15题压轴题练习--图形折叠及动点问题的相关计算
2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(1) ______, ______(1)若点P 到A 、B 两点的距离都相等,请直接写出点P 对应的数(2)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为10=a b =(1)___________,___________.(2)若在数轴上有两动点、分别从同时出发向右运动,点的速度为2个单位长度/秒,点的速度为1个单位长度秒,当点在点追上了点,求点对应的数为多少?=a c =P Q A B ,P Q P D Q D(1)写出数轴上点B 表示的数 ;(2)表示5与3之差的绝对值,实际上也可理解为(1)求出线段的长度;(1)点表示的数为________,点|53|-AB A(1)请直接写出a 、b 、c 的值. ______,设点P 运动时间为t 秒.(1)若M ,N ,P 三点同时出发,=a(1)数轴上点B 表示的数是 ;当点P 运动到(1)则______,______. A =a b =(1)A 点所表示的数是___________,C 点所表示的数是___________;(2)若动点P 从点C 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一动点Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设点P 和点Q 在数轴上的点M 相遇,求点M所表示的数是多少?(3)若动点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左运动,另一动点Q 恰好从A 点出发,以每秒2个单位长度的速度沿数轴也向左运动,是否存在时间t ,使得P ,Q 到原点的距离相等,并求出此时点P 和点Q 所表示的数.13.如图,点在线段上,,,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动;同时,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动.当点到达终点时,点也随之停止运动.设点的运动时间为秒.(1)线段的长为______.(2)当点与点相遇时,求的值.(3)当点与点之间的距离为个单位长度时,求的值.(4)当时,直接写出的值.14.如图,在数轴上点A 、C 、B 表示的数分别是、1、12.动点P 从点A 出发,沿数轴以每秒3个单位长度的速度向终点B 匀速运动;同时,点Q 从点B 出发,沿数轴以每秒2个单位长度的速度向终点A 匀速运动,设点Q 的运动时间为t 秒.C AB 3AC =11BC =P A AB 3B Q B BA 2A P Q P t AB P Q t P Q 9t 2.5PC QB +=t 8-(1)的长为________;AB(2)当点P与点Q相遇时,求t的值;(1)点A表示的数为___________,点B表示的数为(1)OA=__________cm,OB=__________cm参考答案:。
高中数学立体几何动点和折叠问题-含答案

高中数学立体几何动点和折叠问题-含答案1.在正方体ABCD-A1B1C1D1中,BC的中点为M,点P在正方体的表面DCC1D1上移动,且满足∠APD=∠MPC。
求三棱锥P-BCD的体积的最大值。
2.△ABC是边长为23的等边三角形,E、F分别为AB、AC的中点,沿EF把四面体OAEF折起,使点A翻折到点P的位置,连接PB、PC。
当四棱锥P-BCFE的外接球的表面积最小时,求四棱锥P-BCFE的体积。
3.△ABC是边长为23的等边三角形,E、F分别在线段AB、AC上滑动,且EF//BC,沿EF把△AEF折起,使点A翻折到点P的位置,连接PB、PC。
求四棱锥P-BCFE的体积的最大值。
4.已知三棱锥P-ABC满足PA⊥底面ABC,在△ABC中,AB=6,AC=8,且AB⊥AC,D是线段AC上一点,且AD=3DC,球O为三棱锥P-ABC的外接球,过点D作球O的截面。
若所得截面圆的面积的最小值与最大值之和为44π,则求球O的表面积。
5.已知A、B、C、D四点均在半径为R(R为常数)的球O的球面上运动,且AB=AC,AB⊥AC,AD⊥BC。
若四面体ABCD的体积的最大值为V,求V的值。
6.已知A、B、C是球O的球面上的三点,AB=2,AC=23,∠ABC=60°,且三棱锥O-ABC的体积为V。
求V的值。
7.已知三棱柱ABC-A1B1C1内接于一个半径为3的球,四边形A1ACC1与B1BCC1为两个全等的矩形,M是A1B1的中点,且C1M=√3.求三棱锥C1-ABC的体积。
8.在四棱柱ABCD-A1B1C1D1中,底面四边形ABCD是菱形,∠ADC=120°,连接AC,BD交于点O,A1O⊥平面ABCD,AO=BD=4,点C'与点C关于平面BC1D对称。
求三棱锥C'-ABD的体积。
1.删除该题,因为这明显是一道数学计算题,没有文章可言。
2.球O的表面积为4π,则球O的体积为(4/3)π。
中考数学压轴题:几何图形的折叠与动点问题

几何图形的折叠与动点问题1. 如图,在矩形ABCD 中,AB =4,AD =9,点E 在BC 上,CE =4,点F 是AD 上的一个动点,若把△BEF 沿EF 折叠,点B 落在点B ′处,当点B ′恰好落在矩形ABCD 的一边上,则AF 的长为________.第1题图3或 113 【解析】如解图①,当点B ′落在边AD 上时,则易证四边形BEB ′F 为菱形,∴BF =BE =9-4=5,由勾股定理易求AF =3;如解图②,当点B ′落在边CD 上时,BE =B ′E =9-4=5.由勾股定理易求B ′C =3,∴B ′D =4-3=1.设AF =x ,则FD =9-x .根据折叠的性质得BF =B ′F ,∴x 2+42=(9-x )2+12,解得x =113,∴AF =3或 113.第1题解图2.如图,矩形纸片ABCD中,AB=4,AD=6,点P是边BC 上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是________.第2题图6-25≤BP≤4【解析】①如解图①,当F、D重合时,BP的值最小,根据折叠的性质可知:AF=PF=6,在Rt△PFC中,PF=6,FC=4,则PC=25,∴BP min=6-25;②如解图②,当E、B重合时,BP的值最大,根据折叠的性质即可得到AB=BP=4,即BP的最大值为4;故BP的取值范围是6-25≤BP≤4.第2题解图3.如图,在矩形ABCD中,AB=2,AD=6,E,F分别是线段AD、BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C 落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为__________.第3题图4或4-22【解析】当C落在BE的延长线上时,对应点为P1,如解图①,连接FP1,AP1,过P1点作P1H⊥FC,垂足为点H,交AD于点N,设FH=x,∵∠P1BH=45°,∴P1H =BH=x+2,由折叠性质可得P1F=FC=6-2=4,在Rt△P1HF中,x2+(x+2)2=42,解得x=7-1或x=-7-1(舍去),∴P1H=2+7-1=7+1,P1N=7+1-2=7-1,在Rt△P1NA中,AP1=AN2+P1N2=(7+1)2+(7-1)2=4;当点C落在F A的延长线上时,对应点为P2,如解图②,易知P2F=CF=4,AF=22+22=22,∴AP2=P2F-AF=4-2 2 .第3题解图4.如图,在四边形ABCD中,AD∥BC(AD<BC),AB与CD 不平行,AB=CD=5,BC=12,点E是BC上的动点,将∠B沿着AE折叠,使点B落在直线AD上的点B′处,DB′=1,直线BB′与直线DC交于点H,则DH=________.第4题图511或513 【解析】如解图①所示,∵AD ∥BC ,∴△HB ′D∽△HBC ,∴HD HC =DB ′CB ,∵AB =CD =5,BC =12,DB ′=1,∴HD 5+HD=112,解得:HD =511;如解图②所示,∵AD ∥BC ,∴△HB ′D ∽△HBC ,∴HD HC =DB ′BC ,∵AB =CD =5,BC =12,DB ′=1,∴HD 5-HD=112,解得:DH =513.故DH 的长度为511或513.5.如图,已知AD ∥BC ,AB ⊥BC ,AB =8,点E 为射线BC 上一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于点M ,N .当点B ′分线段MN 为3∶5的两部分时,EN 的长为________.第5题图 35511或53913【解析】由翻折的性质,得AB =AB ′,BE =B ′E .①当MB ′=3,B ′N =5时,设EN =x ,得B ′E =x 2+25.由题意得△B ′EN ∽△AB ′M ,∴EN B ′M =B ′E AB ′,即x 3=x 2+258,解得x 2=4511,∴EN =x =35511;②当MB ′=5,B ′N =3时,设EN =x ,得B ′E =x 2+9,由题意得△B ′EN ∽△AB ′M ,∴EN B ′M =B ′E AB ′,即x 5=x 2+98,解得x 2=7513,∴EN =x =53913,故EN 的长为35511或53913.6.如图,在矩形纸片ABCD 中,AB =6,BC =8,点P 是对角线BD 上一动点,将纸片折叠,使点C 与点P 重合,折痕为EF ,折痕EF 的两端分别在BC 、DC 边上(含端点),当△PDF 为直角三角形时,FC 的长为________.第6题图247或 83 【解析】在矩形ABCD 中,AB =CD =6,BC =AD =8,在Rt △BCD 中,由勾股定理得BD =10.由折叠得PE =EC ,PF =CF ,∠EPF =∠FCE =90°.∵∠PDF <90°,∴△PDF 为直角三角形有以下两种情况:(Ⅰ)如解图1,当∠PFD =90°时,∵∠FCE =∠FPE =∠PFC =90°,∴四边形PECF 是矩形.∵PF =FC ,∴四边形PECF 是正方形,∴PF ∥BC ,∴△DPF ∽△DBC ,∴PF BC =DF DC .设FC =PF =x ,则DF =6-x ,∴x 8=6-x 6,解得:x =247,即FC =247;(Ⅱ)如解图2,当∠DPF=90°时,∵∠FPE=∠FCB=90°,∴此时点E与点B 重合,∴BP=BC=8,∴PD=10-8=2.∵∠PDF公用,∠DPF=∠DCB=90°,∴△DPF∽△DCB,∴PFBC=PDDC,即:PF8=26,解得:PF=83,∴FC=83.综上所述,FC的长为247或83.第6题解图7.如图,正方形的边长为4,E是BC的中点,点P是射线AD 上一动点,过P作PF⊥AE于F.若以P、F、E为顶点的三角形与△ABE相似,则P A=________.第7题图2或5【解析】分两种情况:如解图①,当△EFP∽△ABE 时,则有∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴P A=EB=2;如解图②,当△PFE∽△ABE时,则有∠PEF=∠AEB,又∵∠P AF=∠AEB,∴∠PEF=∠P AF,∴PE=P A,∵PF⊥AE,∴点F为AE的中点,∵AE=42+22=25,PEAE=EFEB,即PE25=52,得PE=5,∴P A=5,∴当P A=2或P A=5时,以P、F、E为顶点的三角形与△ABE相似.第7题解图8.如图,矩形ABCD中,AB=1,AD=2,E是AD中点,点P在射线BD上运动,若△BEP为等腰三角形,则线段BP的长度等于____________.第8题图2或53或655 【解析】∵在矩形ABCD 中,AB =1,AD =2,E 是AD 的中点,∴∠BAD =90°,AE =DE =1,∴△ABE 是等腰直角三角形,∴BE =2AB = 2.若△BEP 为等腰三角形,则分三种情况:①当BP =BE 时,显然BP =2;②当PB =PE 时,如解图①,连接AP .∵PB =PE ,AB =AE ,∴AP 垂直平分BE ,∵△ABE 是等腰直角三角形,∴∠BAP =∠EAP =45°,作PM ⊥AB 于点M ,设PM =x ,∵S △ABD =S △ABP +S △APD ,∴12×1×2=12×1×x +12×2×x ,解得x =23,∴PM =23,∴BP =PM sin ∠ABD=2325=53;③当EB =EP 时,如解图②,过点A 作AF ⊥BD 于点F ,过点E 作EG ⊥BD 于点G ,在Rt △ABF 中,AF =AB ·sin ∠ABF =1×25=255,∵AE =ED ,EG ∥AF ,∴EG =12AF =55,在Rt △BEG 中,∵BE =2,EG =55,∴BG =BE 2-EG 2=355,∵EB =EP ,EG ⊥BP ,∴BP =2BG =655.综上所述,线段BP 的长度等于2或53或655.第8题解图① 第8题解图②9.如图,在▱ABCD 中,∠B =30°,AB =AC ,O 是两条对角线的交点,过点O 作AC 的垂线分别交边AD 、BC 于点E 、F ;点M 是边AB 的一个三等分点.则△AOE 与△BMF 的面积比为__________.第9题图3∶4或3∶8 【解析】如解图,连接AF 、MF ,∵AB =AC ,∠B =30°,∴∠ACB =∠B =30°, ∵点O 是对角线的交点,EF ⊥AC ,∴AF =FC ,∴∠ACB =∠F AC =30°,∴∠F AB =90°,∴BF =2AF =2FC ,∵点M 为AB 的三等分点,如解图①,当BM =13AB 时,设S △BMF =a ,则S △AMF =2a ,S △ABF =3a ,∴S △AFC =3a 2,∴S △AOE =3a 4,∴S △AOE ∶S △BMF =3a 4∶a =3∶4.则△AOE 与△BMF 的面积比为3∶4;如解图②,当BM =23AB时,S △AOE ∶S △BMF =3a 4∶2a =3∶8.综上所述:△AOE 与△BMF的面积比为3∶4或3∶8.第9题解图① 第9题解图②10.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2,E 为斜边AB 的中点,点P 是射线BC 上的一个动点,连接AP 、PE ,将△AEP 沿着边PE 折叠,折叠后得到△EP A ′,若△EP A ′与△ABC 的另一个交点为F ,当EF =14AB 时,则BP的长为________.第10题图 2或23 【解析】∵∠ACB =90°,∠B =30°,AC =2,E为斜边AB 的中点,∴AB =4,AE =12AB =2,BC =2 3.①若P A ′与AB 交于点F ,连接A ′B ,如解图①,由折叠可得S △A ′EP =S △AEP ,A ′E =AE =2,∵点E 是AB 的中点,∴S △BEP =S △AEP =12S △ABP .∵EF =14AB ,∴S △EFP =12S △BEP =12S △AEP =12S △A ′EP ,∴EF =12BE =BF ,PF =12A ′P =A ′F .∴四边形A ′EPB 是平行四边形,∴BP =A ′E =2;②若EA ′与BC 交于点F ,连接AA ′,交EP 于H ,如解图②.同理可得FP =12BP =BF ,EF=12×2=1.∵BE =AE ,∴EF =12EA ′=12AP =1,∴AP =2=AC ,∴点P 与点C 重合,∴BP =BC =2 3.故BP 的长为2或2 3.第10题解图① 第10题解图②。
2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)

几何中的折叠问题一、单选题1如图,在菱形ABCD中,AD=5,tan B=2,E是AB上一点,将菱形ABCD沿DE折叠,使B、C的对应点分别是B 、C ,当∠BEB =90°时,则点C 到BC的距离是()A.5+5B.25+2C.6D.35【答案】D【分析】过C作CH⊥AD于H,C 作C F⊥AD于F,HD=5,HC=25,再由折叠证明∠BED=∠B ED=135°,∠EDC=∠EDC =45°,△CHD≌△DFC ,C F= HD=5,【C作CH⊥AD于H,C 作C F⊥AD于F,由已知AD=5,tan B=2,=2,∴CD=5,tan∠CDH=HCHD∴设HD=x,HC=2x,∴在Rt△HDC中HC2+HD2=CD2,2x2+x2=52,解得x=5,∴HD=5,HC=25,由折叠可知∠BED=∠B ED,∠EDC=∠EDC ,CD=C D∵∠BEB =90°,∴∠BED=∠B ED=135°,∵AB∥DC,∴∠EDC=180°-∠BED=45°,∴∠EDC=∠EDC =45°∴∠CDC =90°∵∠CHD =∠C AD =90°,∴∠CDH +C DF =90°,∵∠CDH +∠HCD =90°,∴∠C DF =∠HCD ,∴△CHD ≌△DFC ,∴C F =HD =5,∴点C 到BC 的距离是C F +CH =5+25=35.故选:D .【点睛】本题考查了全等三角形的性质和判定、菱形的性质、图形的折叠以及正切定义的应用,解答关键是根据折叠的条件推出∠BED =∠B ED =135°.2如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l 与BC 交于点P ,且点P 到AB 的距离为3cm ,点Q 为AC 上任意一点,则PQ 的最小值为()A.2cmB.2.5cmC.3cmD.3.5cm【答案】C【分析】由折叠可得:PA 为∠BAC 的角平分线,根据垂线段最短即可解答.【详解】解:∵将△ABC 折叠,使AC 边落在AB 边上,∴PA 为∠BAC 的角平分线,∵点Q 为AC 上任意一点,∴PQ 的最小值等于点P 到AB 的距离3cm .故选C .【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.3如图,在▱ABCD 中,BC =8,AB =AC =45,点E 为BC 边上一点,BE =6,点F 是AB 边上的动点,将△BEF 沿直线EF 折叠得到△GEF ,点B 的对应点为点G ,连接DE ,有下列4个结论:①tan B =2;②DE =10;③当GE ⊥BC 时,EF =32;④若点G 恰好落在线段DE 上时,则AF BF=13.其中正确的是()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】过点A 作AH ⊥BC 于点H ,利用三线和一以及正切的定义,求出tan B ,即可判断①;过点D 作DK ⊥BC 于点K ,利用勾股定理求出DE ,判断②;过点F 作FM ⊥BC 于点M ,证明△EMF 为等腰直角三角形,设EM =FM =x ,三角函数求出BM 的长,利用BE =BM +EM ,求出x 的值,进而求出EF 的长,判断③;证明△AND ∽△CNE ,推出∠ENC =∠ECN ,根据折叠的性质,推出EF ∥CA ,利用平行线分线段成比例,即可得出结论,判断④.【详解】解:①过点A 作AH ⊥BC 于点H ,∵BC =8,AB =AC =45,∴BH =12BC =4,∴AH =AB 2-BH 2=8,∴tan B =AHBH=2;故①正确;②过点D 作DK ⊥BC 于点K ,则:四边形AHKD 为矩形,∴DK =AH =8,HK =AD =BC =8,∵BE =6,∴CE =2,∵CH =12BC =4,∴CK =4,∴EK =CE +CK =6,∴DE =EK 2+DK 2=10;故②正确;③过点F 作FM ⊥BC 于点M ,∵GE ⊥BC ,∴∠BEG =90°,∵翻折,∴∠BEF =∠GEF =45°,∴∠EFM =∠BEF =45°,∴EM =FM ,设EM =FM =x ,∵tan B =FMBM =2,∴BM =12FM =12x ,∴BE =BM +EM =12x +x =6,∴x =4,∴EM =FM =4,∴EF =2EM =42;故③错误;④当点G 恰好落在线段DE 上时,如图:设AC 与DE 交于点N ,∵▱ABCD ,∴AD ∥BC ,∴△AND ∽△CNE ,∴EN DN =CE AD=28=14,∴EN DE =15,∴EN =15DE =2=CE ,∴∠ENC =∠ECN ,∴∠BEN =∠ENC +∠ECN =2∠ECN ,∵翻折,∴∠BEN =2∠BEF ,∴∠BEF =∠ECN ,∴EF ∥AC ,∴AF BF =CE BE=26=13;故④正确,综上:正确的是①②④;故选D .【点睛】本题考查平行四边形的折叠问题,同时考查了解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理.本题的综合性强,难度较大,是中考常见的压轴题,熟练掌握相关性质,添加合适的辅助线,构造特殊三角形,是解题的关键.4如图,AB 是⊙O 的直径,点C 是⊙O 上一点,将劣弧BC 沿弦BC 折叠交直径AB 于点D ,连接CD ,若∠ABC =α0°<α<45° ,则下列式子正确的是()A.sin α=BCABB.sin α=CD ABC.cos α=AD BDD.cos α=CD BC【答案】B【分析】连AC ,由AB 是⊙O 的直径,可知∠ACB =90°,由折叠,AC和CD所在的圆为等圆,可推得AC =CD ,再利用正弦定义求解即可.【详解】解:连AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,由折叠,AC 和CD所在的圆为等圆,又∵∠CBD =∠ABC ,∴AC和CD所对的圆周角相等,∴AC=CD,∴AC =CD ,在Rt △ACB 中,sin α=AC AB =CDAB,故选:B .【点睛】本题考查圆周角定理和圆心角、弦、弧之间的关系以及正弦、余弦定义,解答关键是通过折叠找到公共的圆周角推出等弦.5如图,在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,以OA ,OC 为边构造矩形OABC ,点B 的坐标为8,6 ,D ,E 分别为OA ,BC 的中点,将△ABE 沿AE 折叠,点B 的对应点F 恰好落在CD 上,则点F 的坐标为()A.3213,3013B.3013,3213C.3013,2013D.2013,3013【答案】A【分析】先求得直线CD 的解析式,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m ,-32m +6 ,在Rt △EMF 中,再利用勾股定理得到关于m 的方程,解方程即可.【详解】解:∵点B 的坐标为8,6 ,四边形OABC 是矩形,D ,E 分别为OA ,BC 的中点,∴C 0,6 ,D 4,0 ,E 4,6 ,由折叠的性质可得:EF =BE =4,设直线CD 的解析式为y =kx +b ,则6=b 4k +b =0 ,解得:k =-32b =6,∴直线CD 的解析式为y =-32x +6,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m,-32m+6,则MF=CN=6--32m+6=32m,EM=4-m,在Rt△EMF中,EM2+MF2=EF2,∴4-m2+32m2=42,解得:m=3213或m=0(不合题意,舍去),当m=3213时,y=-32×3213+6=3013,∴点F的坐标为3213,30 13,故选:A.【点睛】本题是一次函数与几何综合题,考查了求一次函数解析式,勾股定理,翻折的性质,矩形的性质,中点的性质,熟练掌握知识点并灵活运用是解题的关键.6综合与实践课上,李老师让同学们以矩形纸片的折叠为主题开展数学活动.如图,将矩形纸片ABCD对折,折痕为EF,再把点A折叠在折痕EF上,其对应点为A ,折痕为DP,连接A B,若AB=2,BC =3,则tan∠A BF的值为()A.33B.3 C.32D.12【答案】A【分析】先证明EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,AD=A D=3,可得A E=A D2-DE2=32,AF=2-32=12,再利用正切的定义求解即可.【详解】解:∵矩形纸片ABCD对折,折痕为EF,AB=2,BC=3,∴EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,由折叠可得:AD=A D=3,∴A E=A D2-DE2=32,∴A F=2-32=12,∴tan ∠A BF =1232=33.故选A【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,求解锐角的正切,熟记轴对称的性质是解本题的关键.7如图,矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,将顶点D 折叠至线段AP 上一点D ,折痕为EF ,此时,点C 折叠至点C .下列说法中错误的是()A.cos ∠BAP =45B.当AE =53时,D E ⊥AP C.当AE =18-65时,△AD E 是等腰三角形 D.sin ∠DAP =45【答案】C【分析】根据矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质计算判断即可.【详解】∵矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,∴BP =12BC =32,∠B =90°,∴AP =AB 2+BP 2=22+32 2=52,∴cos ∠BAP =AB AP=252=45,故A 正确;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴sin ∠DAP =sin ∠APB =cos ∠BAP =45,故D 正确;设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,sin ∠DAP =45,∵D E ⊥AP ,∴sin ∠DAP =D E AE=x 3-x =45,解得x =43,∴AE =AD -DE =3-x =53,故B 正确;当D E =AE 时,∴x =3-x ,解得x =32;此时D ,A 重合,三角形不存在,不符合题意;当D E =AD 时,过点D 作D N ⊥AD 于点N ,则AN =NE ;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴cos ∠DAP =cos ∠APB =3252=35,设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,D E =AD =x ,∴AN AD=AN x =35,解得AN =35x ;∴AE =AD -DE =3-x =2AN =65x ,解得x =1511;∴AE =65×1511=1811;当AE =AD 时,过点D 作D H ⊥AD 于点H ,设DE =D E =x ,根据题意,得AE =AD =AD -DE =3-x ,∴D H =AD sin ∠DAP =453-x ,AH =AD cos ∠DAP =353-x ,∴HE =AE -AH =3-x -353-x =253-x ,根据勾股定理,得HE 2+D H 2=D E 2,∴253-x 2+453-x2=x 2解得x =65-12;∴AE =3-x =15-65;综上所述,AE =15-65或AE =1811,故C 错误,故选C .【点睛】本题考查了矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质,熟练掌握三角函数,勾股定理,矩形的性质,折叠的性质是解题的关键.8如图,AB 为半圆O 的直径,点O 为圆心,点C 是弧上的一点,沿CB 为折痕折叠BC交AB 于点M ,连接CM ,若点M 为AB 的黄金分割点(BM >AM ),则sin ∠BCM 的值为()A.5-12B.5+12C.5-14D.12【答案】A【分析】过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,根据折叠的性质可得:∠CMB=∠CM′B,BC⊥MM′,从而可得∠BDM=90°,再根据黄金分割的定义可得BMAB =5-12,然后利用直径所对的圆周角是直角可得∠ACB=90°,从而证明A字模型相似三角形△DBM∽△CBA,进而利用相似三角形的性质可得DMAC=BMAB=5-12,最后根据圆内接四边形对角互补以及平角定义定义可得:∠A=∠AMC,从而可得CA=CM,再在Rt△CDM中,利用锐角三角函数的定义进行计算,即可解答.【详解】解:过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,由折叠得:∠CMB=∠CM′B,BC⊥MM′,∴∠BDM=90°,∵点M为AB的黄金分割点(BM>AM),∴BMAB =5-12,∵AB为半圆O的直径,∴∠ACB=90°,∴∠ACB=∠MDB,∵∠DBM=∠CBA,∴△DBM∽△CBA,∴DMAC =BMAB=5-12,∵四边形ACM′B是半⊙O的内接四边形,∴∠A+∠CM′B=180°,∵∠AMC+∠CMB=180°,∠CMB=∠CM′B,∴∠A=∠AMC,∴CA=CM,在Rt△CDM中,sin∠BCM=DMCM=DMAC=5-12.故选:A.【点睛】本题考查了相似三角形的判定与性质,黄金分割,解直角三角形,翻折变换(折叠问题),圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题9如图,将一张矩形纸片ABCD折叠,折痕为EF,折叠后,EC的对应边EH经过点A,CD的对应边HG交BA的延长线于点P.若PA=PG,AH=BE,CD=3,则BC的长为.【答案】43【分析】本题考查了矩形与折叠问题,全等三角形的判定和性质,勾股定理.连接PF ,设BC =2x ,AH =BE=a ,证明Rt △PAF ≌Rt △PGF HL ,求得FA =FG =FD =x ,由折叠的性质求得BE =12x ,在Rt △ABE中,利用勾股定理列式计算,即可求解.【详解】解:连接PF ,设BC =2x ,AH =BE =a ,由矩形的性质和折叠的性质知FG =FD ,∠G =∠FAP =90°,AB =CD =3,AD =BC ,∵PA =PG ,PF =PF ,∴Rt △PAF ≌Rt △PGF HL ,∴FA =FG =FD =12AD =12BC =x ,由矩形的性质知:AD ∥BC ∴∠AFE =∠FEC ,折叠的性质知:∠FEA =∠FEC ,∴∠FEA =∠AFE ,∴AE =FA =x ,由折叠的性质知EC =EH =AE +AH =x +a ,∴BC =BE +EC =a +x +a =2x ,∴a =12x ,即BE =12x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+12x 2=x 2,解得x =23,∴BC =2x =43,故答案为:4310如图,在矩形ABCD 中,AB =3,AD =6,M 为AD 的中点,N 为BC 边上一动点,把矩形沿MN 折叠,点A ,B 的对应点分别为A ,B ,连接AA '并延长交射线CD 于点P ,交MN 于点O ,当N 恰好运动到BC 的三等分点处时,CP 的长为.【答案】1或5【分析】分两种情况:①当CN =2BN 时.过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形;②当BN =2CN 时,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,根据矩形的性质得GM =AM -AG =1.再由折叠的性质可得∠AOM =90°,然后根据相似三角形的判定与性质可得答案.【详解】解:①当CN =2BN 时.如图1,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =2.∵M 为AD 的中点,∴AM =3,∴GM =AM -AG =1.由折叠A 与A 对应,∴∠AOM =90°,∵∠MAO +∠APD =90°,∠MAO +∠AMO =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∵∠NGM =∠ADP =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD -DP =1.②当BN =2CN 时,如图2,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =4.∵M 为AD 的中点,∴AM =3,∴GM =AG -AM =1.由折叠A 与A 对应,∴∠AOM =90°∠MAO +∠AMO =90°,∠MAO +∠APD =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∠ADP =∠NGM =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD +DP =5.综上,CP 的长为1或5.故答案为:1或5.【点睛】此题考查的是翻折变换-折叠问题、矩形的性质,正确作出辅助线是解决此题的关键.11如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.12在矩形ABCD 中,点E 为AD 边上一点(不与端点重合),连接BE ,将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,连接并延长EF ,BF 分别交BC ,CD 于G ,H 两点.若BA =6,BC =8,FH =CH ,则AE 的长为.【答案】92【分析】连接GH ,证明Rt △FHG ≅Rt △CHG (HL ),可得FG =CG ,设FG =CG =x ,在Rt △BFG 中,有62+x 2=(8-x )2,可解得CG =FG =74,知BG =254,由矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,得∠AEB =∠FEB ,可得∠FEB =∠EBG ,EG =BG =254,故EF =EG -FG =92,从而得到AE =92.【详解】连接GH ,如图:∵四边形ABCD 是矩形,∴∠A =∠C =90°,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴BF =AB =6,AE =EF ,∠BFE =∠A =90°,∴∠GFH =90°=∠C ,∵GH =GH ,FH =CH ,∴Rt △FHG ≅Rt △CHG (HL ),∴FG =CG ,设FG =CG =x ,则BG =BC -CG =8-x在Rt △BFG 中,BF 2+FG 2=BG 2∴62+x 2=(8-x )2,解得:x =74,∴CG =FG =74,∴BG =8-x =25x,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴∠AEB =∠FEB ,∵AD ⎳BC ,∴∠AEB =∠EBG ,∴∠FEB =∠EBG ,∴EG =BG =254,∴AE =92,故答案为:92.【点睛】本题考查矩形中的翻折变换,涉及三角形全等的判定与性质,勾股定理及应用,掌握相关知识是解题的关键.13如图,在矩形ABCD 中,AD =23,CD =6,E 是AB 的中点,F 是线段BC 上的一点,连接EF ,把△BEF 沿EF 折叠,使点B 落在点G 处,连接DG ,BG 的延长线交线段CD 于点H .给出下列判断:①∠BAC =30°;②△EBF ∽△BCH ;③当∠EGD =90°时,DG 的长度是23 ④线段DG 长度的最小值是21-3;⑤当点G 落在矩形ABCD 的对角线上,BG 的长度是3或33;其中正确的是.(写出所有正确判断的序号)【答案】①②③【分析】利用正切函数的定义即可判断①正确;利用同角的余角相等推出∠HBC =∠BEF ,可判断②正确;推出点D 、G 、F 三点共线,证明Rt △EAD ≌Rt △EGD HL ,可判断③正确;当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,由于F 是线段BC 上的一点,不存在D 、G 、E 三点共线,可判断④不正确;证明△BGE 是等边三角形,可判断⑤.【详解】解:连接AC ,∵矩形ABCD 中,AD =23,CD =6,∴tan ∠ACD =AD CD=236=33,∴∠ACD =30°,∴∠BAC =30°,故①正确;由折叠的性质知EF 是BG 的垂直平分线,∴∠HBC +∠BFE =90°=∠BEF +∠BFE ,∴∠HBC =∠BEF ,∴△EBF ∽△BCH ,故②正确;由折叠的性质知∠EGF =∠ABC =90°,∵∠EGD =90°,∴点D 、G 、F 三点共线,连接DE ,在Rt △EAD 和Rt △EGD 中,AE =BE =EG ,DE =DE ,∴Rt △EAD ≌Rt △EGD HL ,∴DG =AD =23,故③正确;∵AE =BE =EG ,∴点A 、G 、B 都在以E 为圆心,3为半径的圆上,DE =23 2+32=21,∴当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,但F 是线段BC 上的一点,∴D 、G 、E 三点不可能共线,故④不正确;当点G 落在矩形ABCD 的对角线AC 上时,由折叠的性质知BE =EG ,∵E 是AB 的中点,由①知∠BAC =30°,∴BE =EG =EA ,∠BAC =∠EGA =30°,∴∠BEG =∠BAC +∠EGA =60°,∴△BGE 是等边三角形,∴BG 的长度是3;由于F 是线段BC 上的一点,则点G 不会落在矩形ABCD 的对角线BD 上,故⑤不正确;综上,①②③说法正确,故答案为:①②③.【点睛】本题考查了矩形与折叠问题,正切函数,相似三角形的判定,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.14如图,将矩形ABCD沿BE折叠,点A与点A 重合,连接EA 并延长分别交BD、BC于点G、F,且BG=BF.(1)若∠AEB=55°,则∠GBF=;(2)若AB=3,BC=4,则ED=.【答案】40°/40度5-10/-10+5【分析】(1)先证明∠DEF=180°-2×55°=70°,∠BFG=∠DEF=70°,利用BG=BF,可得答案;(2)如图,过F作FQ⊥AD于Q,可得CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,则∠DEG=∠DGE,设DE=DG=x,而BD=32+42=5,则BG=BF=5-x,CF=4-5-x=1,再求解EF=12+32=10,由折叠可得:A E=AE=4 =x-1,EQ=x-x-1-x,AF=10-4+x,利用cos∠BFA=cos∠FEQ,再建立方程求解即可.【详解】解:(1)∵∠AEB=55°,结合折叠可得:∠AEB=∠A EB=55°,∴∠DEF=180°-2×55°=70°,∵矩形ABCD,∴AD∥BC,∴∠BFG=∠DEF=70°,∵BG=BF,∴∠BGF=∠BFG=70°;∴∠GBF=180°-2×70°=40°;故答案为:40°.(2)如图,过F作FQ⊥AD于Q,∴四边形FCDQ是矩形,则CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,∴∠DEG=∠DGE,∴设DE=DG=x,∵矩形ABCD,AB=3,BC=4,∴BD=32+42=5,∴BG=BF=5-x,∴CF=4-5-x=x-1,∴EQ=x-x-1=1,∴EF=12+32=10,由折叠可得:A E=AE=4-x,∴AF =10-4+x,∵∠QEF=∠BFA ,∴cos∠BFA =cos∠FEQ,∴EQEF=A FBF,∴110=10-4+x5-x,解得:x=5-10,经检验符合题意;∴DE=5-10.故答案为:5-10.【点睛】本题考查的是轴对称的性质,矩形的性质与判定,勾股定理的应用,锐角三角函数的应用,等腰三角形的判定与性质,熟练的利用以上知识解题是关键.三、解答题15综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠△ABE到△AFE,如图(2)所示;操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分∠DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,AB=4,BC=6,按照(1)中的方式操作,得到图(6)或图(7).请完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;②当DN的长为1时,请直接写出BE的长.【答案】(1)①在,②AE⊥BN,相等;③不存在;(2)①BECN =23,理由见解析;②BE=2或165.【分析】(1)①E的对称点为E ,BF⊥EE ,MF⊥EE ,即可判断;②由①AE⊥BN,由同角的余角相等得∠BAE=∠CBN,由AAS可判定△ABE≌△BCN,由全等三角形的性质即可得证;③由AAS可判定△DAN≌△MAN,由全等三角形的性质得AM=AD,等量代换得AB=AM,与AB>AM矛盾,即可得证;(2)①由(1)中的②可判定△ABE∽△BCN,由三角形相似的性质即可求解;②当N在CD上时,△ABE∽△BCN,由三角形相似的性质即可求解;当N在AD上时,同理可判定△ABE∽△NAB,由三角形相似的性质即可求解.【详解】(1)解:①E的对称点为E ,∴BF⊥EE ,MF⊥EE ,∴B、F、M共线,故答案为:在;②由①知:B、F、M共线,N在FM上,∴AE⊥BN,∴∠AMB=90°,∴∠ABM+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCN=90°,AB=BC,∴∠CBN+∠ABM=90°,∴∠BAE=∠CBN,在△ABE和△BCN中,∠BAE=∠CBN ∠ABC=∠BCN AB=BC,∴△ABE≌△BCN(AAS),∴AE=BN,故答案为:相等;③不存在,理由如下:假如存在,∵AN平分∠DAE,∴∠DAN=∠MAN,∵四边形ABCD是正方形,AM⊥BN,∴∠D=∠AMN=90°,在△DAN和△MAN中,∠D=∠AMN∠DAN=∠MAN AN=ANN∴△DAN≌△MAN(AAS),∴AM=AD,∵AD=AB,∴AB=AM,∵AB是Rt△ABM的斜边,∴AB>AM,∴AB =AM 与AB >AM 矛盾,故假设不成立,所以答案为:不存在;(2)解:①BE CN=23,理由如下:由(1)中的②得:∠BAE =∠CBN ,∠ABE =∠C =90°,∴△ABE ∽△BCN ,∴BE CN =AB BC=23;②当N 在CD 上时,CN =CD -DN =3,由①知:△ABE ∽△BCN ,∴BE CN =AB BC =23,∴BE =23CN =2,当N 在AD 上时,AN =AD -DN =5,∵∠BAE =∠CBN =∠ANB ,∠ABE =∠BAN =90°,∴△ABE ∽△NAB ,∴BE AB =AB AN ,∴BE 4=45,∴BE =165,综上所述:BE =2或165.【点睛】本题考查了折叠的性质,矩形的性质,正方形的性质,全等三角形的判定及性质,三角形相似的判定及性质,掌握相关的判定方法及性质,“十字架”典型问题的解法是解题的关键.16在矩形ABCD 中,AD =2AB =8,点P 是边CD 上的一个动点,将△BPC 沿直线BP 折叠得到△BPC .(1)如图1,当点P 与点D 重合时,BC ′与AD 交于点E ,求BE 的长度;(2)当点P 为CD 的三等分点时,直线BC ′与直线AD 相交于点E ,求DE 的长度;(3)如图2,取AB 中点F ,连接DF ,若点C ′恰好落在DF 边上时,试判断四边形BFDP 的形状,并说明理由.【答案】(1)BE 的长度为5;(2)DE 的长度为113或83;(3)四边形BFDP 是平行四边形(理由见解析)【分析】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及平行四边形的判定有关知识.(1)利用矩形性质和折叠的性质可推出BE=DE,设BE=x,则DE=x,AE=8-x,利用勾股定理建立方程求解即可得出答案;(2)设DE=m,则AE=m+8,设BE交CD于G,可证得△AEB∽△CBG,得出CGAB =BCAE,即CG4=8m+8,求得CG=32m+8,分两种情况:当PC=13CD=43时,当PC=23CD=83时,分别添加辅助线构造相似三角形,利用相似三角形性质建立方程求解即可得出答案;(3)由中点定义可得AF=BF,过点C 作C M∥AD交AB于点M,过点F作FN⊥BC 于点N,由矩形性质和翻折的性质可得∠C BP=∠CBP=12∠C BC,可证得△FC M∽△FDA,得出FMAF=C MAD,再证得△BFN∽△BC M,进而推出FM=FN,利用角平分线的判定定理可得∠BC F=∠MC F=12∠BC M推出∠BC F=∠C BP,再由平行线的判定定理可得DF∥BP,运用平行四边形的判定定理即可证得四边形BFDP是平行四边形.【点睛】点睛片段【详解】(1)解:∵AD=2AB=8,∴AB=4,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ADB=∠DBC,由折叠得:∠DBC=∠DBC ,∴∠ADB=∠DBC ,即∠EDB=∠EBD,∴BE=DE,设BE=x,则DE=x,AE=8-x,在Rt△ABE中,AE2+AB2=BE2,∴(8-x)2+42=x2,解得:x=5,∴BE的长度为5;(2)设DE=m,则AE=m+8,设BE交CD于G,∵四边形ABCD是矩形,∴BC=AD=8,CD=AB=4,AD∥BC,∠A=∠BCG=90°,∴∠AEB=∠CBG,∴△AEB∽△CBG,∴CG AB =BCAE,即CG4=8m+8,∴CG=32m+8,当PC=13CD=43时,BP=BC2+PC2=82+432=4373,连接CC ,过点C 作C H⊥CD于点H,如图,∵将△BPC沿直线BP折叠得到△BPC ,∴CC ⊥BP,△BPC ≌△BPC,∴S四边形BCPC =2S△BPC,∴1BP⋅CC =2×1BC⋅PC,即12×4373CC =2×12×8×43,∴CC =163737,∵∠C CH +∠BPC =90°,∠PBC +∠BPC =90°,∴∠C CH =∠PBC ,∵∠CHC =∠BCP =90°,∴△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 43=CH 8=1637374373,∴C H =1637,CH =9637,∵∠C HG =∠EDG =90°,∴C H ∥AE ,∴∠GC ′H =∠AEB ,∴△C GH ∽△EBA ,∴GH AB =C H AE ,即GH 4=1637m +8,∴GH =6437(m +8),∵CH +GH =CG ,∴9637+6437(m +8)=32m +8,解得:m =113,经检验,m =113是该方程的解,∴DE =113;当PC =23CD =83时,BP =BC 2+PC 2=82+83 2=8103,连接CC ,过点C 作C H ⊥CD 交CD 的延长线于点H ,作C G ⊥AD 于点G ,如图,同理可得:CC =8105,同理△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 83=CH 8=81058103,∴C H =85,CH =245,∴DH =CH -CD =245-4=45,∵∠HDG =∠H =∠C GD =90°,∴四边形DGC H 是矩形,∴C G =DH =45,DG =C H =85,∵∠C GE =∠A =90°,∠C EG =∠BEA ,∴△C EG ∽△BEA ,∴EG AE =C G AB =454=15,∴AE =5EG ,∵AE +EG =AG =AD -DG =8-85=325,∴5EG +EG =325,∴EG =1615,∴DE =DG +EG =85+1615=83,综上所述,DE 的长度为113或83;(3)四边形BFDP 是平行四边形,理由如下:∵点F 是AB 的中点,∴AF =BF ,过点C 作C M ∥AD 交AB 于点M ,过点F 作FN ⊥BC 于点N ,如图,则∠FC M =∠ADF ,∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∴C M ∥BC ,∴∠BC M =∠C BC ,由翻折得:∠C BP =∠CBP =12∠C BC ,BC =BC =8,∵C M ∥AD ,∴△FC M ∽△FDA ,∴FM AF =C M AD ,∴FM BF =C MBC ,∵∠BNF =∠BMC =90°,∠FBN =∠C BM ,∴△BFN ∼△BC M∴FN BF =C MBC ,∴FM BF =FN BF ,∴FM =FN ,又∵FM ⊥C M ,FN ⊥C B ,∴∠BC F =∠MC F =12∠BC M ,∴∠BC F =∠C BP ,∴DF ∥BP ,∴四边形BFDP 是平行四边形.17矩形ABCD 中,AB =6,AD =8,点E 为对角线AC 上一点,过点E 作EF ⊥AD 于点F ,EG ⊥AC 交边BC 于点G ,将△AEF 沿AC 折叠得△AEH ,连接HG .(1)如图1,若点H 落在边BC 上,求证:AH =CH ;(2)如图2,若A ,H ,G 三点在同一条直线上,求HG 的长;(3)若△EHG 是以EG 为腰的等腰三角形,求EF 的长.【答案】(1)见解析(2)HG =94(3)EF =103或4【分析】(1)根据矩形的性质和翻折的性质证明∠ACH =∠HAC ,即可解决问题;(2)结合(1)的方法AG =CG ,解Rt △AEG ,Rt △HEG 分别求得EG ,HG ;(3)当△EHG 是以EG 为腰的等腰三角形时,分两种情况:①当EG =EH ,②当EG =HG ,结合(2)的方法,利用全等三角形的判定与性质和相似三角形的判定与性质即可解决问题.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE =∠ACH .∵△AHE 由△AFE 折叠得到,∴∠HAC =∠DAE ,∴∠HAC =∠ACH ,∴AH =CH ;(2)∵矩形ABCD 中,AB =6,AD =8.∴AC =10.当A ,H ,G 三点在同一条直线上时,∠EHG =90°.同(1)可得AG =CG .又∵EG ⊥AC ,∴AE =12AC =5.∵∠AEH +∠HEG =90°,∠AEH +∠HAE =90°,∴∠HEG =∠HAC =∠CAD .∵在Rt △AEG 中,tan ∠EAG =EG AE =34,∴EG =34AE =154.∵在Rt △HEG 中,sin ∠HEG =HG EG =35,∴HG =35EG =94.(3)①若EH =EG ,如图3①设EF =EH =EG =x ,∵EF ⊥AD ,∴EF ∥CD ,∴△AEF ∽△ACD ,∴AE AC =AF AD =EF CD ∴AE 10=AF 8=x 6∴AE =53x ,AF =43x ,∴AH =AF =43x ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,EH =EH ,∴△AHE ≌△CGE AAS ,∴AH =CE ,∴43x =10-53x ,∴x =103∴EF =103.②若HG =GE ,如图3②.(图3②)过点G 作GM ⊥HE ,设EF =a ,∵EC =10-53a ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,∴△AHE ∽△CGE ,∴EG =34EC =3410-53a =152-54a ,∵∠GME =∠EHA ,∠MGE =90°-∠MEG =∠HAE ,∴△MGE ∽△HEA ,∴ME AH =EG AE ,∵AH AE =AD AC =45,∴AH =45AE ,∴ME =45EG =45152-54a =6-a ,∴HE =2ME =12-2a =EF ,∴12-2a =a ,∴a =4,∴EF =4,综上,EF =103或4.【点睛】本题考查了矩形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的性质,翻折的性质,解决本题的关键是综合运用以上知识.18综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF,然后展开,沿过点A与点E所在的直线折叠,点B落在点B 处,连接 B C,如图1,请直接写出∠AEB 与∠ECB 的数量关系.【能力提升】把正方形对折,折痕为EF,然后展开,沿过点A与BE上的点G所在的直线折叠,使点B落在EF上的点P处,连接PD,如图2,猜想∠APD的度数,并说明理由.【拓展延伸】在图2的条件下,作点A关于直线CP的对称点A ,连接PA ,BA ,AC,如图3,求∠PA B的度数.【答案】初步尝试:∠AEB =∠ECB ;能力提升:猜想:∠APD=60°,理由见解析;拓展延伸:∠PA B=15°【分析】初步尝试:连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,根据等边对等角的性质和三角形内角和定理,得出∠BB C=90°,推出AE∥CB ,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证△AFP≌△DFP SAS,从而证明△APD是等边三角形,即可得到答案;拓展延伸:连接A C、AA ,由(2)得△APD是等边三角形,进而得出∠PDC=30°,再结合等边对等角的性质和三角形内角和定理,求得∠PAC=15°,∠ACP=30°,由对称性质得:AC=A C,∠ACP=∠A CP=30°,证明△AA B≌△CA B SSS,得到∠CA B=30°,再由∠CA P=∠CAP=15°,即可求出∠PA B的度数.【详解】解:初步尝试:∠AEB =∠ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,∴BE=CE=BE ,∴∠EBB =∠EB B,∠ECB =∠EB C,∵∠EBB +∠EB B+∠EB C+∠ECB =2∠EB B+∠EB C=180°,∴∠BB C=90°,即BB ⊥CB ,∴AE∥CB ,∴∠AEB=∠ECB ,∴∠AEB =∠ECB ;解:能力提升:猜想:∠APD=60°,理由如下:理由:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,由折叠性质可得:AF =DF ,EF ⊥AD ,AB =AP ,在△AFP 和△DFP 中,AF =DF∠AFP =∠DFP =90°FP =FP,∴△AFP ≌△DFP SAS ,∴AP =PD ,∴AP =AD =PD ,∴△APD 是等边三角形,∴∠APD =60°;解:拓展延伸:如图,连接A C 、AA ,由(2)得△APD 是等边三角形,∴∠PAD =∠PDA =∠APD =60°,AP =DP =AD ,∵∠ADC =90°,∴∠PDC =30°,又∵PD =AD =DC ,∴∠DPC =∠DCP =12×180°-30° =75°,∠DAC =∠DCA =45°,∴∠PAC =∠PAD -∠DAC =60°-45°=15°,∠ACP =∠DCP -∠DCA =75°-45°=30°,由对称性质得:AC =A C ,∠ACP =∠A CP =30°,∴∠ACA =60°,∴△ACA 是等边三角形,在△AA B 与△CA B 中,A A =A CA B =A B AB =BC,∴△AA B ≌△CA B SSS ,∴∠AA B =∠CA B =12∠AA C =30°,又∵∠CA P =∠CAP =15°,∴∠PA B =∠CA B -∠CA P =15°.【点睛】本题考查了折叠的性质,等腰三角形的判定和性质,三角形内角和定理,正方形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,作辅助线构造全等三角形是解题关键.19综合与实践数学活动课上,数学老师以“矩形纸片的折叠”为课题开展数学活动:将矩形纸片ABCD 对折,使得点A ,D 重合,点B ,C 重合,折痕为EF ,展开后沿过点B 的直线再次折叠纸片,点A 的对应点为点N ,折痕为BM . (1)如图(1)若AB =BC ,则当点N 落在EF 上时,BF 和BN 的数量关系是,∠NBF 的度数为.思考探究:(2)在AB=BC的条件下进一步进行探究,将△BMN沿BN所在的直线折叠,点M的对应点为点M .当点M 落在CD上时,如图(2),设BN,BM 分别交EF于点J,K.若DM =4,请求出三角形BJK的面积.开放拓展:(3)如图(3),在矩形纸片ABCD中,AB=2,AD=4,将纸片沿过点B的直线折叠,折痕为BM,点A的对应点为点N,展开后再将四边形ABNM沿BN所在的直线折叠,点A的对应点为点P,点M的对应点为点M ,连接CP,DP,若PC=PD,请直接写出AM的长.(温馨提示:12+3=2-3,12+1=2-1)【答案】(1)BF=12BN,60°(2)2+2(3)4-23【分析】(1)根据折叠的性质得:AB=BN,BF=CF=12BC,根据直角三角形的性质可得∠BNF=30°,由直角三角形的两锐角互余可得结论;(2)由折叠得:BM=BM ,证明Rt△ABM≌Rt△CBM (HL),可知AM=CM ,∠ABM=∠CBM ,得△BFJ是等腰直角三角形,再证明四边形ABCD是正方形,分别计算BF=FJ=12BC=2+2,JK=2,由三角形面积公式可得结论;(3)如图(3),过点P作PG⊥BC于G,PH⊥CD于H,根据等腰三角形的三线合一可得DH=CH=12CD=12AB=1,由折叠的性质和矩形的性质可得PG=CH=1,BN=BP=AB=2,∠NBP=∠ABN,设PL=x,则M L=2x,M P=3x,根据NL=233=NM +M L,列方程可解答.【详解】(1)解:由折叠得:AB=BN,BF=CF,∠BFN=90°,∵AB=BC,∴BF=12BN,∴∠BNF=30°,∴∠NBF=90°-30°=60°,故答案为:BF=12BN,60°;(2)由折叠得:BM=BM ,∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AB=BC,∴Rt△ABM≌Rt△CBM (HL),∴AM=CM ,∠ABM=∠CBM ,∴∠ABM=∠MBN=∠NBM =∠CBM ,∴∠FBJ=45°,∴△BFJ是等腰直角三角形,∵四边形ABCD是矩形,AB=BC,∴矩形ABCD是正方形,∴AD=CD,∠D=90°,∴DM=DM =4,∴MM =42,∵AM=MN=M N=CM ,∴CM =22,∴BC =CD =4+22,∴BF =FC =2+2,∵FK ∥CM ,∴BK =KM ,∴FK =12CM =2,∵△BFJ 是等腰直角三角形,∴BF =FJ =12BC =2+2,∴JK =2+2-2=2,∴S △BJK =12⋅JK ⋅BF =12×2×(2+2)=2+2;(3)如图,过点P 作PG ⊥BC 于G ,PH ⊥CD 于H ,∵PC =PD ,∴DH =CH =12CD =12AB =1,∵∠PGC =∠PHC =∠BCH =90°,∵四边形PGCH 是矩形,∴PG =CH =1,由折叠得:BN =BP =AB =2,∠NBP =∠ABN ,Rt △BPG 中,∠PBG =30°,∴∠ABN =∠NBP =90°-30°2=30°,延长NM ,BP 交于L ,Rt △BNL 中,BN =2,∠NBL =30°,∴NL =2×33=233,Rt △M PL 中,∠M LP =90°-30°=60°,∴∠PM L =30°,设PL =x ,则M L =2x ,M P =3x ,∵NL =233=NM +M L ,∴3x +2x =233,∴x =433-2,∴AM =3x =3×433-2 =4-23.【点睛】本题是四边形的综合题,考查了折叠的性质,含30°角的直角三角形的性质,矩形的性质和判定,正方形的判定和性质,三角函数等知识,掌握折叠的性质和正确作辅助线是解题的关键,题目具有一定的综合性,比较新颖.20综合与实践综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断如图1,先用对折的方式确定矩形ABCD 的边AB 的中点E ,再沿DE 折叠,点A 落在点F 处,把纸片展平,延长DF ,与BC 交点为G .。
15题压轴题练习--图形折叠及动点问题的相关计算

图形折叠及动点问题的相关计算考情总结:图形折叠及动点问题的相关计算是近五年河南中招考试的重点及必考点,均在填空题第15题进行考查,分值为3分,常见的类型有三角形折叠相关计算、四边形结合的相关计算,常见的设问为探究特殊三角形存在时的线段长、探究动点在特殊位置时的线段长.【方法指导】对于河南中招考试中的几何图形折叠与动点问题的计算,常涉及特殊三角形的探究及动点特殊位置的探究.1.掌握折叠的性质是解决问题的关键.(1)折叠前后位置的图形全等,对应边、角相等;(2)折痕两边的图形关于折痕对称;(3)折叠前后对应点的连线被折痕垂直平分;2.特殊三角形:(1)直角或等腰三角形的判定:首先从可能满足直角的顶点或腰入手,通过矩形的性质、折叠的性质或结合直角三角形勾股定理直接计算,或设出某条线段长,根据相似、勾股定理等,列方程进行求解;3.河南中招考试中,此类问题的重点为分类讨论,即该题多为多解题,注意等腰三角形的腰,直角三角形的直角顶点,特殊点的位置等.1.(2017年)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为21221 或1.【分析】①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC ,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN 所在的直线折叠∠B ,使点B 的对应点B′,∴BM=B′M ,∴CM=BM ,∵BC=+1,∴CM +BM=BM +BM=+1,∴BM=1,综上所述,若△MB′C 为直角三角形,则BM 的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.2.(2016年)如图,已知AD ∥BC ,AB ⊥BC ,AB=3.点E 为射线BC 上一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B′处,过点B′作AD 的垂线,分别交AD ,BC 于点M ,N .当点B′为线段MN 的三等分点时,BE 的长为__________223或553________.解:由翻折的性质可得:AB=AB’BE=B’E①当MB’=2,B’N=1时,设EN=x 得B’E=12+x △B’EN ∽△AB’E'''AB EB M B EN =即3122+=x x解得2x =54BE=B’E=154+=553②当MB’=1,B’N=2时,设EN=x 得B’E=222+x △B’EN ∽△AB’E'''AB EB M B EN =即3412+=x x解得2x =21BE=B’E=421+=223故答案为:223或5533.(2015年)如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B ,C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B'处.若△CDB'恰为等腰三角形,则DB'的长为16或45.4.(2014年)如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为53或52.5.(2013年)如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为___32或3_______.对应练习1.如图,在矩形ABCD 中,AB=3,BC=6,点E 是射线BC 上一动点,将△ABE 沿AE 翻折得到△AEF ,延长AF 交CD 的延长线于点G ,当BE=3EC 时,DG=25或8.如图①,当E 点在边BC 上时,BE=3EC ,BE=4.5,EC=1.5设AH=HE=x ,FH=4.5-x在Rt △AHF 中:222)5.4(3x x =-+解得:x=3.25FH=4.5-3.25=1.25∵△AHF ∽△AGD ,∴DG FHAD AF =DG25.163=解得DG=2.5=25如图②,当E 点在BC 延长线上时,BE=3EC ,BC=6,EC=3设AH=HE=x ,FH=9-x在Rt △AHF 中:222)9(3x x =-+解得:x=5FH=9-5=4∵△AHF ∽△AGD ,∴DG FHAD AF =DG463=解得DG=82.如图,在Rt △ABC 中,∠ABC=90°,AC=10,BC=8,AD 是∠BAC 的平分线,点E 是斜边AC 上的一点,且AE=AB 。
2020中考数学 压轴专题:图形折叠(包含答案)

2020中考数学 压轴专题:图形折叠(含答案)1.如图,在△ABC 中,∠BAC =90°,将△ABC 沿AD 翻折,点B 恰好与点C 重合,点E 在AC 边上,连接BE .(1)如图①,若点F 是BE 的中点,连接DF ,且AF =5,AE =6,求DF 的长; (2)如图②,若AF ⊥BE 于点F ,并延长AF 交BC 于点G ,当点E 是AC 的中点时,连接EG ,求证:AG +EG =BE ; (3)在(2)的条件下,连接DF ,请直接..写出∠DFG 的度数.第1题图解:(1)由折叠的性质得:AB =AC ,BD =CD ,∴AD ⊥BC , 在Rt △ABE 中,∵点F 是BE 的中点, ∴AF 是Rt △ABE 斜边上的中线,∴AF =12BE , ∵AF =5,∴BE =10,在Rt △ABE 中,AE =6,BE =10,∴AB =8, 又∵AB =AC ,∴AC =8,∴CE =AC -AE =2,∴DF =12CE =1;(2)证明:如解图①,过点C 作CM ⊥AC ,交AG 的延长线于点M ,则∠ACM =90°,第1题解图①又∵∠BAC =90°,∴∠BAC =∠ACM , ∵AF 是△ABE 的高,∴∠AFB =90°,∴∠1+∠BAF =90°, ∵∠BAC =90°,∴∠2+∠BAF =90°,∴∠1=∠2, 在△ABE 和△CAM 中, ⎩⎪⎨⎪⎧∠BAE =∠ACM AB =CA∠1=∠2, ∴△ABE ≌△CAM (ASA), ∴AE =CM ,BE =AM , 又∵点E 是AC 边的中点, ∴CE =AE =CM , ∵AB =AC ,∠BAC =90°, ∴∠ABC =∠ACB =45°, 又∵∠ACM =90°, ∴∠MCG =∠ACB =45°, 在△CEG 和△CMG 中, ⎩⎪⎨⎪⎧CE =CM ∠ECG =∠MCG CG =CG, ∴△CEG ≌△CMG (SAS),∴EG =GM , 又∵BE =AM ,∴AG +EG =AG +GM =AM =BE ; (3)∠DFG =45°.【解法提示】如解图②,过点D 作DN ⊥DF ,交AG 的延长线于点N ,则∠NDF =90°,第1题解图②∵AD ⊥BC ,∴∠ADB =90°=∠NDF ,∴∠ADB +∠ADF =∠NDF +∠ADF ,即∠BDF =∠ADN ,∵∠ADB =∠AFB =90°,∠5=∠6, ∴∠3=∠4,在Rt △ABC 中,BD =DC , ∴AD =12BC =BD ,在△BDF 和△ADN 中,⎩⎪⎨⎪⎧∠BDF =∠ADN BD =AD ∠3=∠4,∴△BDF ≌△ADN (ASA), ∴DF =DN , 又∵∠NDF =90°,∴∠DFN =∠DNF =45°,即∠DFG =45°.2.如图,在平行四边形ABCD 中,AB =9,AD =13,tan A =125,P 是射线AD 上一点,连接PB ,沿PB 将△APB 折叠,得到△A ′PB .第2题图(1)当∠DP A′=10°时,∠APB=________;(2)当P A′⊥BC时,求线段P A的长度;(3)当点A′落在平行四边形ABCD的边所在的直线上时,求线段P A的长度.解:(1)85°或5°或95°;【解法提示】当点P在线段AD上,且∠APB<90°时,点A′在平行四边形ABCD 的内部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12∠AP A′=85°;如解图①,当点P在线段AD上,且∠APB>90°时,点A′在平行四边形ABCD 的外部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12(360°-∠AP A′)=95°;如解图②,当点P在AD的延长线上,则∠APB=12∠DP A′=5°;第2题解图(2)∵四边形ABCD是平形四边形,∴AD∥BC,若P A′⊥BC,则P A′⊥AD,∴∠APB=∠A′PB=45°,如解图③,作BH ⊥AD 于点H ,第2题解图③∵tan A =125,∴设AH =5x ,BH =12x ,在Rt △ABH 中,由勾股定理得AB =AH 2+BH 2=13x = 9,解得x =913, ∴AH =4513,BH =10813,∵在Rt △BHP 中,∠BPH =45°, ∴BH =PH =10813, ∴AP =AH +PH =15313;(3)①如解图④,当点A ′在AD 上时,第2题解图④∵AB =A ′B , ∴∠1=∠2,∴BP ⊥AD ,且A ′P =AP ,∵tan A =125, ∴AP =513·AB =4513;②如解图⑤,当点A ′在BC 上时,第2题解图⑤由折叠可知,A ′B =AB ,AP =A ′P ,∠3=∠4, 又∵AD ∥BC , ∴∠5=∠4, ∴∠3=∠5, ∴AB =P A ,∴四边形ABA ′P 为菱形, ∴AP =9;③如解图⑥,当点A ′在AB 的延长线上时,∠ABP = 12∠ABA ′=90°, ∴AP =135×AB =1175.第2题解图⑥综上,线段P A 的长度为4513或9或1175.3.如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上的点,连接EF .(1)如图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AF BF 的值.第3题图解:(1)如解图①,第3题解图①∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF . ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF , ∴S 四边形ECBF =3S △AEF . ∵S △ACB =S △AEF +S 四边形ECBF , ∴S △ACB =S △AEF +3S △AEF =4S △AEF . ∴ACBAEFS S △△=14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC . ∴ABC AEF S S △△=(AE AB )2. ∴(AE AB )2=14.在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB 2=AC 2+BC 2.即AB =42+32=5. ∴(AE 5)2=14,∴AE =52; (2)①四边形AEMF 是菱形.证明:∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA , ∴∠CEM =∠EMF . ∴∠CAB =∠CEM . ∴EM ∥AF .∴四边形AEMF 是平形四边形. 又∵AE =ME ,∴四边形AEMF 是菱形.②连接AM 、AM 与EF 交于点O ,如解图②,第3题解图②设AE =x ,则AE =ME =x ,EC =4-x . ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴Rt △ECM ∽Rt △ACB . ∴EC AC =EM AB , ∵AB =5,∴4-x 4=x 5,解得x =209. ∴AE =ME =209,EC =169. 在Rt △ECM 中, ∵∠ECM =90°, ∴CM 2=EM 2-EC 2. 即CM =EM 2-EC 2=(209)2-(169)2=43.∵四边形AEMF 是菱形, ∴OE =OF ,OA =OM ,AM ⊥EF . ∴S 菱形AEMF =4S AOE =2OE ·AO . 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠CAM , ∴OE AO =CM AC . ∵CM =43,AC =4,∴AO =3OE , ∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE ·CM , ∴6OE 2=209×43.∴OE =2109. ∴EF =4109.(3)如解图③,过点F 作FH ⊥CB 于点H ,第3题解图③在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH , ∴EC NC =FH NH , ∵NC =1,EC =47,∴FH NH =47,设FH =x ,则NH =74x , ∴CH =74x -1. ∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x . 在Rt △BHF 和Rt △BCA 中,∵tan∠FBH=tan∠ABC,∴HFBH=ACBC,解得x=85.∴HF=85.∵∠B=∠B,∠BHF=∠BCA=90°,∴△BHF∽△BCA.∴HFCA=BFBA,即HF·BA=CA·BF.∴85×5=4BF.∴BF=2.∵AF=3.∴AFBF=32.4.如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止.△ADP以直线AP为轴翻折,点D落到点D1的位置.设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过点BC的中点E?(3)求出y与x的函数表达式.第4题图解:(1)由题意得,△ADP≌△AD1P,∴AD1=AD=2,PD=PD1=x,∠PD1A=∠PDA=90°,∵直线AD1过点C,∴PD1⊥AC,在Rt △ABC 中,∵AB =3,BC =2, ∴AC =22+32=13, CD 1=13-2,在Rt △PCD 1中,PC 2=PD 21+CD 21,即(3-x )2=x 2+(13-2)2, 解得x =213-43, ∴当x =213-43时,直线AD 1过点C ; (2)如解图①,连接PE ,第4题解图①∵E 为BC 中点, ∴BE =CE =1, 在Rt △ABE 中, AE =AB 2+BE 2=10,又∵AD 1=AD =2,PD =PD 1=x , ∴D 1E =10-2,PC =3-x , 在Rt △PD 1E 和Rt △PCE 中, 有x 2+(10-2)2=(3-x )2+12, 解得x =210-23, ∴当x =210-23时,直线AD 1过BC 的中点E ; (3)如解图②,当0<x ≤2时,点D 1在矩形内部,y =x ;图② 图③ 第4题解图如解图③,当2<x ≤3时,点D 1在矩形外部,PD 1与AB 交于点F , ∵AB ∥CD ,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∴FP =F A , 作PG ⊥AB ,垂足为点G , 设FP =F A =a ,由题意得,AG =DP =x ,FG =x -a , 在Rt △PFG 中,由勾股定理,得 (x -a )2+22=a 2, 解得a =4+x 22x ,∴y =12×2×4+x 22x =x 2+42x ,综上所述,当0<x ≤2时,y =x ;当2<x ≤3时,y =x 2+42x .5.阅读下列材料:如图①,在Rt △ABC 中,∠C =90°,D 为边AC 上一点,DA =DB ,E 为BD 延长线上一点,∠AEB =120°.(1)猜想AC 、BE 、AE 的数量关系,并证明.小明的思路是:根据等腰△ADB 的轴对称性,将整个图形沿着AB 边的垂直平分线翻折,得到点C 的对称点F ,如图②,过点A 作AF ⊥BE ,交BE 的延长线于F ,请补充完成此问题;(2)参考小明思考问题的方法,解答下列问题:如图③,在等腰△ABC 中,AB =AC ,D 、F 在直线BC 上,DE =BF ,连接AD ,过点E 作EG ∥AC 交FH 的延长线于点G ,∠DFG +∠D =∠BAC .①探究∠BAD 与∠CHG 的数量关系;②请在图中找出一条和线段AD 相等的线段,并证明.第5题图解:猜想:AC =BE +12AE . 理由如下:如题图②, ∵DA =DB , ∴∠DAB =∠DBA , ∵AF ⊥BF , ∴∠F =∠C =90°, 在△ABF 和△BAC 中, ⎩⎪⎨⎪⎧∠F =∠C =90°∠ABF =∠BAC AB =BA, ∴△ABF ≌△BAC (AAS), ∴AC =BF ,∵∠AEB =120°=∠F +∠F AE , ∴∠F AE =30°, ∴EF =12AE ,∴AC =BF =BE +EF =BE +12AE ,∴AC =BE+12AE ; 问题:(1)如题图③中,∵∠ACF =∠D +∠CAD ,∠D +∠DFG =∠BAC ,∴∠CHG =∠CFH +∠FCH =∠CFH +∠D +∠CAD =∠BAC +∠CAD =∠BAD ,∴∠CHG =∠BAD ; (2)结论:AD =FG . 理由如下:如解图③中,反向延长BD 到R ,使得BR =CD ,连接AR ,作AJ ∥CD 交EG 的延长线于点J ,连接FJ ,第5题解图③∵AJ ∥CE ,AC ∥JE ,∴四边形ACEJ 是平行四边形, ∴AJ =CE ,AC =JE , ∵AB =AC ,∴JE =AB ,∠ABC =∠ACB , ∴∠ABR =∠ACD , 在△ABR 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ∠ABR =∠ACD BR =CD, ∴△ABR ≌△ACD (SAS), ∴AR =AD ,∵BR =CD ,BF =DE , ∴FR =CE =AJ ,EF =BD ,又∵AJ ∥RF ,∴四边形ARFJ 是平行四边形, ∴JF =AR =AD ,在△ABD 和△JEF 中,⎩⎪⎨⎪⎧AB =JE AD =JF BD =EF ,∴△ABD ≌△JEF (SSS), ∴∠EJF =∠BAD , 又∵∠JGH =∠GHC , ∵∠BAD =∠CHG =∠FGJ , ∴∠EJF =∠FGJ , ∴FG =FJ , ∴AD =FG .6.如图,长方形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 上的E 点处,折痕的一端G 点在边BC 上.(1)如图①,当折痕的另一端F 在AB 边上且AE =4时,求AF 的长; (2)如图②,当折痕的另一端F 在AD 边上且BG =10时, ①求证:EF =EG ; ②求AF 的长;(3)如图③,当折痕的另一端F 在AD 边上,B 点的对应点E 在长方形内部,E 到AD 的距离为2,且BG =10时,求AF 的长.第6题图(1)解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴BF =EF ,∵AB =8,∴EF =8-AF ,在Rt △AEF 中,AE 2+AF 2=EF 2, 即42+AF 2=(8-AF )2,解得AF =3;(2)①证明:∵纸片折叠后顶点B 落在边AD 上的E 点处,∴∠BGF =∠EGF , ∵长方形纸片ABCD 的边AD ∥BC ,∴∠BGF =∠EFG ,∴∠EGF =∠EFG ,∴EF =EG ; ②解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴EG =BG =10,HE =AB =8,FH =AF , ∴EF =EG =10,在Rt △EFH 中,由勾股定理得FH =EF 2-HE 2=102-82=6,∴AF =FH =6;(3)解:如解图,设EH 与AD 相交于点K ,过点E 作MN ∥CD 分别交AD 、BC 于点M 、N ,第6题解图∵E 到AD 的距离为2, ∴EM =2,EN =8-2=6,在Rt △ENG 中,GN =EG 2-EN 2=102-62=8, ∵∠GEN +∠KEM =180°-∠GEH =180°-90°=90°, ∠GEN +∠NGE =180°-90°=90°, ∴∠KEM =∠NGE ,又∵∠ENG =∠KME =90°,∴△GEN ∽△EKM , ∴EK GE =KM EN =EM GN ,即EK 10=KM 6=28, 解得EK =52,KM =32, ∴KH =EH -EK =8-52=112,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FHEM=KHKM,即FH2=11232,解得FH=223,∴AF=FH=223.7.在等腰Rt△ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图①,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当AD=2时,求AE′的值;(2)如图②,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD 翻折到△CDE′,且AE′交BC于点F,求证:DF=CF.第7题图(1)解:∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴∠ADC=90°,∠ACD=45°,在Rt△ADC中,AC=ADsin 45°=2,∵E是AC的中点,∴CE=12AC=1,∵将△CDE沿CD翻折到△CDE′,∴CE ′=CE =1,∠ACE ′=90°, 由勾股定理得:AE ′=CE ′+AC 2=5;(2)证明:如解图,过B 作AE ′的垂线交AD 于点G ,交AC 于点H ,第7题解图∵∠ABH +∠BAF =90°,∠CAF +∠BAF =90°, ∴∠ABH =∠CAF ,又∵AB =AC ,∠BAH =∠ACE ′=90°, ∴△ABH ≌△CAE ′, ∴AH =CE ′=CE , ∵CE =13AC , ∴AH =HE =CE , ∵D 是BC 中点, ∴DE ∥BH , ∴G 是AD 中点, 在△ABG 和△CAF 中 ⎩⎪⎨⎪⎧∠BAD =∠ACD =45°AB =AC∠ABH =∠CAF, ∴△ABG ≌△CAF (ASA),∴AG =CF , ∵AG =12AD ,∴CF =12AD =12CD ,∴DF =CF . 8.【问题情境】在数学综合与实践课上,老师让同学们以“正方形的折叠为主题开展活动”,如图①,四边形ABCD是正方形,AB=5,点E是CD边上的一动点,连接AE.【操作发现】(1)将△ADE沿AE折叠得△AD′E,如图②,当点D′到BC的距离等于1时,求点E到BC的距离.【继续探究】(2)在(1)的条件下,创新小组在图②中,连接BE,如图③,发现∠AEB=2∠EBC,请你证明这个结论.【深入探究】(3)创新小组将图②沿MN向下折叠,使点A与点E,连接DD′并延长交BC 于点F,如图④,求四边形MNFD的面积.第8题图解:(1)如解图①,过点D′作XY∥BC,与AB、CD分别交于点X、Y,∵四边形ABCD是正方形,第8题解图①∴∠B=∠C=90°,AB∥CD,∴四边形BCYX 是矩形, ∵点D ′到BC 的距离为1, ∴BX =CY =1,∴AX =AB -BX =5-1=4, 由折叠知:AD ′=AD =5,在Rt △AXD ′中,由勾股定理得XD ′=52-42=3, ∴D ′Y =XY -XD ′=5-3=2, 由题易证△AXD ′∽△D ′YE , ∴AXD ′Y=XD ′YE , ∴42=3YE , ∴YE =32,∴CE =YE +YC =32+1=52, ∴点E 到BC 的距离等于52; (2)证明:由(1)知,CE =52, ∴DE =DC -CE =5-52=52, ∴DE =CE ,又∵AD =BC ,∠C =∠ADE , ∴△ADE ≌△BCE , ∴AE =BE ,如解图②,过点E 作EZ ⊥AB 于点Z ,第8题解图②∴EZ 平分∠AEB , ∴∠AEB =2∠BEZ , ∵EZ ⊥AB ,BC ⊥AB , ∴EZ ∥BC . ∴∠BEZ =∠EBC , ∴∠AEB =2∠EBC ;(3)∵点A 、点E 关于MN 对称, ∴MN 垂直平分AE , 同理:AE 垂直平分DD ′, ∴MN ∥DF , 又∵MD ∥NF ,∴四边形MNFD 是平行四边形,如解图③,设AE 与MN ,DD ′分别相交于点G 、H ,第8题解图③在Rt △ADE 中,由勾股定理得 AE =AD 2+DE 2 =52+(52)2=552,∴GE =12AE =12×552=554. 在Rt △ADE 中,DH ·AE =AD ·DE ,∴DH =AD ·DEAE =5×52552=5,在Rt △DEH 中,由勾股定理得 EH =DE 2-DH 2=(52)2-(5)2=52,∴GH =GE -EH =554-52=354,∵△ADE ≌△DCF ,∴AE =DF ,∴DF =552, ∴S 四边形MNFD =DF ·GH =552×354=758. 9.【问题情境】(1)数学课上,老师出了一道题,如图①,Rt △ABC 中,∠C =90°,AC =12AB ,求证:∠B =30°,请你完成证明过程;【继续探究】(2)如图②,四边形ABCD 是一张边长为2的正方形纸片,E 、F 分别为AB 、CD 的中点,沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处,折痕交AE 于点G ,请运用(1)中的结论求∠ADG 的度数和AG 的长;【拓展应用】(3)若矩形纸片ABCD 按如图③所示的方式折叠,B 、D 两点恰好重合于一点O (如图④),当AB =6时,求EF 的长.第9题图(1)证明:Rt △ABC 中,∠C =90°,AC =12AB , ∵sin B =AC AB =12, ∴∠B =30°;(2)解:∵正方形边长为2,E 、F 分别为AB 、CD 的中点, ∴EA =FD =12×CD =1,∵沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处, ∴A ′D =AD =2, ∴FD A ′D =12, ∴∠F A ′D =30°,可得∠FDA ′=90°-30°=60°,由折叠性质可得∠ADG =∠A ′DG ,AG =A ′G , ∴∠ADG =∠ADA ′2=90°-60°2=15°, ∵A ′D =2,FD =1,∴A′F=A′D2-FD2=3,∴EA′=EF-A′F=2-3,∵∠EA′G+∠DA′F=180°-∠GA′D=90°,∴∠EA′G=90°-∠DA′F=90°-30°=60°,∴∠EGA′=90°-∠EA′G=90°-60°=30°,则AG=AG′=2EA′=2(2-3);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=AC 2,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,ADDC=tan30°,则AD=DC·tan30°=6×33=23,∵∠DAF=∠F AO=12∠DAO=90°-∠DCA2=30°,∴DFAD=tan30°=33,∴DF=33AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.10.如图,在矩形ABCD纸片中,AB=10 cm,BC=12 cm.点P在BC边上,将△P AB沿AP折叠得△P AE,连接CE,DE.(1)当点E落在AD边上时,CE=________;(2)当△CDE分别满足下列条件时,求PB的长.①DE=CD;②DE=CE.第10题图解:(1)226 cm ; 【解法提示】如解图①,∵将△P AB 沿AP 折叠,得△P AE ,E 落在AD 边上, ∴四边形ABPE 是正方形, ∴PB =PE =AB =10 cm , ∴PC =2 cm ,∴CE =PE 2+PC 2=226 cm.第10题解图①(2)①如解图②,过E 作MN ⊥AD 于M ,交BC 于N ,则MN ⊥BC ,第10题解图②∵DE =CD ,AE =AB =CD =DE , ∴AE =10 cm ,∴AM =12AD =BN =6 cm ,∴ME =AE 2-AM 2=8 cm , ∴EN =MN -ME =2 cm , 易知△AME ∽△ENP , ∴AM AE =EN PE , ∴610=2PE , ∴PE =103 cm , ∴PB =PE =103 cm ;②如解图③,过E 作MN ⊥AD 于M ,交BC 于N ,过E 作EQ ⊥CD 于Q ,第10题解图③∵DE =CE ,∴DQ =12CD =5 cm ,∴ME =5 cm , ∴EN =MN -ME =5 cm , ∴AM =AE 2-ME 2=5 3 cm , ∴BN =5 3 cm , 同理得AM AE =EN PE , ∴5310=5PE , ∴PE =1033 cm ,103∴PB=PE=3cm.。
2020中考数学压轴专题:图形折叠(含答案)

2020中考数学 压轴专题:图形折叠(含答案)1.如图,在△ABC 中,∠BAC =90°,将△ABC 沿AD 翻折,点B 恰好与点C 重合,点E 在AC 边上,连接BE .(1)如图①,若点F 是BE 的中点,连接DF ,且AF =5,AE =6,求DF 的长; (2)如图②,若AF ⊥BE 于点F ,并延长AF 交BC 于点G ,当点E 是AC 的中点时,连接EG ,求证:AG +EG =BE ; (3)在(2)的条件下,连接DF ,请直接..写出∠DFG 的度数.第1题图解:(1)由折叠的性质得:AB =AC ,BD =CD ,∴AD ⊥BC , 在Rt △ABE 中,∵点F 是BE 的中点, ∴AF 是Rt △ABE 斜边上的中线,∴AF =12BE , ∵AF =5,∴BE =10,在Rt △ABE 中,AE =6,BE =10,∴AB =8, 又∵AB =AC ,∴AC =8,∴CE =AC -AE =2,∴DF =12CE =1;(2)证明:如解图①,过点C 作CM ⊥AC ,交AG 的延长线于点M ,则∠ACM =90°,第1题解图①又∵∠BAC =90°,∴∠BAC =∠ACM , ∵AF 是△ABE 的高,∴∠AFB =90°,∴∠1+∠BAF =90°, ∵∠BAC =90°,∴∠2+∠BAF =90°,∴∠1=∠2, 在△ABE 和△CAM 中, ⎩⎪⎨⎪⎧∠BAE =∠ACM AB =CA∠1=∠2, ∴△ABE ≌△CAM (ASA), ∴AE =CM ,BE =AM , 又∵点E 是AC 边的中点, ∴CE =AE =CM , ∵AB =AC ,∠BAC =90°, ∴∠ABC =∠ACB =45°, 又∵∠ACM =90°, ∴∠MCG =∠ACB =45°, 在△CEG 和△CMG 中, ⎩⎪⎨⎪⎧CE =CM ∠ECG =∠MCG CG =CG, ∴△CEG ≌△CMG (SAS),∴EG =GM , 又∵BE =AM ,∴AG +EG =AG +GM =AM =BE ; (3)∠DFG =45°.【解法提示】如解图②,过点D 作DN ⊥DF ,交AG 的延长线于点N ,则∠NDF =90°,第1题解图②∵AD ⊥BC ,∴∠ADB =90°=∠NDF ,∴∠ADB +∠ADF =∠NDF +∠ADF ,即∠BDF =∠ADN ,∵∠ADB =∠AFB =90°,∠5=∠6, ∴∠3=∠4,在Rt △ABC 中,BD =DC , ∴AD =12BC =BD ,在△BDF 和△ADN 中,⎩⎪⎨⎪⎧∠BDF =∠ADN BD =AD ∠3=∠4,∴△BDF ≌△ADN (ASA), ∴DF =DN , 又∵∠NDF =90°,∴∠DFN =∠DNF =45°,即∠DFG =45°.2.如图,在平行四边形ABCD 中,AB =9,AD =13,tan A =125,P 是射线AD 上一点,连接PB ,沿PB 将△APB 折叠,得到△A ′PB .第2题图(1)当∠DP A′=10°时,∠APB=________;(2)当P A′⊥BC时,求线段P A的长度;(3)当点A′落在平行四边形ABCD的边所在的直线上时,求线段P A的长度.解:(1)85°或5°或95°;【解法提示】当点P在线段AD上,且∠APB<90°时,点A′在平行四边形ABCD 的内部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12∠AP A′=85°;如解图①,当点P在线段AD上,且∠APB>90°时,点A′在平行四边形ABCD 的外部,∵∠DP A′=10°,∴∠AP A′=180°-∠DP A′=170°,∴∠APB=12(360°-∠AP A′)=95°;如解图②,当点P在AD的延长线上,则∠APB=12∠DP A′=5°;第2题解图(2)∵四边形ABCD是平形四边形,∴AD∥BC,若P A′⊥BC,则P A′⊥AD,∴∠APB=∠A′PB=45°,如解图③,作BH ⊥AD 于点H ,第2题解图③∵tan A =125,∴设AH =5x ,BH =12x ,在Rt △ABH 中,由勾股定理得AB =AH 2+BH 2=13x = 9,解得x =913, ∴AH =4513,BH =10813,∵在Rt △BHP 中,∠BPH =45°, ∴BH =PH =10813, ∴AP =AH +PH =15313;(3)①如解图④,当点A ′在AD 上时,第2题解图④∵AB =A ′B , ∴∠1=∠2,∴BP ⊥AD ,且A ′P =AP ,∵tan A =125, ∴AP =513·AB =4513;②如解图⑤,当点A ′在BC 上时,第2题解图⑤由折叠可知,A ′B =AB ,AP =A ′P ,∠3=∠4, 又∵AD ∥BC , ∴∠5=∠4, ∴∠3=∠5, ∴AB =P A ,∴四边形ABA ′P 为菱形, ∴AP =9;③如解图⑥,当点A ′在AB 的延长线上时,∠ABP = 12∠ABA ′=90°, ∴AP =135×AB =1175.第2题解图⑥综上,线段P A 的长度为4513或9或1175.3.如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上的点,连接EF .(1)如图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AF BF 的值.第3题图解:(1)如解图①,第3题解图①∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF . ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF , ∴S 四边形ECBF =3S △AEF . ∵S △ACB =S △AEF +S 四边形ECBF , ∴S △ACB =S △AEF +3S △AEF =4S △AEF . ∴ACBAEFS S △△=14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC . ∴ABC AEF S S △△=(AE AB )2. ∴(AE AB )2=14.在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB 2=AC 2+BC 2.即AB =42+32=5. ∴(AE 5)2=14,∴AE =52; (2)①四边形AEMF 是菱形.证明:∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA , ∴∠CEM =∠EMF . ∴∠CAB =∠CEM . ∴EM ∥AF .∴四边形AEMF 是平形四边形. 又∵AE =ME ,∴四边形AEMF 是菱形.②连接AM 、AM 与EF 交于点O ,如解图②,第3题解图②设AE =x ,则AE =ME =x ,EC =4-x . ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴Rt △ECM ∽Rt △ACB . ∴EC AC =EM AB , ∵AB =5,∴4-x 4=x 5,解得x =209. ∴AE =ME =209,EC =169. 在Rt △ECM 中, ∵∠ECM =90°, ∴CM 2=EM 2-EC 2. 即CM =EM 2-EC 2=(209)2-(169)2=43.∵四边形AEMF 是菱形, ∴OE =OF ,OA =OM ,AM ⊥EF . ∴S 菱形AEMF =4S AOE =2OE ·AO . 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠CAM , ∴OE AO =CM AC . ∵CM =43,AC =4,∴AO =3OE , ∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE ·CM , ∴6OE 2=209×43.∴OE =2109. ∴EF =4109.(3)如解图③,过点F 作FH ⊥CB 于点H ,第3题解图③在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH , ∴EC NC =FH NH , ∵NC =1,EC =47,∴FH NH =47,设FH =x ,则NH =74x , ∴CH =74x -1. ∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x . 在Rt △BHF 和Rt △BCA 中,∵tan∠FBH=tan∠ABC,∴HFBH=ACBC,解得x=85.∴HF=85.∵∠B=∠B,∠BHF=∠BCA=90°,∴△BHF∽△BCA.∴HFCA=BFBA,即HF·BA=CA·BF.∴85×5=4BF.∴BF=2.∵AF=3.∴AFBF=32.4.如图,四边形ABCD为一个矩形纸片,AB=3,BC=2,动点P自D点出发沿DC方向运动至C点后停止.△ADP以直线AP为轴翻折,点D落到点D1的位置.设DP=x,△AD1P与原纸片重叠部分的面积为y.(1)当x为何值时,直线AD1过点C?(2)当x为何值时,直线AD1过点BC的中点E?(3)求出y与x的函数表达式.第4题图解:(1)由题意得,△ADP≌△AD1P,∴AD1=AD=2,PD=PD1=x,∠PD1A=∠PDA=90°,∵直线AD1过点C,∴PD1⊥AC,在Rt △ABC 中,∵AB =3,BC =2, ∴AC =22+32=13, CD 1=13-2,在Rt △PCD 1中,PC 2=PD 21+CD 21,即(3-x )2=x 2+(13-2)2, 解得x =213-43, ∴当x =213-43时,直线AD 1过点C ; (2)如解图①,连接PE ,第4题解图①∵E 为BC 中点, ∴BE =CE =1, 在Rt △ABE 中, AE =AB 2+BE 2=10,又∵AD 1=AD =2,PD =PD 1=x , ∴D 1E =10-2,PC =3-x , 在Rt △PD 1E 和Rt △PCE 中, 有x 2+(10-2)2=(3-x )2+12, 解得x =210-23, ∴当x =210-23时,直线AD 1过BC 的中点E ; (3)如解图②,当0<x ≤2时,点D 1在矩形内部,y =x ;图② 图③ 第4题解图如解图③,当2<x ≤3时,点D 1在矩形外部,PD 1与AB 交于点F , ∵AB ∥CD ,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∴FP =F A , 作PG ⊥AB ,垂足为点G , 设FP =F A =a ,由题意得,AG =DP =x ,FG =x -a , 在Rt △PFG 中,由勾股定理,得 (x -a )2+22=a 2, 解得a =4+x 22x ,∴y =12×2×4+x 22x =x 2+42x ,综上所述,当0<x ≤2时,y =x ;当2<x ≤3时,y =x 2+42x .5.阅读下列材料:如图①,在Rt △ABC 中,∠C =90°,D 为边AC 上一点,DA =DB ,E 为BD 延长线上一点,∠AEB =120°.(1)猜想AC 、BE 、AE 的数量关系,并证明.小明的思路是:根据等腰△ADB 的轴对称性,将整个图形沿着AB 边的垂直平分线翻折,得到点C 的对称点F ,如图②,过点A 作AF ⊥BE ,交BE 的延长线于F ,请补充完成此问题;(2)参考小明思考问题的方法,解答下列问题:如图③,在等腰△ABC 中,AB =AC ,D 、F 在直线BC 上,DE =BF ,连接AD ,过点E 作EG ∥AC 交FH 的延长线于点G ,∠DFG +∠D =∠BAC .①探究∠BAD 与∠CHG 的数量关系;②请在图中找出一条和线段AD 相等的线段,并证明.第5题图解:猜想:AC =BE +12AE . 理由如下:如题图②, ∵DA =DB , ∴∠DAB =∠DBA , ∵AF ⊥BF , ∴∠F =∠C =90°, 在△ABF 和△BAC 中, ⎩⎪⎨⎪⎧∠F =∠C =90°∠ABF =∠BAC AB =BA, ∴△ABF ≌△BAC (AAS), ∴AC =BF ,∵∠AEB =120°=∠F +∠F AE , ∴∠F AE =30°, ∴EF =12AE ,∴AC =BF =BE +EF =BE +12AE ,∴AC =BE+12AE ; 问题:(1)如题图③中,∵∠ACF =∠D +∠CAD ,∠D +∠DFG =∠BAC ,∴∠CHG =∠CFH +∠FCH =∠CFH +∠D +∠CAD =∠BAC +∠CAD =∠BAD ,∴∠CHG =∠BAD ; (2)结论:AD =FG . 理由如下:如解图③中,反向延长BD 到R ,使得BR =CD ,连接AR ,作AJ ∥CD 交EG 的延长线于点J ,连接FJ ,第5题解图③∵AJ ∥CE ,AC ∥JE ,∴四边形ACEJ 是平行四边形, ∴AJ =CE ,AC =JE , ∵AB =AC ,∴JE =AB ,∠ABC =∠ACB , ∴∠ABR =∠ACD , 在△ABR 和△ACD 中, ⎩⎪⎨⎪⎧AB =AC ∠ABR =∠ACD BR =CD, ∴△ABR ≌△ACD (SAS), ∴AR =AD ,∵BR =CD ,BF =DE , ∴FR =CE =AJ ,EF =BD ,又∵AJ ∥RF ,∴四边形ARFJ 是平行四边形, ∴JF =AR =AD ,在△ABD 和△JEF 中,⎩⎪⎨⎪⎧AB =JE AD =JF BD =EF ,∴△ABD ≌△JEF (SSS), ∴∠EJF =∠BAD , 又∵∠JGH =∠GHC , ∵∠BAD =∠CHG =∠FGJ , ∴∠EJF =∠FGJ , ∴FG =FJ , ∴AD =FG .6.如图,长方形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 上的E 点处,折痕的一端G 点在边BC 上.(1)如图①,当折痕的另一端F 在AB 边上且AE =4时,求AF 的长; (2)如图②,当折痕的另一端F 在AD 边上且BG =10时, ①求证:EF =EG ; ②求AF 的长;(3)如图③,当折痕的另一端F 在AD 边上,B 点的对应点E 在长方形内部,E 到AD 的距离为2,且BG =10时,求AF 的长.第6题图(1)解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴BF =EF ,∵AB =8,∴EF =8-AF ,在Rt △AEF 中,AE 2+AF 2=EF 2, 即42+AF 2=(8-AF )2,解得AF =3;(2)①证明:∵纸片折叠后顶点B 落在边AD 上的E 点处,∴∠BGF =∠EGF , ∵长方形纸片ABCD 的边AD ∥BC ,∴∠BGF =∠EFG ,∴∠EGF =∠EFG ,∴EF =EG ; ②解:∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴EG =BG =10,HE =AB =8,FH =AF , ∴EF =EG =10,在Rt △EFH 中,由勾股定理得FH =EF 2-HE 2=102-82=6,∴AF =FH =6;(3)解:如解图,设EH 与AD 相交于点K ,过点E 作MN ∥CD 分别交AD 、BC 于点M 、N ,第6题解图∵E 到AD 的距离为2, ∴EM =2,EN =8-2=6,在Rt △ENG 中,GN =EG 2-EN 2=102-62=8, ∵∠GEN +∠KEM =180°-∠GEH =180°-90°=90°, ∠GEN +∠NGE =180°-90°=90°, ∴∠KEM =∠NGE ,又∵∠ENG =∠KME =90°,∴△GEN ∽△EKM , ∴EK GE =KM EN =EM GN ,即EK 10=KM 6=28, 解得EK =52,KM =32, ∴KH =EH -EK =8-52=112,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FHEM=KHKM,即FH2=11232,解得FH=223,∴AF=FH=223.7.在等腰Rt△ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图①,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当AD=2时,求AE′的值;(2)如图②,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD 翻折到△CDE′,且AE′交BC于点F,求证:DF=CF.第7题图(1)解:∵∠BAC=90°,AB=AC,D是斜边BC的中点,∴∠ADC=90°,∠ACD=45°,在Rt△ADC中,AC=ADsin 45°=2,∵E是AC的中点,∴CE=12AC=1,∵将△CDE沿CD翻折到△CDE′,∴CE ′=CE =1,∠ACE ′=90°, 由勾股定理得:AE ′=CE ′+AC 2=5;(2)证明:如解图,过B 作AE ′的垂线交AD 于点G ,交AC 于点H ,第7题解图∵∠ABH +∠BAF =90°,∠CAF +∠BAF =90°, ∴∠ABH =∠CAF ,又∵AB =AC ,∠BAH =∠ACE ′=90°, ∴△ABH ≌△CAE ′, ∴AH =CE ′=CE , ∵CE =13AC , ∴AH =HE =CE , ∵D 是BC 中点, ∴DE ∥BH , ∴G 是AD 中点, 在△ABG 和△CAF 中 ⎩⎪⎨⎪⎧∠BAD =∠ACD =45°AB =AC∠ABH =∠CAF, ∴△ABG ≌△CAF (ASA),∴AG =CF , ∵AG =12AD ,∴CF =12AD =12CD ,∴DF =CF . 8.【问题情境】在数学综合与实践课上,老师让同学们以“正方形的折叠为主题开展活动”,如图①,四边形ABCD是正方形,AB=5,点E是CD边上的一动点,连接AE.【操作发现】(1)将△ADE沿AE折叠得△AD′E,如图②,当点D′到BC的距离等于1时,求点E到BC的距离.【继续探究】(2)在(1)的条件下,创新小组在图②中,连接BE,如图③,发现∠AEB=2∠EBC,请你证明这个结论.【深入探究】(3)创新小组将图②沿MN向下折叠,使点A与点E,连接DD′并延长交BC 于点F,如图④,求四边形MNFD的面积.第8题图解:(1)如解图①,过点D′作XY∥BC,与AB、CD分别交于点X、Y,∵四边形ABCD是正方形,第8题解图①∴∠B=∠C=90°,AB∥CD,∴四边形BCYX 是矩形, ∵点D ′到BC 的距离为1, ∴BX =CY =1,∴AX =AB -BX =5-1=4, 由折叠知:AD ′=AD =5,在Rt △AXD ′中,由勾股定理得XD ′=52-42=3, ∴D ′Y =XY -XD ′=5-3=2, 由题易证△AXD ′∽△D ′YE , ∴AXD ′Y=XD ′YE , ∴42=3YE , ∴YE =32,∴CE =YE +YC =32+1=52, ∴点E 到BC 的距离等于52; (2)证明:由(1)知,CE =52, ∴DE =DC -CE =5-52=52, ∴DE =CE ,又∵AD =BC ,∠C =∠ADE , ∴△ADE ≌△BCE , ∴AE =BE ,如解图②,过点E 作EZ ⊥AB 于点Z ,第8题解图②∴EZ 平分∠AEB , ∴∠AEB =2∠BEZ , ∵EZ ⊥AB ,BC ⊥AB , ∴EZ ∥BC . ∴∠BEZ =∠EBC , ∴∠AEB =2∠EBC ;(3)∵点A 、点E 关于MN 对称, ∴MN 垂直平分AE , 同理:AE 垂直平分DD ′, ∴MN ∥DF , 又∵MD ∥NF ,∴四边形MNFD 是平行四边形,如解图③,设AE 与MN ,DD ′分别相交于点G 、H ,第8题解图③在Rt △ADE 中,由勾股定理得 AE =AD 2+DE 2 =52+(52)2=552,∴GE =12AE =12×552=554. 在Rt △ADE 中,DH ·AE =AD ·DE ,∴DH =AD ·DEAE =5×52552=5,在Rt △DEH 中,由勾股定理得 EH =DE 2-DH 2=(52)2-(5)2=52,∴GH =GE -EH =554-52=354,∵△ADE ≌△DCF ,∴AE =DF ,∴DF =552, ∴S 四边形MNFD =DF ·GH =552×354=758. 9.【问题情境】(1)数学课上,老师出了一道题,如图①,Rt △ABC 中,∠C =90°,AC =12AB ,求证:∠B =30°,请你完成证明过程;【继续探究】(2)如图②,四边形ABCD 是一张边长为2的正方形纸片,E 、F 分别为AB 、CD 的中点,沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处,折痕交AE 于点G ,请运用(1)中的结论求∠ADG 的度数和AG 的长;【拓展应用】(3)若矩形纸片ABCD 按如图③所示的方式折叠,B 、D 两点恰好重合于一点O (如图④),当AB =6时,求EF 的长.第9题图(1)证明:Rt △ABC 中,∠C =90°,AC =12AB , ∵sin B =AC AB =12, ∴∠B =30°;(2)解:∵正方形边长为2,E 、F 分别为AB 、CD 的中点, ∴EA =FD =12×CD =1,∵沿过点D 的折痕将纸片翻折,使点A 落在EF 上的点A ′处, ∴A ′D =AD =2, ∴FD A ′D =12, ∴∠F A ′D =30°,可得∠FDA ′=90°-30°=60°,由折叠性质可得∠ADG =∠A ′DG ,AG =A ′G , ∴∠ADG =∠ADA ′2=90°-60°2=15°, ∵A ′D =2,FD =1,∴A′F=A′D2-FD2=3,∴EA′=EF-A′F=2-3,∵∠EA′G+∠DA′F=180°-∠GA′D=90°,∴∠EA′G=90°-∠DA′F=90°-30°=60°,∴∠EGA′=90°-∠EA′G=90°-60°=30°,则AG=AG′=2EA′=2(2-3);(3)解:∵折叠后B、D两点恰好重合于一点O,∴AO=AD=CB=CO,∴DA=AC 2,∵∠D=90°,∴∠DCA=30°,∵AB=CD=6,在Rt△ACD中,ADDC=tan30°,则AD=DC·tan30°=6×33=23,∵∠DAF=∠F AO=12∠DAO=90°-∠DCA2=30°,∴DFAD=tan30°=33,∴DF=33AD=2,∴DF=FO=2,同理EO=2,∴EF=EO+FO=4.10.如图,在矩形ABCD纸片中,AB=10 cm,BC=12 cm.点P在BC边上,将△P AB沿AP折叠得△P AE,连接CE,DE.(1)当点E落在AD边上时,CE=________;(2)当△CDE分别满足下列条件时,求PB的长.①DE=CD;②DE=CE.第10题图解:(1)226 cm ; 【解法提示】如解图①,∵将△P AB 沿AP 折叠,得△P AE ,E 落在AD 边上, ∴四边形ABPE 是正方形, ∴PB =PE =AB =10 cm , ∴PC =2 cm ,∴CE =PE 2+PC 2=226 cm.第10题解图①(2)①如解图②,过E 作MN ⊥AD 于M ,交BC 于N ,则MN ⊥BC ,第10题解图②∵DE =CD ,AE =AB =CD =DE , ∴AE =10 cm ,∴AM =12AD =BN =6 cm ,∴ME =AE 2-AM 2=8 cm , ∴EN =MN -ME =2 cm , 易知△AME ∽△ENP , ∴AM AE =EN PE , ∴610=2PE , ∴PE =103 cm , ∴PB =PE =103 cm ;②如解图③,过E 作MN ⊥AD 于M ,交BC 于N ,过E 作EQ ⊥CD 于Q ,第10题解图③∵DE =CE ,∴DQ =12CD =5 cm ,∴ME =5 cm , ∴EN =MN -ME =5 cm , ∴AM =AE 2-ME 2=5 3 cm , ∴BN =5 3 cm , 同理得AM AE =EN PE , ∴5310=5PE , ∴PE =1033 cm ,103∴PB=PE=3cm.。
中考数学压轴题---《与折叠有关的计算》题型讲解

中考数学压轴题---《与折叠有关的计算》题型讲解1、(2020•青岛)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.B.C.2D.4【答案】C【解答】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,由折叠得,∠EFC=∠AFE,∴∠AFE=∠AEF,∴AE=AF=5,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB==4,在Rt△ABC中,AC==4,∴OA=OC=2,故选:C.2、如图,在△ABC纸片中,∠B=30°,AB=AC=,点D在AB上运动,将纸片沿CD折叠,得到点B的对应点B′(D在A点时,点D的对应点是本身),则折叠过程对应点B′的路径长是()A.3B.6C.πD.2π【答案】C【解答】解:过点A作AE⊥BC于点E,∵∠B=30°,AB=AC=,∴BE=AB cos∠B=,∴BC=2BE=3,由折叠的性质可得:∠BCB''=2∠ACB=60°,∴B′的路径长==π.故选:C.3、(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()A.B.C.D.【答案】C【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,AD=BC=3,AB=CD=5,∴∠BDC=∠DBF,由折叠的性质可得∠BDC=∠BDF,∴∠BDF=∠DBF,∴BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中,32+(5﹣x)2=x2,∴x=,∴cos∠ADF=,故选:C.4、(2022•毕节市)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是()A.3B.C.D.【答案】D【解答】解:连接BF,交AE于O点,∵将△ABE沿AE折叠得到△AFE,∴BE=EF,∠AEB=∠AEF,AE垂直平分BF,∵点E为BC的中点,∴BE=CE=EF=3,∴∠EFC=∠ECF,∵∠BEF=∠ECF+∠EFC,∴∠AEB=∠ECF,∴AE∥CF,∴∠BFC=∠BOE=90°,在Rt△ABE中,由勾股定理得,AE==,∴BO==,∴BF=2BO=,在Rt△BCF中,由勾股定理得,CF===,故选:D.5、(2022•湖州)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是()A.BD=10B.HG=2C.EG∥FH D.GF⊥BC 【答案】D【解答】解:∵四边形ABCD是矩形,∴∠A=90°,BC=AD,∵AB=6,BC=8,∴BD===10,故A选项不符合题意;∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴AB=BG=6,CD=DH=6,∴GH=BG+DH﹣BD=6+6﹣10=2,故B选项不符合题意;∵四边形ABCD是矩形,∴∠A=∠C=90°,∵将△ABE沿BE翻折,将△DCF沿DF翻折,点A,C分别落在对角线BD上的点G,H处,∴∠A=∠BGE=∠C=∠DHF=90°,∴EG∥FH.故C选项不符合题意;∵GH=2,∴BH=DG=BG﹣GH=6﹣2=4,设FC=HF=x,则BF=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴CF=3,∴,又∵,∴,若GF⊥BC,则GF∥CD,∴,故D选项符合题意.故选:D.6、(2021•天津)如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是()A.∠ABC=∠ADC B.CB=CD C.DE+DC=BC D.AB∥CD【答案】D【解答】解:由旋转的性质得出CD=CA,∠EDC=∠BAC=120°,∵点A,D,E在同一条直线上,∴∠ADC=60°,∴△ADC为等边三角形,∴∠DAC=60°,∴∠BAD=60°=∠ADC,∴AB∥CD,故选:D.7、(2022•滨州)正方形ABCD的对角线相交于点O(如图1),如果∠BOC绕点O按顺时针方向旋转,其两边分别与边AB、BC相交于点E、F(如图2),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是()A.线段B.圆弧C.折线D.波浪线【答案】A【解答】解:建立如图平面直角坐标系,设正方形ABCD的边长为1,∵四边形ABCD是正方形,∴∠OAE=∠OBF=45°,OA=OB,∵∠AOB=∠EOF=90°,∴∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴AE=BF,设AE=BF=a,则F(a,0),E(0,1﹣a),∵EG=FG,∴G(a,﹣a),∴点G在直线y=﹣x+上运动,∴点G的运动轨迹是线段,故选:A.8、(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为()A.1个B.2个C.3个D.4个【答案】D【解答】解:∵△EDC旋转得到△HBC,∴∠EDC=∠HBC,∵ABCD为正方形,D,B,H在同一直线上,∴∠HBC=180°﹣45°=135°,∴∠EDC=135°,故①正确;∵△EDC旋转得到△HBC,∴EC=HC,∠ECH=90°,∴∠HEC=45°,∴∠FEC=180°﹣45°=135°,∵∠ECD=∠ECF,∴△EFC∽△DEC,∴,∴EC2=CD•CF,故②正确;设正方形边长为a,∵∠GHB+∠BHC=45°,∠GHB+∠HGB=45°,∴∠BHC=∠HGB=∠DEC,∵∠GBH=∠EDC=135°,∴△GBH∽△EDC,∴,即,∵△HEC是等腰直角三角形,∴,∵∠GHB=∠FHD,∠GBH=∠HDF=135°,∴△HBG∽△HDF,∴,即,解得:EF=3,∵HG=3,∴HG=EF,故③正确;过点E作EM⊥FD交FD于点M,∴∠EDM=45°,∵ED=HB=2,∴,∴,∵∠DEC+∠DCE=45°,∠EFC+∠DCE=45°,∴∠DEC=∠EFC,∴,故④正确综上所述:正确结论有4个,故选:D.9、(2022•单县一模)如图,将边长为8cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG 的周长是cm.【答案】16【解答】解:设EF=x,∵EF=DF,∴DF=x,则AF=8﹣x;而AE=4,由勾股定理得:x2=42+(8﹣x)2,解得:x=5;AF=8﹣5=3;∠GEF=∠D=90°,∠A=∠B=90°,∴∠AEF+∠AFE=∠AEF+∠BEG,∴∠AFE=∠BEG;∴△AEF∽△BGE,∴==,∴EG==,BG==,∴△EBG的周长=++4=16.故答案为16.10、如图,在矩形ABCD中,AB=3,BC=5,点P在CD边上,联结AP.如果将△ADP沿直线AP翻折,点D恰好落在线段BC上,那么的值为.【答案】【解答】解:如图:∵将△ADP沿直线AP翻折,点D恰好落在线段BC上的D',∴AD'=AD=5,PD=PD',∠AD'P=∠D=90°,在Rt△ABD'中,BD'===4,∴CD'=BC﹣BD'=5﹣4=1,设CP=x,则PD=PD'=3﹣x,在Rt△CPD'中,CD'2+CP2=PD'2,∴12+x2=(3﹣x)2,解得x=,∴CP=,PD=,∴S△ADP=AD•PD=×5×=,S四边形ABCP=S矩形ABCD﹣S△ADP=3×5﹣=,∴==,故答案为:.11、(2022•铜仁市)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE 上的动点,过点N作NP∥EM交MC于点P,则MN+NP的最小值为.【答案】【解答】解:作点P关于CE的对称点P′,由折叠的性质知CE是∠DCM的平分线,∴点P′在CD上,过点M作MF⊥CD于F,交CE于点G,∵MN+NP=MN+NP′≥MF,∴MN+NP的最小值为MF的长,连接DG,DM,由折叠的性质知CE为线段DM的垂直平分线,∵AD=CD=2,DE=1,∴CE==,∵CE×DO=CD×DE,∴DO=,∴EO=,∵MF⊥CD,∠EDC=90°,∴DE∥MF,∴∠EDO=∠GMO,∵CE为线段DM的垂直平分线,∴DO=OM,∠DOE=∠MOG=90°,∴△DOE≌△MOG,∴DE=GM,∴四边形DEMG为平行四边形,∵∠MOG=90°,∴四边形DEMG为菱形,∴EG=2OE=,GM=DE=1,∴CG=,∵DE∥MF,即DE∥GF,∴△CFG∽△CDE,∴,即,∴FG=,∴MF=1+=,∴MN+NP的最小值为;方法二:同理方法一得出MN+NP的最小值为MF的长,DO=,∴OC==,DM=2DO=,∵S△CDM=DM•OC=CD•MF,即×=2×MF,∴MF=,∴MN+NP的最小值为;故答案为:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形折叠及动点问题的相关计算考情总结:图形折叠及动点问题的相关计算是近五年河南中招考试的重点及必考点,均在填空题第15题进行考查,分值为3分,常见的类型有三角形折叠相关计算、四边形结合的相关计算,常见的设问为探究特殊三角形存在时的线段长、探究动点在特殊位置时的线段长.【方法指导】对于河南中招考试中的几何图形折叠与动点问题的计算,常涉及特殊三角形的探究及动点特 殊位置的探究.1.掌握折叠的性质是解决问题的关键.(1)折叠前后位置的图形全等,对应边、角相等;(2)折痕两边的图形关于折痕对称;(3)折叠前后对应点的连线被折痕垂直平分;2.特殊三角形:(1)直角或等腰三角形的判定:首先从可能满足直角的顶点或腰入手,通过矩形的性质、折叠的性质或结合直角三角形勾股定理直接计算,或设出某条线段长,根据相似、勾股定理等,列方程进行求解;3.河南中招考试中,此类问题的重点为分类讨论,即该题多为多解题,注意等腰三角形的腰,直角三角形的直角顶点,特殊点的位置等.1.(2017年)如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为 21221 或1 .【分析】①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论. 【解答】解:①如图1,当∠B′MC=90°,B′与A 重合,M 是BC 的中点,∴BM=BC=+; ②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC ,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN 所在的直线折叠∠B ,使点B 的对应点B′,∴BM=B′M ,∴CM=BM , ∵BC=+1,∴CM +BM=BM +BM=+1, ∴BM=1,综上所述,若△MB′C 为直角三角形,则BM 的长为+或1, 故答案为: +或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.2.(2016年)如图,已知AD ∥BC ,AB ⊥BC ,AB=3. 点E 为射线BC 上一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B′处,过点B′作AD 的垂线,分别交AD ,BC 于点M ,N .当点B′为线段MN 的三等分点时,BE 的长为__________223或553________.解:由翻折的性质可得:AB=AB ’ BE=B ’E①当MB ’=2,B ’N=1时,设EN=x 得 B ’E=12+x△B ’EN ∽△AB ’E '''AB E B M B EN = 即3122+=x x 解得2x =54BE=B ’E=154+=553 ②当MB ’=1,B ’N=2时,设EN=x 得 B ’E=222+x△B ’EN ∽△AB ’E '''AB E B M B EN = 即3412+=x x 解得2x =21 BE=B ’E=421+=223 故答案为:223或5533.(2015年)如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B ,C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B'处.若△CDB'恰为等腰三角形,则DB'的长为 16或45 .4.(2014年)如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 53或52.5.(2013年)如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当△CEB'为直角三角形时,BE 的长为___32或3_______.对应练习 1.如图,在矩形ABCD 中,AB=3,BC=6,点E 是射线BC 上一动点,将△ABE 沿AE 翻折得到△AEF ,延长AF 交CD 的延长线于点G ,当BE=3EC 时,DG= 25或8 .如图①,当E 点在边BC 上时,BE=3EC ,BE=4.5,EC=1.5设AH=HE=x ,FH=4.5-x在Rt △AHF 中:222)5.4(3x x =-+ 解得:x=3.25FH=4.5-3.25 =1.25 ∵△AHF ∽△AGD ,∴DG FH AD AF = DG 25.163= 解得DG=2.5=25 如图②,当E 点在BC 延长线上时,BE=3EC ,BC=6,EC=3设AH=HE=x ,FH=9-x在Rt △AHF 中:222)9(3x x =-+ 解得:x=5FH=9-5=4 ∵△AHF ∽△AGD ,∴DG FH AD AF = DG463= 解得DG=82.如图,在Rt △ABC 中,∠ABC=90°,AC=10,BC=8,AD 是∠BAC 的平分线,点E 是斜边AC 上的一点,且AE=AB 。
若沿△DEC 的一个内角平分线折叠∠C ,使点C 落在DE 所在的直线上,则折痕的长度为 7212或253由题可知:AED ABD ∆≅∆,则∠AED=∠ABC ,BD=DE如图①,若沿∠DEC 的平分线折叠∠C 时,∠DEC=90°,过点M 做MP 丄DE 于点P∵EM 平分∠DEC ,∴∠PEM=45°∴PE=PM ,EC ’=EC=AC-AE=4,设PE=PM=x ,PC ’=4-x∵43''tan tan ====BC AB PC PM C C ,∴434=-x x ,解得712=x ,∴EM=2PM=7212 如图②,若沿∠EDC 的平分线折叠∠C 时,BCAB CE DE C ==tan ,∴DE=BD=3,∴CD=C ’D=5,∴C ’E=2 ∵43'tan 'tan ====BC AB E C EM C C ,∴EM=23,∴DM=22233⎪⎭⎫ ⎝⎛+=2533.(2017·濮阳模拟)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为__________.【分析】由题意得:DF=DB,得到点F在以D为圆心,BD为半径的圆上,作⊙D;连接AD 交⊙D于点F,此时AF值最小,由点D是边BC的中点,得到CD=BD=3;而AC=4,由勾股定理得到AD=5,求得线段AF长的最小值是2,连接BF,过F作FH⊥BC于H,根据相似三角形的性质即可得到结论.【解答】解:由题意得:DF=DB,∴点F在以D为圆心,BD为半径的圆上,作⊙D;连接AD交⊙D于点F,此时AF值最小,∵点D是边BC的中点,∴CD=BD=3;而AC=4,由勾股定理得:AD2=AC2+CD2∴AD=5,而FD=3,∴FA=5﹣3=2,即线段AF长的最小值是2,连接BF,过F作FH⊥BC于H,∵∠ACB=90°,∴FH∥AC,∴△DFH∽△ADC,∴,∴HF=,DH=,∴BH=,∴BF==,故答案为:.【点评】该题主要考查了翻折变换的性质、勾股定理、最值问题等几何知识点及其应用问题;解题的关键是作辅助线,从整体上把握题意,准确找出图形中数量关系.4.(2017·开封模拟)在矩形ABCD 中,AD =8,AB =6,点E 为射线DC 上一个动点,把△ADE 沿AE 折叠,使点D 落在点F 处,若△CEF 为直角三角形时,DE 的长为__________83或8或32-873__________.【分析】当△CEF 为直角三角形时,有两种情况:①当点F 落在矩形内部时,此时点F 在对角线AC 上,先利用勾股定理计算出矩形对角线,根据折叠的性质得∠AFE =∠D =90°,设DE =x ,则CE =6-x ,然后在Rt △CEF 中运用勾股定理列方程即可计算出x ;②当点F 落在AB 边上时,可证得此时四边形ADEF 为正方形,根据正方形的的性质可得DE =AD 进而求解5.(2017·新乡模拟)如图,在矩形ABCD 中,AB =5,BC =3,点E 为射线BC 上一动点,将△ABE 沿AE折叠,得到△AB′E.若B′恰好落在射线CD 上,则BE 的长为___53或15_____.6.(2016·金华)如图,Rt △ABC 纸片中,∠C =90°,AC =5,BC =12,点D 在边BC 上,以AD 为折痕将△ABD 折叠得到△AB′D ,AB ′与边BC 交于点E .若△DEB′为直角三角形,则BD 的长是__7或326________.图①图② 如图①22213)12()5(=-++x x 解得x=7如图②222)12(8x x -+= 解得x=3267.已知一个矩形纸片OACB,OB=6,OA=11,点P为BC边上的动点(点P不与点B,C重合),经过点O折叠该纸片,得折痕OP和点B′,经过点P再次折叠纸片,使点C落在直线PB′上,得折痕PQ和点C′,当点C′恰好落在边OA上时BP的长为或.【考点】翻折变换(折叠问题).【分析】设BP=t,AQ=m,首先过点P作PE⊥OA于E,易证△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例得到m=t2﹣t+6,即可求得t的值.【解答】解:过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,设BP=t,AQ=m,∵PC′=PC=11﹣t,PE=OB=6,C′Q=CQ=6﹣m,AC′==,∴=.∵=,∴m=t2﹣t+6,又∵36﹣12m=t2,将m=t2﹣t+6代入36﹣12m=t2,化简得,3t2﹣22t+36=0,解得:t1=,t2=.故答案为:或.。