的力D. 应变是单位长度的变形量答案:B5. 材料力学中,下列哪项不是材料的失效形式?A. 屈服B. 断裂C. 疲劳D. 腐蚀答案:D二、填空题(每空1分,共10分)1. 材料在受到拉伸力作用时,其内部产生的应力称为________。
答案:正应力2. 材料在受到剪切力作用时,其内部产生的应力称为________。
答案:剪应力3. 材料力学中,材料在外力作用下发生形变,当外力去除后,材料能够恢复原状的性质称为________。
答案:弹性4. 材料力学中,材料在外力作用下发生形变,当外力去除后,材料不能恢复原状的性质称为________。
答案:塑性5. 材料力学中,材料在外力作用下发生形变,当外力去除后,材料部分恢复原状的性质称为________。
答案:韧性三、简答题(每题5分,共20分)1. 简述材料力学中应力和应变的关系。
答案:材料力学中,应力和应变的关系可以通过胡克定律来描述,即在弹性范围内,应力与应变成正比,比例系数即为弹性模量。
2. 描述材料力学中材料的屈服现象。
答案:材料力学中,屈服现象指的是材料在受到外力作用时,从弹性变形过渡到塑性变形的临界点,此时材料的应力不再随着应变的增加而增加。
3. 解释材料力学中的疲劳破坏。
答案:材料力学中的疲劳破坏是指材料在循环加载下,即使应力水平低于材料的静态强度极限,也会在经过一定循环次数后发生破坏的现象。
材料力学试题及答案

材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是基本力学性质?A. 弹性B. 塑性C. 硬度D. 韧性2. 材料在拉伸过程中,当应力达到屈服点后,材料将:A. 断裂B. 产生永久变形C. 恢复原状D. 保持不变3. 材料的弹性模量是指:A. 材料的密度B. 材料的硬度C. 材料的抗拉强度D. 材料在弹性范围内应力与应变的比值4. 根据材料力学的胡克定律,下列说法正确的是:A. 应力与应变成正比B. 应力与应变成反比C. 应力与应变无关D. 应力与应变成线性关系5. 材料的疲劳寿命是指:A. 材料的总寿命B. 材料在循环加载下达到破坏的周期数C. 材料的断裂寿命D. 材料的磨损寿命6. 材料的屈服强度是指:A. 材料在弹性范围内的最大应力B. 材料在塑性变形开始时的应力C. 材料的抗拉强度D. 材料的极限强度7. 材料的断裂韧性是指:A. 材料的硬度B. 材料的抗拉强度C. 材料抵抗裂纹扩展的能力D. 材料的屈服强度8. 材料力学中的泊松比是指:A. 材料的弹性模量B. 材料的屈服强度C. 材料在拉伸时横向应变与纵向应变的比值D. 材料的断裂韧性9. 在材料力学中,下列哪一项是衡量材料脆性程度的指标?A. 弹性模量B. 屈服强度C. 断裂韧性D. 泊松比10. 材料在受力过程中,当应力超过其极限强度时,将:A. 发生弹性变形B. 发生塑性变形C. 发生断裂D. 恢复原状答案1. C2. B3. D4. A5. B6. B7. C8. C9. C10. C试题二、简答题(每题10分,共30分)1. 简述材料力学中材料的三种基本力学性质。
2. 解释什么是材料的疲劳现象,并简述其对工程结构的影响。
3. 描述材料在拉伸过程中的四个主要阶段。
答案1. 材料的三种基本力学性质包括弹性、塑性和韧性。
弹性指的是材料在受到外力作用时发生变形,当外力移除后能够恢复原状的性质。
塑性是指材料在达到一定应力水平后,即使外力移除也无法完全恢复原状的性质。
材料力学的试题及答案

材料力学的试题及答案一、选择题1. 材料力学中,下列哪个选项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 硬度答案:D2. 根据材料力学的理论,下列哪个选项是正确的?A. 材料在弹性范围内,应力与应变成正比B. 材料在塑性变形后可以完全恢复原状C. 材料的屈服强度总是高于其抗拉强度D. 材料的硬度与弹性模量无关答案:A二、填空题1. 材料力学中,应力是指_______与_______的比值。
答案:单位面积上的压力;受力面积2. 在材料力学中,材料的弹性模量E与_______成正比,与_______成反比。
答案:杨氏模量;泊松比三、简答题1. 简述材料力学中材料的三种基本变形类型。
答案:材料力学中材料的三种基本变形类型包括拉伸、压缩和剪切。
2. 描述材料的弹性模量和屈服强度的区别。
答案:弹性模量是指材料在弹性范围内应力与应变的比值,反映了材料的刚性;屈服强度是指材料开始发生永久变形时的应力值,反映了材料的韧性。
四、计算题1. 已知一材料的弹性模量E=200 GPa,杨氏模量E=210 GPa,泊松比ν=0.3,试计算该材料的剪切模量G。
答案:G = E / (2(1+ν)) = 200 / (2(1+0.3)) = 200 / 2.6 ≈ 76.92 GPa2. 某材料的抗拉强度为σt=300 MPa,若该材料承受的应力为σ=200 MPa,试判断材料是否发生永久变形。
答案:由于σ < σt,材料不会发生永久变形。
五、论述题1. 论述材料力学在工程设计中的重要性。
答案:材料力学是工程设计中的基础学科,它提供了对材料在力作用下行为的深入理解。
通过材料力学的分析,工程师可以预测材料在各种载荷下的响应,设计出既安全又经济的结构。
此外,材料力学还有助于新材料的开发和现有材料性能的优化。
2. 讨论材料的疲劳寿命与其力学性能之间的关系。
答案:材料的疲劳寿命与其力学性能密切相关。
材料的疲劳寿命是指在循环载荷作用下材料能够承受的循环次数。
材料力学试题及答案

材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,弹性模量E的单位是()。
A. N/mB. N·mC. PaD. m/N答案:C2. 材料力学中,材料的屈服强度通常用()表示。
A. σyB. σsC. σbD. E答案:A3. 根据胡克定律,当应力超过材料的弹性极限时,材料将()。
A. 保持弹性B. 发生塑性变形C. 发生断裂D. 无法预测答案:B4. 材料力学中,第一强度理论认为材料破坏的原因是()。
A. 最大正应力B. 最大剪应力C. 最大正应变D. 最大剪应变答案:A5. 下列哪种材料不属于脆性材料()。
A. 玻璃B. 铸铁C. 混凝土D. 铝答案:D6. 材料力学中,梁的弯曲应力公式为()。
A. σ = Mc/IB. σ = Mc/IbC. σ = Mc/ID. σ = Mc/Ib答案:C7. 在材料力学中,梁的剪应力公式为()。
A. τ = VQ/IB. τ = VQ/ItC. τ = VQ/ID. τ = VQ/It答案:B8. 材料力学中,梁的挠度公式为()。
A. δ = (5PL^3)/(384EI)B. δ = (5PL^3)/(384EI)C. δ = (PL^3)/(48EI)D. δ = (PL^3)/(48EI)答案:C9. 材料力学中,影响材料屈服强度的因素不包括()。
A. 材料的微观结构B. 加载速度C. 温度D. 材料的密度答案:D10. 材料力学中,影响材料疲劳强度的因素不包括()。
A. 应力集中B. 表面粗糙度C. 材料的硬度D. 材料的导热性答案:D二、填空题(每题2分,共20分)1. 材料力学中,材料在外力作用下,其形状和尺寸发生的变化称为______。
答案:变形2. 材料力学中,材料在外力作用下,其内部产生的相互作用力称为______。
答案:应力3. 材料力学中,材料在外力作用下,其内部产生的相对位移称为______。
答案:应变4. 材料力学中,材料在外力作用下,其内部产生的单位面积上的力称为______。
材料力学试题及答案

材料力学试题及答案一、选择题(每题5分,共25分)1. 下列哪个选项是材料力学的基本假设之一?A. 材料是各向同性的B. 材料是各向异性的C. 材料是均匀的D. 材料是线弹性的答案:A2. 在材料力学中,下列哪个公式表示杆件的正应力?A. σ = F/AB. τ = F/AC. σ = F/LD. τ = F/L答案:A3. 当材料受到轴向拉伸时,下列哪个选项是正确的?A. 拉伸变形越大,材料的强度越高B. 拉伸变形越小,材料的强度越高C. 拉伸变形与材料的强度无关D. 拉伸变形与材料的强度成正比答案:B4. 下列哪种材料在拉伸过程中容易发生断裂?A. 钢材B. 铸铁C. 铝合金D. 塑料答案:B5. 下列哪个选项表示材料的泊松比?A. μ = E/GB. μ = G/EC. μ = σ/εD. μ = ε/σ答案:C二、填空题(每题10分,共30分)6. 材料力学研究的是材料在______作用下的力学性能。
答案:外力7. 材料的强度分为______强度和______强度。
答案:屈服强度、断裂强度8. 材料在受到轴向拉伸时,横截面上的正应力公式为______。
答案:σ = F/A三、计算题(每题25分,共50分)9. 一根直径为10mm的圆钢杆,受到轴向拉伸力F=20kN 的作用,求杆件横截面上的正应力。
解:已知:d = 10mm,F = 20kNA = π(d/2)^2 = π(10/2)^2 = 78.5mm^2σ = F/A = 20kN / 78.5mm^2 = 255.8N/mm^2答案:杆件横截面上的正应力为255.8N/mm^2。
10. 一根长度为1m的杆件,受到轴向拉伸力F=10kN的作用,已知材料的弹性模量E=200GPa,泊松比μ=0.3,求杆件的伸长量。
解:已知:L = 1m,F = 10kN,E = 200GPa,μ = 0.3ε = F/(EA) = 10kN / (200GPa × π(10mm)^2) =0.025δ = εL = 0.025 × 1000mm = 25mm答案:杆件的伸长量为25mm。
材料力学试题及答案

材料力学试题及答案一、选择题1. 材料力学中,下列哪个参数是用来描述材料在受力时抵抗变形的能力?A. 弹性模量B. 屈服强度C. 抗拉强度D. 断裂韧性答案:A2. 以下哪种材料在受力后能够完全恢复原状?A. 弹性体B. 塑性体C. 粘弹性体D. 脆性体答案:A3. 应力集中现象主要发生在哪种情况下?A. 材料表面存在缺陷B. 材料内部存在孔洞C. 材料受到均匀分布的载荷D. 材料受到单一集中载荷答案:D4. 根据胡克定律,当应力不超过比例极限时,应力与应变之间的关系是:A. 线性的B. 非线性的C. 指数的D. 对数的答案:A5. 材料的疲劳破坏是指在何种条件下发生的?A. 单次超负荷B. 长期重复载荷C. 瞬间高温D. 腐蚀环境答案:B二、填空题1. 在简单的拉伸和压缩实验中,应力(σ)是力(F)与横截面积(A)的比值,即σ=______。
答案:F/A2. 材料的韧性是指其在断裂前能够吸收的能量,通常通过______试验来测定。
答案:冲击3. 当材料在受力时发生塑性变形,且变形量随时间增加而增加,这种现象称为______。
答案:蠕变4. 剪切应力τ是剪切力(V)与剪切面积(A)的比值,即τ=______。
答案:V/A5. 材料的泊松比是指在单轴拉伸时,横向应变与纵向应变的比值,通常用希腊字母______表示。
答案:ν三、简答题1. 请简述材料弹性模量的定义及其物理意义。
答:弹性模量,又称杨氏模量,是指材料在弹性范围内抵抗形变的能力的量度。
它定义为应力与相应应变的比值。
物理意义上,弹性模量越大,表示材料在受力时越不易发生形变,即材料越硬。
2. 描述材料的屈服现象,并解释屈服强度的重要性。
答:屈服现象是指材料在受到外力作用时,由弹性状态过渡到塑性状态的过程。
在这个过程中,材料首先经历弹性变形,当应力达到某个特定值时,即使应力不再增加,材料也会继续发生显著的塑性变形。
屈服强度是衡量材料开始屈服的应力值,它对于工程设计和材料选择具有重要意义,因为它决定了结构在载荷作用下的安全性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学习题及答案材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M 的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M,即扭矩,其大小等于M。
x1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角,=20?,试求该点处的正应力ζ与切应力η。
解:应力p与斜截面m-m的法线的夹角α=10?,故ζ,pcosα=120×cos10?=118.2MPaη,psinα=120×sin10?=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为ζ=100 MPa,max底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
1解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力63 F=100×10×0.04×0.1/2=200×10N =200 kN N其力偶即为弯矩-3 M=200×(50-33.33)×10=3.33 kN?m z1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
2解:(a) F=F, F=0, F=F ,NABNBCNmax(b) F=F, F=,F, F=F ,NABNBCNmax(c) F=,2 kN, F=1 kN, F=3 kN, F=3 kN ,NABN2BCNCDNmax(d) F=1 kN, F=,1 kN, F=1 kN ,NABNBCNmax2-2 图示阶梯形截面杆AC,承受轴向载荷F=200 kN与F=100 kN,AB段的直径d=40 mm。
如欲使BC与121AB段的正应力相同,试求BC段的直径。
解:因BC与AB段的正应力相同,故22-3 图示轴向受拉等截面杆,横截面面积A=500 mm,载荷F=50 kN。
试求图示斜截面m-m上的正应力与切3应力,以及杆内的最大正应力与最大切应力。
解:2,4(2-11) 图示桁架,由圆截面杆1与杆2组成,并在节点A承受载荷F=80kN 作用。
杆1、杆2的直径分别为d=30mm和d=20mm,两杆的材料相同,屈服极限ζ12=320MPa,安全因数n=2.0。
试校核桁架的强度。
ss解:由A点的平衡方程可求得1、2两杆的轴力分别为由此可见,桁架满足强度条件。
2,5(2-14) 图示桁架,承受载荷F作用。
试计算该载荷的许用值[F]。
设各杆的4横截面面积均为A,许用应力均为[ζ]。
解:由C点的平衡条件由B点的平衡条件1杆轴力为最大,由其强度条件2,6(2-17) 图示圆截面杆件,承受轴向拉力F作用。
设拉杆的直径为d,端部墩头的直径为D,高度为h,试从强度方面考虑,建立三者间的合理比值。
已知许用应力[ζ]=120MPa,许用切应力[η]=90MPa,许用挤压应力[ζ]=240MPa。
bs解:由正应力强度条件由切应力强度条件由挤压强度条件式(1):式(3)得式(1):式(2)得故 D:h:d=1.225:0.333:152,7(2-18) 图示摇臂,承受载荷F与F作用。
试确定轴销B的直径d。
已知载荷F=50kN,F=35.4kN,1212许用切应力[η]=100MPa,许用挤压应力[ζ]=240MPa。
bs解:摇臂ABC受F、F及B点支座反力F三力作用,根据三力平衡汇交定理知F 的方向如图(b)所示。
12BB由平衡条件由切应力强度条件由挤压强度条件故轴销B的直径6第三章轴向拉压变形3-1 图示硬铝试样,厚度δ=2mm,试验段板宽b=20mm,标距l=70mm。
在轴向拉F=6kN的作用下,测得试验段伸长Δl=0.15mm,板宽缩短Δb=0.014mm。
试计算硬铝的弹性模量E与泊松比μ。
解:由胡克定律 3-2(3-5) 图示桁架,在节-4-4点A处承受载荷F作用。
从试验中测得杆1与杆2的纵向正应变分别为ε=4.0×10与ε=2.0×10。
试确12定载荷F及其方位角,之值。
已知杆1与杆2的横截面面积A=A=200mm2,弹性模量E=E=200GPa。
1212解:杆1与杆2的轴力(拉力)分别为由A点的平衡条件22 (1)+(2)并开根,便得7式(1):式(2)得3-3(3-6) 图示变宽度平板,承受轴向载荷F作用。
试计算板的轴向变形。
已知板的厚度为δ,长为l,左、右端的宽度分别为b与b,弹性模量为E。
12解:3-4(3-11) 图示刚性横梁AB,由钢丝绳并经无摩擦滑轮所支持。
设钢丝绳的轴向刚度(即产生单位轴向变形所需之力)为k,试求当载荷F作用时端点B的铅垂位移。
解:设钢丝绳的拉力为T,则由横梁AB的平衡条件8钢丝绳伸长量由图(b)可以看出,C点铅垂位移为Δl/3,D点铅垂位移为2Δl/3,则B点铅垂位移为Δl,即 3-5(3-12) 试计算图示桁架节点A的水平与铅垂位移。
设各杆各截面的拉压刚度均为EA。
解:(a) 各杆轴力及伸长(缩短量)分别为因为3杆不变形,故A点水平位移为零,铅垂位移等于B点铅垂位移加2杆的伸长量,即(b) 各杆轴力及伸长分别为 A点的水平与铅垂位移分别为(注意AC杆轴力虽然为零,但对A位移有约束)n 3-6(3-14) 图a所示桁架,材料的应力-应变关系可用方程σ=Bε表示,图b,,其中n和B为由实验测定的已知常数。
试求节点C的铅垂位移。
设各杆的横截面面积均为A。
9(a) (b)解:2根杆的轴力都为2根杆的伸长量都为则节点C的铅垂位移3-7(3-16) 图示结构,梁BD为刚体,杆1、杆2与杆3的横截面面积与材料均相同。
在梁的中点C承受集中2载荷F作用。
试计算该点的水平与铅垂位移。
已知载荷F=20kN,各杆的横截面面积均为A=100mm,弹性模量E=200GPa,梁长l=1000mm。
10解:各杆轴力及变形分别为梁BD作刚体平动,其上B、C、D三点位移相等 3-8(3-17) 图示桁架,在节点B和C作用一对大小相等、方向相反的载荷F。
设各杆各截面的拉压刚度均为EA,试计算节点B和C间的相对位移Δ。
B/C解: 根据能量守恒定律,有3-9(3-21) 由铝镁合金杆与钢质套管组成一复合杆,杆、管各载面的刚度分别为EA与EA。
复合杆承受1122轴向载荷F作用,试计算铝镁合金杆与钢管横载面上的正应力以及杆的轴向变形。
解:设杆、管承受的压力分别为F、F,则 N1N2F+F=F (1) N1N2变形协调条件为杆、管伸长量相同,即联立求解方程(1)、(2),11得杆、管横截面上的正应力分别为杆的轴向变形3-10(3-23) 图示结构,杆1与杆2的弹性模量均为E,横截面面积均为A,梁BC为刚体,载荷F=20kN,许用拉应力[ζ]=160MPa,许用压应力[ζ]=110MPa。
试确定各杆的横tc截面面积。
解:设杆1所受压力为,杆2所受拉力为,则由梁FFBC的平衡条件得 N1N2变形协调条件为杆1缩短量等于杆2伸长量,即联立求解方程(1)、(2)得因为杆1、杆2的轴力相等,而许用压应力小于许用拉应力,故由杆1的压应力强度条件得123-11(3-25) 图示桁架,杆1、杆2与杆3分别用铸铁、铜和钢制成,许用应力分别为[ζ]=40MPa,[ζ]=60MPa,12[ζ]=120MPa,弹性模量分别为E=160GPa,E=100GPa,E=200GPa。
若载荷F=160kN,A=A=2A,试确定3123123各杆的横截面面积。
解:设杆1、杆2、杆3的轴力分别为F(压)、F(拉)、F(拉),则由C点的平衡条件 N1N2N3杆1、杆2的变形图如图(b)所示,变形协调条件为C点的垂直位移等于杆3的伸长,即联立求解式(1)、(2)、(3)得由三杆的强度条件132注意到条件 A=A=2A,取A=A=2A=2448mm。
1231233-12(3-30) 图示组合杆,由直径为30mm的钢杆套以外径为50mm、内径为30mm的铜管组成,二者由两个直径为10mm的铆钉连接在一起。
铆接后,温度升高40?,试计算铆钉剪切面上的切应力。
钢与铜的弹性模,,,,,,,,量分别为Es=200GPa与Ec=100GPa,线膨胀系数分别为α=12.5×10?与α=16×10?。
l sl c解:钢杆受拉、铜管受压,其轴力相等,设为F,变形协调条件为钢杆和铜管的伸长量相等,即 N铆钉剪切面上的切应力3-13(3-32) 图示桁架,三杆的横截面面积、弹性模量与许用应力均相同,并分别为A、E与[ζ],试确定该桁架的许用载荷[F]。
为了提高许用载荷之值,现将杆3的设计长度l变为l+Δ。
试问当Δ为何值时许用载荷最大,其值[F]为何。
max解:静力平衡条件为变形协调条件14为联立求解式(1)、(2)、(3)得杆3的轴力比杆1、杆2大,由杆3的强度条件若将杆3的设计长度l变为l+Δ,要使许用载荷最大,只有三杆的应力都达到[σ],此时变形协调条件为1516第四章扭转4-1(4-3) 图示空心圆截面轴,外径D=40mm,内径d=20mm,扭矩T=1kN•m。
试计算横截面上的最大、最小扭转切应力,以及A点处(ρ=15mm)的扭转切应力。
A17解:因为η与ρ成正比,所以4-2(4-10) 实心圆轴与空心圆轴通过牙嵌离合器连接。
已知轴的转速n=100 r/min,传递功率P=10 kW,许用切应力[η]=80MPa,d/d=0.6。
试确定实心轴的直径d,空心轴的内、外径d和d。
1212解:扭矩由实心轴的切应力强度条件由空心轴的切应力强度条件4-3(4-12) 某传动轴,转速n=300 r/min,轮1为主动轮,输入功率P=50kW,轮2、轮3与轮14为从动轮,输出功率分别为P=10kW,P=P=20kW。
23418(1) 试求轴内的最大扭矩;(2) 若将轮1与轮3的位置对调,试分析对轴的受力是否有利。
解:(1) 轮1、2、3、4作用在轴上扭力矩分别为轴内的最大扭矩若将轮1与轮3的位置对调,则最大扭矩变为最大扭矩变小,当然对轴的受力有利。
4-4(4-21) 图示两端固定的圆截面轴,承受扭力矩作用。
试求支反力偶矩。
设扭转刚度为已知常数。
解:(a) 由对称性可看出,M=M,再由平衡可看出M=M=M ABAB19(b)显然M=M,变形协调条件为解得(c) AB(d)由静力平衡方程得变形协调条件为联立求解式(1)、(2)得4-5(4-25) 图示组合轴,由套管与芯轴并借两端刚性平板牢固地连接在一起。