高中数学第一讲相似三角形的判定及有关性质一平行线等分线段定理教材梳理素材新人教A版4-1!
高中数学第一讲相似三角形的判定及有关性质1.1平行线等分线段定理课件新人教A版选修4-1

在△BCF 中,点 D 是 BC 的中点, DG∥BF,
所以点 G 为 CF 的中点,即 CG=GF. 在G 的中点,即 AF=FG. 所以 AF=13AC=3.
[变式训练] 如图所示,在▱ABCD 中, 对角线 AC,BD 相交于点 O,OE∥AB 交 BC 于 E,AD=6,求 BE 的长.
2.下列用平行线等分线段的图形中,错误的是( )
解析:根据平行线等分线段定理易知 A、B、D 正确, 只有 C 中 AC 线段被第三条平行线所截,DF 线段只被两 条平行线所截,很明显 AB≠DE,故选 C.
答案:C
3.如图所示,l1∥l2∥l3,直线 AB 与 l1、l2、l3 相交于 点 A、E、B,直线 CD 与 l1、l2、l3 相交于点 C、E、D, AE=EB,则有( )
(3)如图所示,已知 ABCD 中,AC,BD 相交于点 O,AA1⊥l,BB1⊥l,CC1⊥l,DD1⊥l,则 A1B1=C1D1.( )
(4)如图所示,若 AB∥CD,AE=EC,则 BF= FD.( )
解析:(1)三条平行线在对角线所在的直线上截得的 线段相等,那么在另一组对边所在的直线上截得线段也相 等,故正确;
第一讲 相似三角形的判定及有关性质
[知识提炼·梳理]
1.平行线等分线段定理
文字语言
图形语言 符号语言
如果一组平行线在一条 直线上截得的线段相 等,那么在其他直线上 截得的线段也相等
lA1∥1Al22=∥Al32A3⇒ B1B2=B2B3
[思考尝试·夯基]
1.思考判断(正确的打“√”,错误的打“×”) (1)过平行四边形的对角线交点且平行于一组对边的 直线必平分另一组对边.( ) (2)如图所示,若 AB∥EF∥DC,AE=ED,则 BF= FC=AE=ED.( )
选修4-1第一讲相似三角形的判定及有关性质平行线分线段成比例定理课件人教新课标1

E.求证:AD AE DE . AB AC BC
A
(图形语言)
法2:为了证明
AD AB
DE BC
,需
D
用平行线分线段
线交于点G.
E
G
C
证明:过点C作CG//AB,且与DE的延长线交于点G.
∵DE//BC, ∴AD:AB=AE:AC ∵CG//AB, ∴DE:DG=AE:AC
A
D L1
B
E L2
F
C L3
图1
A
DE
B
C
图2
(二、提高题:)
C
1、如图:EF∥AB,BF:FC= 5 :4, AC=3厘米,则CE=(4 cm)
EF
2、已知在△ABC中,D3E∥BC,EF∥DC, A 那么下列结论不成立的是( B )
A
B
A
AD AF
AB AD
B AD AC
AB AE
C AF AD
设线段AB的中点为P1,线 段BC的三等分点为P2、P3. AP1=P1B=BP2= P2P3= P3C
l A
P1
B
P2 P3
C
l
D
Q1
E
l1 a1
Q2
l2 a1
Q3
F
a3
分别过点P1,P2, P3作直线
l3
a1,a2,a3平行于l1,与l 的交
点分别为Q1,Q2,Q3.
这时你想到了什么?
DQ1=Q1E=EQ2=Q2Q3=Q3F 平行线等分线段定理
(2)已知AB=a,BC=b,EF= c,
ac
C
则DE=( b )
D L1 E L2
C L3
第一讲相似三角形的性质与判定

第一讲 相似三角形的性质与判定一、知识要点1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。
对应边的比叫做相似比。
三条平行线截两条直线所得的对应线段的比相等。
2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS ”)③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS ”)④两角对应相等(AA)直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL ”)。
相似三角形的基本图形:判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。
3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方。
4.相似三角形的应用:求物体的长或宽或高;求有关面积等。
二、考点精讲考点一:平行线分线段成比例例1、(2014广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( )A . 7B . 7.5C . 8D . 8.52.下列各组线段中,能成比例的是 ( )A 、 1㎝,3㎝,4㎝,6㎝B 、 30㎝,12㎝,0.8㎝,0.2㎝C 、 0.1㎝,0.2㎝,0.3㎝,0.4㎝D 、 12㎝,16㎝,45㎝,60㎝3. 如果线段2=a ,且a 、b 的比例中项为10,那么线段b = 。
4、若x :y =3,则x :(x+y)=_______5. 在长度为1的线段上找到两个黄金分割点P、Q.则PQ=( )A .215-B .53- C.25- D .253-6. 已知0432≠==cb a ,则cb a +的值为( )A.54B.45C.2D.21 考点二:相似三角形的判定例2、(2013湖北荆州)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )A .1对B .2对C .3对D .4对 例3.如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O.(1)求证:△COM∽△CBA; (2)求线段OM 的长度.练习:1.下列各组三角形一定相似的是( )A .两个直角三角形B .两个钝角三角形C .两个等腰三角形D .两个等边三角形 2.如图,DE∥BC,EF∥AB,则图中相似三角形一共有( ) A .1对 B .2对 C .3对 D .4对3、如图,P 是Rt ΔABC 的斜边BC 上异于B 、C 的一点,过点P 做直线截 ΔABC ,使截得的三角形与ΔABC 相似,满足这样条件的直线共有( )第2题4.如图,∠ADC =∠ACB 5.如图,AD ∥EF ∥BC 考点三:相似三角形的性质例4、(2013山东烟台)如图,△ABC 中,点D 在线段BC 上, 且△ABC ∽△DBA ,则下列结论一定正确的是( )A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BC D .AB ·AD =AD ·CD例5、(2014浙江嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( )AD E(A )32(B )33(C )34(D )36例6(2012•重庆)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则ABC 与△DEF 的面积之比为 .练习:1.(2014青海西宁,10,3分)如图6,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为()A .9B .12C .16D .18Q PECDBA2.(2013四川雅安,9,3分)如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )A .△ADE ∽△ABCB .AFC ABF S S △△= C .ABC ADE S S △△41=D .DF=EF 3.(2013辽宁丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________.三、反馈练习反馈题1:如图,梯形ABCD 中,AB∥CD,E 为DC 中点,直线BE 交AC 于F ,交AD 的延长线于G ;请说明:EF·BG=BF·EG反馈题2,如图,⊙O 是△ABC 的外接圆,圆心O 在AB 上,过点B 作⊙O 的切线交AC 的延长线于点D 。
高中数学第一讲相似三角形的判定及有关性质第一节平行线等分线段定理课前导引素材新人教A版4-1!

第一节平行线等分线段定理
课前导引
情景导入
假若你手中有一把无刻度直尺和一副圆规,你能把一条线段三等分、五等分、七等分吗?你当然熟悉三角形、梯形的中位线定理,但它们的逆命题是否仍旧成立呢?这些都离不开本节定理――平行线等分线段定理.
知识预览
1.平行线等分线段定理.
如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.
2.两个推论:
推论1:经过三角形一边的中点与另一边平行的直线必平分第三边.
推论2:经过梯形一腰的中点且与底边平行的直线平分另一腰.
说明:(1)本节重点为平行线等分线段定理及其两个推论.两个推论是“定理”的特殊情况.
(2)猜想和证明是探究问题的两个必不可少的方法,只有猜想,得到的结论是不可靠的,必须通过严格的数学证明才能得到正确的、具有一般意义的结论.
(3)证明应从语言、图形、符号三个方面有机结合进行.
(4)猜想往往是对特例的观察和概括.
1。
数学相似三角形的知识点归纳

数学相似三角形的知识点归纳数学相似三角形的知识点归纳数学是人们认识自然、认识社会的重要工具。
它是一门古老而崭新的科学,是整个科学技术的基础。
随着社会的发展、时代的变化,以及信息技术的发展,数学在社会各个方面的应用越来越广泛,作用越来越重要。
以下是店铺整理的数学相似三角形的知识点归纳,希望帮助到您。
数学相似三角形的知识点归纳篇1本章有以下几个主要内容:一、比例线段1、线段比,2、成比例线段,3、比例中项————黄金分割,4、比例的性质:基本性质;合比性质;等比性质(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。
(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。
简称比例线段。
(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。
这个点叫做黄金分割点。
顶角是36度的等腰三角形叫做黄金三角形宽和长的比等于黄金数的矩形叫做黄金矩形。
(5)比例的性质基本性质:内项积等于外项积。
(比例=====等积)。
主要作用:计算。
合比性质,主要作用:比例的互相转化。
等比性质,在使用时注意成立的条件。
二、相似三角形的判定平行线等分线段——————平行线分线段成比例————————平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例——————(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似——————相似三角形的判定:类比于全等三角形的判定。
三、相似三角形的性质1、定义:相似三角形对应角相等对应边成比例。
2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比3、相似三角形周长的比等于相似比4、相似三角形面积的比等于相似比的平方四、图形的位似变换1、几何变换:平移,旋转,轴对称,相似变换2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。
高中数学第一讲相似三角形的判定及有关性质二平行线分线段成比例定理教材梳理素材1

三 相似三角形的判定及性质庖丁巧解牛知识·巧学一、平行线分线段成比例定理1。
定理:三条平行线截两条直线,所得的对应线段成比例.2.用符号语言表示:如图1-2-1所示,a ∥b ∥c ,则EF DE BC AB =.图1—2-13。
定理的证明:若BCAB 是有理数,则将AB 、BC 分成相等的线段,把问题转化为平行线等分线段,达到证明的目的,再推广到整个实数范围,其完整的推广过程等学到高等数学时才会实现。
4。
定理的条件:与平行线等分线段定理相同,它需要a 、b 、c 互相平行,构成一组平行线,m 与n 可以平行,也可以相交,但它们必须与已知的平行线a 、b 、c 相交,即被平行线a 、b 、c 所截.平行线的条数还可以更多。
知识拓展对于3条平行线截两条直线的图形,要注意以下变化(如图121):如果已知是a ∥b ∥c ,那么根据定理就可以得到所有的对应线段都成比例,如FDFE CA CB DF DE AC AB ==,等. 记忆要诀 对于平行线分线段成比例定理,可以归纳为右左右左全上全上下上下上===1,,等,便于记忆.二、平行线分线段成比例定理的推论1。
推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
2。
符号语言表示:如图1-2-2所示,a ∥b ∥c,则BC DE AC AE AB AD ==(1) (2)图1—2—23.推论的证明:直接利用平行线分线段成比例定理,应当注意的是一定要将线段对应好.误区警示实际应用时,通常图形中不会出现三条平行线,此时要注意正确识别图形,如图123.图1-2-3问题·探究问题1 平行线分线段成比例定理与平行线等分线段定理有何区别与联系?怎样正确使用平行线分线段成比例定理?思路:从两个定理的条件和结论两方面进行对比,可以找到它们的共同点和区别点.探究:我们学习的平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等(如图1—2-4,若l 1∥l 2∥l 3,AB =BC ,则DE=EF)。
知识讲解—相似三角形的判定及有关性质

条件二:∠2=∠ACB.
条件三: ,即 .
【变式2】已知:如图正方形ABCD中,P是BC上的点,且BP=3PC,
Q是CD的中点.求证:△ADQ∽△QCP.
【答案】因△ADQ与△QCP是直角三角形,虽有相等的直角,但不知AQ与PQ是否垂直,所以不能用两个角对应相等判定.而四边形ABCD是正方形,Q是CD中点,而BP=3PC,所以可用对应边成比例夹角相等的方法来判定.具体证明过程如下:
∴
【变式4】如右图,BD、CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F、H.
求证:(1)DG2=BG·CG;
(2)BG·CG=GF·GH.
【答案】(1)DG为Rt△BCD斜边上的高,
∴由射影定理得DG2=BG·CG.
(2)∵DG⊥BC,∴∠ABC+∠H=90°,
2有时需要用到方程的思想.
3在复杂图形中分解出射影定理的基本图形来使用它的性质进行证明,是一种常用的证明线段等积式的方法,必要时需结合代换线段或线段的等积式来解决问题.
【典型例题】
类型一、平行截线定理的应用
例1.如图,D、E、F分别为△ABC边BC、CA、AB上的点, 。连结DE、CF。求证:DE和CF互相平分。
要点三、射影定理
直角三角形斜边上的高是两直角边在斜边上射影的比例中项,两直角边分别是它们在斜边上的射影与斜边的比例中项。
如右图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,
则AD2=BD·DC,AB2=BD·BC,AC2=CD·BC。
要点诠释:
1根据射影定理,已知“直角三角形斜边上的高”图形中六条线段中的任意两条,就可求出其余四条线段,
∴DE和CF互相平分
高中数学 第一章 相似三角形的判定及有关性 第三节 相

第三节相似三角形的判定及性质本讲小结1.平行线等分线段定理(1)定理的内容:如果一组平行线在一条直线上截得的线段相等,那么在任一条与这组平行线相交的直线上截得的线段也相等.推论1:经过三角形一边的中点且与另一边平行的直线必平分第三边.推论2:经过梯形一腰的中点且与底边平行的直线必平分另一腰.(2)中位线定理.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.两定理即为推论1、推论2的逆定理.2.平行线分线段成比例定理(1)定理的内容:三条平行线截两条直线,所得的对应线段成比例.推论1:平行于三角形一边的直线截其他两边的直线(或两边的延长线)所得的对应线段成比例.推论2:用平行于三角形一边且和其他两边相交的直线截三角形,所得的三角形三边与原三角形的三边对应成比例.推论1的逆定理:如果一条直线截三角形两边或两边的延长线所得的对应线段成比例,那么这条直线平行于三角形的第三边.(2)三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段与这个角的两边对应成比例.3.相似三角形的判定(1)相似三角形的有关概念.对应角相等,对应边成比例的两个三角形叫做相似三角形.对应边的比例称为相似比或相似系数.(2)预备定理.定理1:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.利用本定理可以证明相似三角形的判定定理.(3)相似三角形判定定理.判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,即:两角对应相等,两个三角形相似.判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.即:两对应边成比例且夹角相等,两三角形相似.判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似,即:三边对应成比例,两三角形相似.(4)直角三角形相似的判定定理.定理1:如果两个直角三角形有一个锐角相等,那么它们相似.定理2:如果两个直角三角形的两条直角边对应成比例,那么它们相似.定理3:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么它们相似.4.相似三角形的性质性质定理1:相似三角形对应角相等,对应边成比例.性质定理2:相似三角形对应边上的高、中线、对应角平分线和它们的周长的比都等于相似比.性质定理3:相似三角形的面积比等于相似比的平方.性质定理4:相似三角形外接圆或内切圆的直径比、周长比等于相似比,外接圆或内切圆的面积比等于相似比的平方.5.直角三角形的射影定理(1)射影的概念.从一点向一条直线作垂线,垂足称为这点在这条直线上的正射影,简称射影.一般地,一个点集(如线段或其他几何图形)中所有的点在某条直线上的射影集合,称为这个点集在这条直线上的射影.如一条线段在一条直线上的射影就是线段的两个端点在这条直线上的射影间的线段.(2)锐角三角函数定义.sin α=α的对边斜边, cos α=α的邻边斜边,tan α=α的对边α的邻边. (3)直角三角形射影定理和逆定理.直角三角形射影定理:在直角三角形中,斜边上的高是两条直角边在斜边上的射影的比例中项.两条直角边分别是它们在斜边上的射影与斜边的比例中项.逆定理:如果一个三角形一边上的高是另两边在这条边上的射影的比例中项,那么这个三角形是直角三角形.勾股定理:直角三角形两条直角边的平方和等于斜边的平方.(4)任意三角形射影定理:平面三角中,设一个三角形的三边分别为a 、b 、c ,它们所对的三内角分别为A 、B 、C ,则有:a =b cos C +c cos B ;b =a cos C +c cos A ;c =a cos B +b cos A .6.相似三角形的判定定理的选择(1)已知有一角相等时,可选择判定定理1与判定定理2.(2)已知有两边对应成比例时,可选择判定定理2与判定定理3.(3)判定直角三角形相似时,首先看是否可以用判定直角三角形相似的方法来判定,如不能,再考虑用判定一般三角形相似的方法来判定.7.相似三角形性质的作用(1)可用来证明线段成比例、角相等.(2)可间接证明线段相等.(3)为计算线段长度及角的大小创造条件.(4)可计算周长、特征线段的长等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一平行线等分线段定理庖丁巧解牛知识·巧学一、平行线等分线段定理1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么这组平行线在其他直线上截得的线段也相等.用符号语言表述是:已知a∥b∥c,直线m、n分别与a、b、c 交于点A、B、C和A′、B′、C′(如图1-1-2),如果AB=BC,那么A′B′=B′C′.图1-1-2 图1-1-32.对于定理的证明,如图1-1-3所示,分m∥n和m不平行于n两种情况证明.当m∥n时,直接运用平行四边形加以证明;当m不平行于n时,利用辅助线构造相似三角形,进而得到关系式.3.定理的条件是a、b、c互相平行,构成一组平行线,m与n可以平行,也可以相交,但它们必须与已知的平行线a、b、c相交,即被平行线a、b、c所截.平行线的条数还可以更多.方法点拨定理图形的变式:对于3条平行线截两条直线的图形,要注意以下变化(如图1-1-4):如果已知l1∥l2∥l3,AB=BC,那么根据定理就可以直接得到其他直线上的线段相等.也就是说,直线DE的位置变化不影响定理的结论.图1-1-44.定理的作用:利用本定理可将一线段分成n等分,也可以证明线段相等或转移线段的位置.图1-1-5误区警示平行线等分线段定理的逆命题是:如果一组直线截另一组直线成相等的线段,那么这组直线平行.这一命题是错误的,如图1-1-5.二、平行线等分线段定理的推论1.平行线等分线段定理的推论有两个,其中一个是经过三角形一边的中点,与另一边平行的直线必平分第三边;另一个是经过梯形一腰的中点,与底边平行的直线必平分另一腰.2.两个推论的证明如下:推论1:如图1-1-6(1),在△ACC′中,AB=BC,BB′∥CC′,交AC′于B′点,求证:B′是AC′的中点.证明:如图1-1-6(2),过A作BB′与CC′的平行线,∵a∥b∥c,AB=BC,∴由平行线等分线段定理,有AB′=B′C′,即B′是AC′的中点.图1-1–6推论2:如图1-1-7(1),已知在梯形ACC′A′中,AA′∥CC′,AB=BC,BB′∥CC′,图1-1-7求证:B′是A′C′的中点.证明:∵梯形ACC′A′中AA′∥CC′,BB′∥CC′,∴AA′∥BB′∥CC′.又∵AB=BC,∴由平行线等分线段定理,有A′B′=B′C′,即B′是A′C′的中点.问题·探究问题 1 平行线等分线段定理与它的两个推论之间有着密切的联系,那么如何理解这种联系?思路:只要将平行线等分线段定理的图形中的直线只留下交点之间的部分,即可产生两个推论的图形,或者将两个推论中的线段延长成为直线,也可变成平行线等分线段定理的图形. 探究:平行线等分线段定理与它的两个推论之间的关系可以直观地表示如图1-1-8:图1-1-8问题2 三角形中位线是三角形中的重要线段,它的性质可以为许多问题的证明和求解提供依据,在几何中有着举足轻重的地位,那么如何证明三角形中位线定理呢?思路:连结三角形两边中点的线段叫做三角形的中位线,这里要明确三角形的中位线和三角形的中线不同(如图1-1-9).三角形中位线定理的内容是:三角形中位线平行于第三边,并且等于它的一半.图1-1-9探究:证明:如图1-1-9,DE 是中位线,E 是AC 的中点,过点D 作DE′∥BC,则E′也是AC 的中点,所以E 与E′重合,DE′与DE 重合. 所以DE∥BC.同理,过点D 作DF∥AC,交BC 于F ,则BF=FC.因为DE∥FC,DF∥EC ,所以四边形DFCE 是平行四边形.所以DE=FC.又因为FC=21BC ,所以DE=21BC. 上述过程中,DE′与DE 重合是定理证明的关键一步,本推理过程中应用了同一法思想. 该定理的证明,关键在于添加辅助线,如图1-1-10所示的几种辅助线代表几种不同的证法.(1)(1)延长中位线DE 到F,使EF=DE.(2)(2)延长中位线DE 到F,使EF=DE 得ADCF.(3)作CF∥AB 与DE 的延长线交于点F.图1-1-10三角形中位线定理是三角形的一个重要的性质定理,其特点是:同一题设,两个结论.一个结论是表明位置关系的,另一个结论是表明数量关系的,在应用时不一定同时需要两个关系,有时需要平行关系,有时要求倍分关系,可由具体情况按需选用.事实上,平行线等分线段定理的推论1:经过三角形一边中点与另一边平行的直线平分第三边,即三角形中位线判定定理.问题3 梯形中位线是梯形中的重要线段,它的性质可以为许多问题的证明和求解提供依据,在几何中有着举足轻重的地位,那么如何证明梯形中位线定理呢?梯形中位线定理与三角形中位线定理有什么内在联系?思路:梯形中位线的定义是:连结梯形两腰中点的线段叫做梯形的中位线.这里要强调梯形中位线是连结两腰中点的线段,而不是连结两底中点的线段.梯形中位线定理的内容是:梯形中位线平行于两底,并且等于两底和的一半.该定理证明的关键是如何添加辅助线,把梯形中位线转化成三角形的中位线.探究:设法把梯形中位线转化为三角形中位线.图1-1-11如图1-1-11,欲使MN 成为某一个三角形的中位线,则梯形的一腰一定是三角形的一边,而三角形的另一边一定过梯形另一腰的中点.梯形的一个底应在三角形的第三边上,若连结AN 并延长交BC 的延长线于E(梯形的这种辅助线也经常用到),就能得到这样的△ABE.这时只要证明AN=EN ,AD=EC ,问题就解决了.关于梯形中位线与三角形中位线的一致性:由梯形中位线公式MN=21(BC +AD),可知当AD 退缩为一点时,其长度为零,则公式变为MN=21BC.这就是三角形的中位线公式,这体现了梯形中位线和三角形中位线的联系和一致性,反映了它们之间的辩证关系.平行线等分线段定理的推论2“过梯形一腰的中点与底平行的直线必平分另一腰”,即梯形中位线.或说成“过梯形一腰的中点与底边平行的直线为梯形的中位线”,利用它可以判定某一线段为梯形中位线.典题·热题例1如图11-1-2,已知在△ABC 中,D 是AC 的中点,DE∥BC 交AB 于点E ,EF∥AC 交BC 于点F.求证:BF=CF.图1-1-12思路分析:根据D 是AC 的中点,利用平行,得到E 是AB 的中点,再利用平行即可得到F 是BC 的中点.证明:在△ABC 中,∵D 是AC 的中点,DE∥BC,∴E 是AB 的中点(经过三角形一边的中点与另一边平行的直线必平分第三边).又∵EF∥AC 交BC 于F ,∴F 是BC 的中点,即BF=FC.深化升华 在三角形中,只要给了一边的中点和平行线,根据平行线等分线段定理的推论2,就可得出平行线与另一边的交点即是中点.本题也可以利用平行四边形和全等形来证明,但会显得麻烦.例2求证:在直角梯形中,两个直角顶点到对腰中点的距离相等.如图11-1-3,已知在梯形ABCD 中,AD∥BC,∠ADC=90°,E 是AB 边的中点,连结ED 、EC.求证:ED=EC.图1-1-13思路分析:在梯形中,若已知一腰的中点,一般过这点作底边的平行线即可得到另一腰的中点.所以由E是AB边的中点,作EF∥BC交DC于F,即可得EF⊥DC,从而利用线段中垂线的性质得到结论.证明:过E点作EF∥BC交DC于F.∵在梯形ABCD中,AD∥BC,∴AD∥EF∥BC.∵E是AB的中点,∴F是DC的中点(经过梯形一腰的中点与底平行的直线必平分另一腰). ∵∠ADC=90°,∴∠DFE=90°.∴EF⊥DC于F.又F是DC中点,∴EF是DC的垂直平分线.∴ED=EC(线段垂直平分线上的点到线段两端点距离相等).方法归纳证明不在同一直线上的两条线段相等,可以根据等腰三角形的两腰相等,或者根据全等三角形对应边相等来证明.例3在ABCD中,E和F分别是BC和AD边的中点,BF和DE分别交AC于P、Q两点,求证:AP=PQ=QC.图1-1-14思路分析:在△ADQ中,F是AD的中点,只要证明FP∥DQ,即可由推论1得AP=PQ;同理在△CPB中,根据E是BC的中点,EQ∥BP,由推论1得CQ=PQ,由此得到结论.证明:∵四边形ABCD是平行四边形,E、F分别是BC、AD边上的中点,∴四边形BEDF是平行四边形(一组对边平行且相等的四边形一定是平行四边形).∵在△ADQ中,F是AD的中点,FP∥DQ,∴P是AQ的中点.∴AP=PQ.在△CPB中,E是BC的中点,EQ∥BP.∴Q是CP的中点.∴CQ=PQ.∴AP=PQ=QC.深化升华本题两次利用了E、F是中点的条件,在利用平行线等分线段定理或推论时要把平行和中点两个条件摆齐.例4已知在△ABC中,CD平分∠ACB,AE⊥CD于E,EF∥BC交AB于F.求证:AF=BF.图1-1-15思路分析:一般情况下,几何图形应具有对称的内在美,当感觉到图形有些缺点时,就要添加适当的辅助线,使其完善.本题中,AE⊥CE于E,恰在三角形内部,而Rt△AEC又不好用,所以延长AE使它与BC相交就势在必行了.证明:延长AE交BC于M.∵CD是∠ACB的平分线,AE⊥CE于E,∴在△AEC与△MEC中,EC=CE,∠AEC=∠MEC=90°,∠ACD=∠MCD.∴△AEC≌△MEC.∴AE=ME.∴E 是AM 的中点.又在△ABM 中FE∥BC,∴点F 是AB 边的中点.∴AF=BF.方法归纳 作辅助线的常用方法有延长某线段与另外的线段相交,连结两点,过一点作另外一条线段的平行线,过一点作另外一条线段的垂线等.例5如图11-1-6,以梯形ABCD 的对角线AC 及腰AD 为邻边作 ACED ,DC 的延长线交BE 于F,求证:EF=BF.图1-1-16思路分析:在△EAB 中,OF∥AB.要说明EF=BF ,只要说明O 是AE 的中点,而O 是平行四边形对角线的交点,根据平行四边形的对角线互相平分性质,可以知道O 是AE 的中点,于是问题得证.证明:连结AE 交DC 于O,∵四边形ACED 是平行四边形,∴O 是AE 的中点(平行四边形对角线互相平分).∵四边形ABCD 是梯形,∴DC∥AB.在△EAB 中,OF∥AB,又O 是AE 的中点,∴F 是EB 的中点.∴EF=BF.深化升华 证题时,当一个条件有几个结论时,要选择与其有关联的结论.本题可延长EC ,在梯形ABCD 内构造平行四边形,或以AB 、BE 、AD 的延长线为边构造梯形也可以得证. 例6如图1-1-17,ABCD 中,对角线AC 、BD 相交于O ,OE∥AB 交BC 于E ,AD =12,求BE 的长.图1-1-17思路分析:首先由平行四边形的性质得到O 是AC 的中点,利用平行得E 是BC 的中点,于是BE 应等于BC 的一半,BC 的长度可以由AD 获得.解:∵ABCD 是平行四边形,∴OA=OC ,BC =AD.∵AB∥DC,OE∥AB,∴DC∥OE∥AB.又∵AD=12,∴BE=EC =21BC =21AD =6.。