汽车车门铰链机械原理

合集下载

巴士门铰链原理

巴士门铰链原理

巴士门铰链原理一、引言巴士门铰链是巴士门的重要组成部分,它承担着连接门体和车身、支撑门体开关的功能。

本文将深入探讨巴士门铰链的原理、结构和工作原理。

二、巴士门铰链的结构巴士门铰链通常由以下几个部分组成:1. 铰链体铰链体是巴士门铰链的主要组成部分,它通常由上下两个铰链体构成。

铰链体采用优质钢材制成,具有良好的强度和耐磨性。

2. 轴承巴士门铰链的轴承是连接铰链体的关键部件,它能够使铰链体在开关过程中轻松转动。

轴承通常采用高强度合金材料制成,具有较高的承载能力和耐磨性。

3. 轴轴是巴士门铰链的另一个重要部分,它连接铰链体和车身或门体。

轴通常由优质钢材制成,具有较高的强度和刚度。

4. 螺栓和螺母螺栓和螺母用于连接巴士门铰链的各个部件,确保其稳固性和可靠性。

螺栓和螺母通常采用高强度合金材料制成,具有良好的抗拉强度和耐腐蚀性。

三、巴士门铰链的工作原理巴士门铰链的工作原理可以简单描述为以下几个步骤:1. 门体开启当乘客需要进入或离开巴士时,司机将控制器操作,启动巴士门的开启过程。

在这个过程中,巴士门铰链起到了支撑门体的作用。

2. 铰链转动当巴士门开始开启时,铰链体会随之转动。

铰链体通过轴承和轴的连接,使得门体能够顺利地转动。

3. 门体稳固在门体完全开启之前,螺栓和螺母会将铰链体与车身或门体牢固地连接在一起,确保门体的稳定性和安全性。

4. 门体关闭当乘客进入或离开巴士后,司机将控制器操作,关闭巴士门。

在这个过程中,巴士门铰链再次起到了支撑门体的作用。

四、巴士门铰链的优点巴士门铰链具有以下几个优点:1. 稳定性巴士门铰链通过轴承和轴的连接,使得门体在开关过程中更加稳定,减少了摇晃和晃动的可能性。

2. 耐用性巴士门铰链采用优质钢材和高强度合金材料制成,具有较高的耐磨性和耐腐蚀性,能够在长时间使用中保持良好的工作状态。

3. 安全性巴士门铰链的稳固性和可靠性能够确保门体在开关过程中不会突然关闭或打开,从而提高了乘客的安全性。

汽车车门铰链知识

汽车车门铰链知识

2018/11/3 0
王斌培训资料
车门铰链的要求3
车门铰链的第二个基本功能是:保证和便于车门的开合。由于汽车的使用有一定 的质保期限,我们不但要求车门铰链在刚出厂是能满足这一功能,在使用过一段 时间以后,或者车门开合一定次数之后仍然能保持这一功能。因此对车门铰链的 第三个要求是: 3.车门铰链要有一定的耐久性。在使用过一段时间以后,各功能部件的磨损需 要得到控制。 影响因素:衬套、销轴的耐磨性。
什么是
汽车铰链?
门铰链装置(行标) 确定车门与车身的相对位置,并能控制车门运动轨迹的装置。 门铰链(行标,国标) 与车门和车身相联接,能够绕(上下方向的)同一轴线回转且相互结合部件的总称。
汽车的铰链一般应用在汽车的车门和发动机盖及尾箱盖、油箱盖铰链等。 下面主要介绍汽车车门铰链
2018/11/3 0
安装调整孔安装螺栓为标准件,可以调整车门与 车身之间的相对位置,保证外观的设计要求,安 装断面如下图:
2018/11/3 0
王斌培训资料
方式二:有工装时, 车门上下铰链与车门同时安装(需使用工装), 主定位孔与辅助定位孔分别位于上下铰链上,如下图所示:
2018/11/3 0
王斌培训资料
车门铰链与车身连接端螺栓也带有定位台阶,不可调整,但是侧围上的铰链安装螺母 板可以进行调解,其螺母板由一个薄板(A)固定,需要调整的时候可以通过调整螺 母板的位置来达到调整车门的目的,螺母板结构如下图:
王斌培训资料
1.旋转开合的门铰链3
欧翼式
2018/11/3 0
王斌培训资料
2. 推拉开合的门铰链
2018/11/3 0
王斌培训资料
几种典型的门铰链
A:分体式门铰链
某公司B11(东方之子)汽车门铰链系统。

城轨车辆车门的维护与检修—车门组成及工作原理

城轨车辆车门的维护与检修—车门组成及工作原理
件,其本身是通过螺栓安装在车体门口上方的上侧梁上。车门 其它部件都通过安装座安装到导轨上。
01
4.2 客室车门
四、客室车门主要结构 (一)驱动机构
2.驱动电机 驱动电机位于门口中间线,配合星型齿轮盒,通过驱动丝
杠和关联的滑轮、螺母实现车门的开启和关闭运动。驱动电机 采用直流无刷电机,具有长寿命、免维护的特性。电机的防护 等级为 IP44,如图 10-7 所示。
01
4.2 客室车门
四、客室车门主要结构 3、丝杠、丝杠螺母总成
丝杆是采用铝材质大螺距丝杆,表面有一层耐磨抗氧 化层。螺母采用高强度材料,传动效率高,寿命长。门扇 的运动通过一半左旋、一半右旋的驱动丝杠实现同步。
01
4.2 客室车门
四、客室车门主要结构
4、锁闭机构 锁闭单元包括锁闭棘爪、锁闭凸轮和位于门扇上的锁销。锁闭凸
门释放列车线 0 1 1 1 1
开门列车线 0/1 0 0 1 1
关门列车线 0/1 0 1 1 0
门的状态 关 保持 关 关 开
01
2、零速度保护 车速为“0”时,车门控制器得到“零速”信号后开门功能才能作用。
当列车速度大于零,车门仍然处于开启状态时,将启动自动关门功能。 3、安全联锁电路(安全回路)
Coherence
Lorem ipsum dolor sit amet, consectetur adipiscing.
Text Clarity
Lorem ipsum dolor sit amet, consectetur adipiscing.
Color
Lorem ipsum dolor sit amet, consectetur adipiscing.
检测到关门方向上有障碍物后,门自动打开的功能,仅当满足下列条件 时方可执行:①没有操作机械隔离装置;②没有操作紧急解锁装置;③“门 释放列车线”有效。

车门铰链布置和运动校核

车门铰链布置和运动校核

.车门铰链布置和运动校核车门铰链的设计是车门设计的一项重要工作,直接关系到车门能否正常开启。在铰链设计中,铰链中心线定位和铰链中心距是重要的设计硬点。铰链轴线一般设计成具有内倾角和后倾角。内倾角指铰链轴线在x=0平面上的投影与z轴之间的夹角,内倾角一般为0~4°,见图4;后倾角指铰链轴线在y=0平面上的投影与z轴之间的夹角,一般为0~2°,见图5。内倾角和后倾角都是为了使车门开启时获得自动关门力,也有个别汽车门铰链具有前倾角,但一般不会有外倾角。车门铰链轴线的设计先确定铰链轴线沿车身方向的尺寸变化范围(X1,X2),并在此范围内任选一值Xm,将轴线限制在与x轴垂直的平面x=Xm内,在x=Xm平面内确定铰链轴线的倾斜状态:先分别求出x=Xm平面与内外板曲面的交线C1和C2,并求出C1和C2对应的y方向的极限坐标位置Ymin(内板投影线最左端)、Ymax(外板投影线最右端);在x=Xm平面内通过输入直线方程y=B,B∈(Ymin,Ymax)来生成一条与z轴平行的轴线Z1Z2;确定铰链轴线中心点的z坐标值:通过内板上下边框或外板上下边框求出平均位置坐标z=C,并根据它在y=B直线上求出一点O;根据铰链轴线内倾角范围θ∈(0°,4°),将y=B直线绕O点逆时针旋转θ角度,得到轴线位置O1O2。根据铰链间距L∈(300mm,500mm),以铰链中心O为初始点,沿直线y=B确定两点D和E,使两点间线段长度为L,调整L值以及轴线外板的距离,保证在铰链宽度方向不与外板干涉的情况下,轴线尽量靠近外板的极限位置(L值确定已知时)。若L值可以改变,则可以考虑稍微减小L值,轴线更靠近外板(车门外板曲率较大时)。可以通过改变最初的B值重新生成轴线O3O4或作O1O2的平行线来改变轴线到外板的距离。当轴线位置最终确定后,根据D、E两点位置可将铰链模型正确地放入车门门腔内,待进一步运动校核及干涉检验。铰链中心距的确定可参考车门长度,一般铰链中心距/车门长度=33%,或者更长。需要说明的是在布置铰链时,应注意在结构允许的情况下,车门上下两铰链之间的距离应尽可能大。为了避免打开车门时与其它部分干涉,铰链的轴线应尽可能外移,使其靠近车身侧面。铰链中心线位置和中心距确定后,需要进行运动干涉校核,这也在主断面设计中完成,可能出现的干涉位置有前后门干涉、前门与A柱翼子板干涉、门与铰链干涉等,在可能干涉的位置取主断面,将车门延中心线旋转,即可一目了然,如图6。1.6车门玻璃设计以及车门玻璃升降器的设计布置玻璃要设计为双圆环面,可以和外造型匹配,达到玻璃升降的平顺性,圆环面的数学方程如下,其思想简图与基本参数见图7、8:当R足够大且圆柱半径r远远小于R时,从圆环面上截取的玻璃曲面仍近似为柱面。玻璃的运动可以认为是一种绕圆环面中心引导线的旋转运动,其运动轨迹是与引导线成一定夹角的圆环截面线的一部分。R=15~25km,r=1200~2000m;大客车为R=∞,r=4000~7000m。玻璃升降器是车门设计中很重要的一个环节,它的合格与否直接影响到车窗的开闭。玻璃升降器在设计过程中,关键在于安装和玻璃导轨的曲线确定。有了玻璃的数据后,可求出玻璃的质心位置,根据以往设计经验和一些样车数据,一般单导轨的位置是在玻璃质心位置向B柱方向偏移15~25mm,双导轨的间距应在不干涉内门板和其它附件的情况下尽可能大,但两个导轨的中线应该在玻璃质心位置向B柱方向偏移15~25mm。导轨位置确定后,通过偏置玻璃面求出导轨的弧度,此导轨弧度为空间螺旋曲线。由于玻璃运动近似圆弧运动,但升降器的长导轨在自由状态下是平面运动,所以在玻璃升降过程中,升降臂和平衡臂会变形随长导轨一起运动。为了提高升降器的寿命,应使运动过程中升降臂和平衡臂的变形量尽可能小。图9表示了玻璃运动轨迹和长导轨在自由状态下的运动轨迹,A、B、C分别表示了玻璃在上、中、下3个位置时升降臂和平衡臂的最大变形量,其中C>A=B。2 结语设计硬点控制在车门设计的灵魂,主断面是车门设计的重要手段,以此为思路,使车门设计有条不紊,效率得以提高,质量得以保证。车门设计是车身设计中最复杂、难度最大,实际过程中可能会遇到很多情况,有时甚至会出现控制硬点之间相互矛盾,需要具体问题具体分析,不断调整以达到最优结果。。

机械原理的课后答案详解第8章的

机械原理的课后答案详解第8章的

第8章作业8-l 铰链四杆机构中,转动副成为周转副的条件是什么?在如下图所示四杆机构ABCD 中哪些运动副为周转副?当其杆AB 与AD 重合时,该机构在运动上有何特点?并用作图法求出杆3上E 点的连杆曲线。

答:转动副成为周转副的条件是:〔1〕最短杆与最长杆的长度之和小于或等于其他两杆长度之和;〔2〕机构中最短杆上的两个转动副均为周转副。

图示ABCD 四杆机构中C 、D 为周转副。

当其杆AB 与AD 重合时,杆BE 与CD 也重合因此机构处于死点位置。

8-2曲柄摇杆机构中,当以曲柄为原动件时,机构是否一定存在急回运动,且一定无死点?为什么?答:机构不一定存在急回运动,但一定无死点,因为:〔1〕当极位夹角等于零时,就不存在急回运动如下列图,〔2〕原动件能做连续回转运动,所以一定无死点。

8-3 四杆机构中的极位和死点有何异同?8-4图a 为偏心轮式容积泵;图b 为由四个四杆机构组成的转动翼板式容积泵。

试绘出两种泵的机构运动简图,并说明它们为何种四杆机构,为什么?解机构运动简图如右图所示,ABCD 是双曲柄机构。

因为主动圆盘AB 绕固定轴A 作整周转动,而各翼板CD 绕固定轴D 转动,所以A 、D 为周转副,杆AB 、CD 都是曲柄。

8-5试画出图示两种机构的机构运动简图,并说明它们各为何种机构。

图a 曲柄摇杆机构图b 为导杆机构。

8-6如下列图,设己知四杆机构各构件的长度为240a mm =,600b =mm ,400,500c mm d mm ==。

试问:1)当取杆4为机架时,是否有曲柄存在?2)假如各杆长度不变,能否以选不同杆为机架的方法获得双曲柄机构和双摇杆机构?如何获得?3)假如a 、b ﹑c 三杆的长度不变,取杆4为机架,要获得曲柄摇杆机构,d 的取值X 围为何值? : 解 (1)因a+b=240+600=840≤900=400+500=c+d 且最短杆 1为连架轩.故当取杆4为机架时,有曲柄存在。

汽车实用手册(19)谈车门铰链限位器

汽车实用手册(19)谈车门铰链限位器

汽车实用手册(19)谈车门铰链限位器[汽车之家实用手册] 任何卖东西的店家都要宣传,这是必须的,但很多宣传点我们还是要理智判断的,比如前阵子很流行的“车门站人”这种宣传手段,就不是那么科学。

平时大家聊车时,车门铰链是经常被拿出来说事的零部件,这个小东西的确有的聊,但要看怎么聊,不能聊歪了。

把车门和车身连接在一起的有两种零件,一个叫铰链,一个叫限位器,顾名思义,一个是固定作用,一个是限制车门打开角度的作用,下面我们从铰链聊起。

★ 铰链铰链通俗地说就是合页,目前市面上常见的样式有冲压和铸造两种,很多德系品牌车型都是铸造铰链的设计。

由于结构设计不同,所以两种类型的铰链材料厚度也不一样,铸造铰链往往比冲压铰链厚很多。

铸造铰链的优点是生产精度和统一性,说白了就是更精致更高大上,从结构上来说承载能力也有优势,但重量较大,生产成本也会高一些;冲压铰链相对生产成本会低廉一些,对于家用车来说使用上也不会有什么缩水,完全可以满足需求。

● 结构不能忽视结构设计这个细节不能忽略,假设两个零件使用的材质强度完全一样而只看零件厚度的话,一个物体应力的极限是从结构最薄弱的地方崩溃的,也就是说不能光看零件最厚的地方有多厚,而更要看最薄的地方有多薄,相信如果把最薄的地方都拿出来的话,可能结果是完全不一样的,当然这只是纠正一个误区,可别又把这个再次变成评价铰链的方法去吐槽,那就不好了。

● 材料强度更重要当今一个零件的强度不能简单地看厚度下定义了,与材料、面积、设计结构和制造工艺都是分不开的。

就像车身不同部位材料的强度也有区别一样,像车身前后大梁和A、B、C柱等关键部位都用的是高强度材料,而其它作为支撑和覆盖性质材料的强度则没有那么强是一个道理。

那么怎么判定车门铰链够不够硬呢?对于消费者来说,是没有办法的,因为强度的数据都是要通过实验才能得出来的,看是没有办法的,但可以放心的是,能在市场上卖的车型,车门铰链都是必须达到国标标准的,目前国内涉及到车门铰链的标准名为GB15086_2006《汽车门锁及车门保持件的性能要求和试验方法》,其要求车门铰链必须达到纵向载荷11000N(牛)和横向载荷9000N。

车门门锁原理

车门门锁原理

车门门锁原理
汽车门锁的工作原理主要包括关门时的锁紧动作和开门时的解锁动作。

关门时,门锁系统上的棘轮受锁扣的压迫,克服回位弹簧的作用力而转动,棘爪在止动弹簧的作用下将棘轮卡住,完成锁紧车门动作。

在关闭车门时,锁体与锁扣接触后会对车门的关闭产生阻力效应,车门位移和克服锁扣的阻力,在锁扣接触到门锁本体的瞬间,阻力达到最大值。

随着车门与锁体之间的距离减小,当锁紧机构中的棘轮越过锁扣时,阻力又迅速减小,直到锁体机构的棘轮与锁扣配合完全,阻力又迅速增大。

解锁车门时,通过操纵内外手柄,解除棘爪对棘轮的止动作用,棘轮在回位弹簧的作用力下转动弹开,车门被打开。

此外,电动车门锁的执行器位于锁销下方。

执行器向上移动锁销时,外部车门把手将和打开装置连接;锁销下移时,外部车门把手将与打开装置断开连接,从而锁定车门。

解锁车门时,车身控制器将在一定的时间内为车门锁执行器提供电能。

以上是车门门锁的基本原理,建议咨询专业人士获取更全面准确的信息。

某SUV车型蝴蝶门铰链系统的设计分析

某SUV车型蝴蝶门铰链系统的设计分析

某SUV车型蝴蝶门铰链系统的设计分析蝴蝶门是一种独特的车门设计,其特点是在车辆侧面装有两个向上开启的门,形状类似于蝴蝶展翅的样子。

这种设计在SUV车型中比较常见,给车辆增添了一种独特的外观和个性化的特点。

本文将对SUV车型蝴蝶门铰链系统的设计进行分析。

蝴蝶门的设计需要考虑到车辆的结构和稳定性。

蝴蝶门相比普通车门来说更重,因此需要车辆有足够的结构强度来支撑。

在设计蝴蝶门时,需要确保门的开启和关闭过程中不会对车身造成额外的应力和振动,以免对车辆结构造成损坏。

蝴蝶门的铰链系统设计要考虑到门的开启角度和稳定性。

蝴蝶门的开启角度较大,一般为向上开启,因此铰链系统需要具备足够的承载能力和稳定性,以确保车门在开启过程中不会倾斜或摇摆。

铰链系统需要具备防止门关到一半时由于重力作用而自行关闭的机械锁定机构,以确保车门在开启的状态下能够稳定停留。

蝴蝶门的设计还需要考虑到操作的便利性。

由于蝴蝶门开启的方式不同于传统车门,因此在设计铰链系统时需要考虑到用户的使用习惯和操作便利性。

比如可以采用电动蝴蝶门系统,通过按钮或遥控器控制门的开启和关闭,这样不仅方便用户操作,同时也提高了安全性,避免了误操作导致的安全隐患。

蝴蝶门的设计还需要考虑到安全性。

由于蝴蝶门开启的方式不同于传统车门,因此在设计铰链系统时需要考虑到车门的安全性。

铰链系统需要具备防止门在行驶过程中不慎打开的安全锁定装置,以确保乘客在车辆行驶中的安全。

蝴蝶门铰链系统的设计需要考虑到车辆的结构和稳定性、门的开启角度和稳定性、操作的便利性以及安全性等因素。

只有在考虑到这些因素的基础上,才能设计出满足用户需求且安全可靠的蝴蝶门铰链系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车车门铰链机械原理
上铰链通常由一对铰钉和轴承组成,其中一个铰钉安装在车门上,另
一个铰钉则安装在车身上。

铰钉允许车门绕垂直轴线进行旋转,而轴承则
减少因车门的重量而带来的阻力。

上铰链的机械原理是通过铰钉的转动和
轴承的滚动使车门上下转动开启或关闭。

下铰链与上铰链的原理类似,它也包括一个铰钉和一个轴承。

不同之
处在于,下铰链的铰钉安装在车门下部,而轴承则安装在车身下方。

下铰
链的机械原理与上铰链相同,也是通过铰钉的转动和轴承的滚动使车门可
以在水平方向上开启和关闭。

在车门开启和关闭过程中,铰链还要面对车门的重量以及可能的外力,因此它需要具备一定的强度和稳定性。

一般情况下,铰链采用坚固耐用的
材料制成,如钢铁或铝合金,以确保车门能够安全稳定地运动。

此外,为了保证车门能够顺利地进行开启和关闭,铰链还需要定期进
行润滑维护。

润滑油可以减少铰链在转动过程中的摩擦和磨损,从而延长
铰链的使用寿命并提高操作的顺畅度。

总之,汽车车门铰链的机械原理是通过铰钉和轴承的转动和滚动使车
门能够开启和关闭。

铰链的设计和制造需要考虑到车门的重量和外力的影响,以确保车门能够稳定安全地运动。

此外,定期的润滑维护也是确保铰
链正常工作的重要步骤。

相关文档
最新文档