污泥中硝化细菌富集培养技术的研究

污泥中硝化细菌富集培养技术的研究
污泥中硝化细菌富集培养技术的研究

如何快速培养硝化细菌的几种方法)

如何快速培养硝化细菌的几种方法 硝化细菌,培养 快速培养硝化细菌的几种方法~ 水族箱过滤器只具备物理过滤和化学过滤的功能,而降解水中毒素的硝化细菌并未繁殖起来,需要在过滤系统开始运转后逐渐进行培养。若想尽快放入观赏鱼,就需要采取措施加快培养硝化细菌的进度。 通常有以下几种快速培养硝化细菌的方法: (1) 利用旧滤材或滤砂移植硝化细菌饲养过观赏鱼的旧水族箱中滤材或底砂上都附着大量的硝化细菌,若能将旧滤材或滤砂移入新设立的水族箱引入菌种,可大大促进硝化细菌繁殖的速度,至少节约一半的培养时间。 (2) 利用污染源刺激硝化细菌的繁殖在引入菌种后,要配合过滤、充气促进水流循环,并在水族箱中放入4~5 个新鲜的去壳蛤蜊或虾,利用肉质腐烂生成的毒素作为硝化细菌的营养,刺激菌种大量繁殖。还可以购买一些小型易养的实验鱼,放入几条,利用它们的排泄废物、食物碎屑提供有机物废料,促进硝化细菌的繁殖。 (3) 添加人造硝化细菌目前市售的人造硝化细菌,有液态、粉末状、干燥孢子化等不同类型,可以满足观赏鱼爱好者迫切尽快饲养的要求。 培养生物过滤系统的要点~ 在进行水族箱生物过滤系统培养时,要掌握以下几个要点:(1)不宜频繁换水大量的换水,容易破坏水族箱中硝化细菌的繁殖,使附着于底砂滤材中的硝化细菌随换水大量散失,同时水质的频繁改变也无法维持硝化细菌繁殖的适宜pH值,因此换水不必过勤,1~2 个月换20%的水即可。 (2)正确清洗滤材经过长期饲养,过滤系统的滤材上会附着大量硝化细菌,但同时也会积累许多杂质污物,需定期清洗。清洗时,用原水族箱的海水将滤材轻轻挤压揉搓,千万不能用自来水冲洗或使用洗涤剂等化学物质。 (3)渐次追加观赏鱼刚设立的新缸要逐渐增加观赏鱼数量,不可一次放入过多,以免大量的残饵和排泄物产生的毒素超过硝化细菌氧化分解的能力,造成水质污染和观赏鱼死亡。

硝化细菌的分离纯化

材料与方法 样品 检测用试剂 1、Griess 试剂 溶液I称取磺胺酸0.5g,溶于150mL醋酸溶液(30%)中,保存于棕色瓶中。 溶液II称取α-萘胺0.5g,加入50mL蒸馏水中,煮沸后,缓缓加入30%醋酸溶液150mL,保存于棕色瓶中。 格里斯试剂检验亚硝化菌方法:用滴管吸取2滴细菌培养液置于白瓷板上, 依次滴加格里斯试剂Ⅰ、Ⅱ各2滴,出现红色反应说明培养液中含有亚硝酸,有 亚硝酸细菌存在。 2、二苯胺-硫酸试剂(检测菌液中是否存在硝酸盐证明硝化细菌是否存在) 称取二苯胺1g,溶于20mL蒸馏水中,然后徐徐加入浓硫酸lOOmL,保存于棕色瓶中。 由于亚硝基、硝基均能与二苯胺试剂起蓝色显色反应,所以在测定硝基前,必须去除培养液中的亚硝基。采用尿素+浓硫酸去除亚硝基是简单有效的方法,硝化菌检验具体操作步骤:取细菌培养液lml移入干净试管中,向试管中放半药勺的尿素混匀,然后再向试管中滴加10滴浓硫酸,此时可以看到试管中有大量气泡生成,反应很强烈,不断振动试管,使反应充分进行直至没有气泡产生。然后取试管中液体两滴,置于白瓷板上,用格里斯试剂检验是否变红,如果颜色没有变化,再滴加二苯胺试剂,如果变蓝,说明有硝基产生,有硝化菌存在。培养基 1、LB(检验硝化细菌的纯度不生长表纯) 酵母粉 5g 蛋白胨 10g NaCl 10g 蒸馏水 1000ml 灭菌前pH=7.3 2、KM(检验硝化细菌的纯度不生长表纯) 酵母浸提物 0.5g 蛋白胨 0.5g 牛肉膏 0.5g 蒸馏水 1000ml 灭菌前pH=7.3 3、PDA(检验硝化细菌的纯度不生长表纯) 马铃薯(除皮) 200g 蔗糖(或葡萄糖) 20g 水 1000mL 灭菌前pH自然 硝化细菌培养基

厌氧微生物的培养驯化及成熟污泥的特征

厌氧微生物的培养驯化及成熟污泥的特征 The final edition was revised on December 14th, 2020.

厌氧消化系统试运行的一个主要任务是培养厌氧污泥,即消化污泥。厌氧活性污泥培养的主要目的是厌氧消化所需要的甲烷细菌和产酸菌,当两种菌种达到动态平衡时,有机质才会被不断地转换为甲烷气,即厌氧沼气。 (一)培菌前的准备工作 厌氧消化的启动,就是完成厌氧活性污泥的培养或甲烷菌的培养。当厌氧消化池经过满水试验和气密性试验后,便可开始甲烷菌的培养。 (二)培菌方法 污泥的厌氧消化中,甲烷细菌的培养与驯化方法主要有两种:和。 接种污泥一般取自正在运行的厌氧处理装置,尤其是城市污水处理厂的消化污泥,当液态消化污泥运输不便时,可用污水厂经机械脱水后的干污泥。在厌氧消化污泥来源缺乏的地方,可从废坑塘中取腐化的有机底泥,或以认粪、牛粪、猪粪、酒糟或初沉池底泥代替。大型污水处理厂,若同时启动所需接种量太大,可分组分别启动。 是向厌氧消化装置中投入容积为总容积的10%~30%的厌氧菌种污泥。接种污泥一般为含固率为3%~5%的湿污泥。再加入新鲜污泥至设计液面,然后通入蒸汽加热,升温速度保持1℃/h,直至达到消化温度。如污泥呈酸性,可人工加碱调整pH至~。维持消化温度,稳定一段时间(3-5d)后,污泥即可成熟。再投配新鲜污泥并转入正式运行。此法适用于小型消化池,因为对于大型消化池,要使升温速度为1℃ /h,需热量较大,锅炉供应不上。

指向厌氧消化池内逐步投入生泥,使生污泥自行逐渐转化为厌氧活性污泥的过程。该方法要使活性污泥经历一个由好氧向厌氧的转变过程,加之厌氧微生物的生长速率比好氧微生物低很多,因此培养过程很慢,一般需历时6~10个月左右,才能完成甲烷菌的培养。 或者通过加热的方法加速污泥的成熟:将每日产生的新鲜污泥投入消化池,待池内的污泥量为一定数量时,通入蒸汽。升温速度控制在1℃/h。当池内温度升到预定温度时,可减少蒸汽量,保持温度不变,并逐日投加一定数量的新鲜污泥,直至达到设计液面时停止加泥。整个成熟过程一直维持恒温,成熟时间约需30~40d。污泥成熟后,即可投配新鲜污泥并转入正式运行。 (三)培菌注意事项 厌氧消化系统的处理主要对象是活性污泥,不存在毒性问题。但是厌氧消化菌繁殖速度太慢,为加快培养启动过程,除投入接种污泥以外,还应做好厌氧污泥的加热。 厌氧消化污泥的培养,初期生污泥投加量与接种污泥的数量及培养时间有关,早期可按设计污泥量的30%~50%投加,到培养经历了60d 左右,可逐渐增加投加量。若从监测结果发现消化不正常时,应减少投泥量。 厌氧消化系统处理城市污水处理厂的活性污泥,由于活性污泥中碳、氮、磷等营养是均衡的,能够适应厌氧微生物生长繁殖的需要。因此,即使在厌氧消化污泥培养的初期也不需要和处理工业废水那样,加入营养物质。

活性污泥法反硝化脱氮的行为

活性污泥法反硝化脱氮的行为 金雪标俞勇梅(上海师范大学环境工程研究所,上海 200234) 摘要悬浮活性污泥法反硝化去除有机物具有极大的经济价值,其容积去除负荷(COD Cr )可达 2.05~5.7kg/(m3·d)。试验表明,反硝化所需的有机物量与有机物种类、进水碳氮比(C/N)、容积负荷等有关。碳源充足时,反硝化呈现0级反应动力学;而出水硝酸盐浓度及容积去除负荷,会影响活性污泥的沉降状况。 关键词:污水处理脱氮活性污泥法反硝化硝酸盐 1 前言 氨排放到水体后,先后被自养微生物转化成亚硝酸盐和硝酸盐。氧化1mg的 NH 3-N约需 4.6mg O 2 。在典型城市生活污水中,COD Cr 约为250mg/L,TKN为 35mg/L。无论在缺氧环境还是好氧环境下,有机氮首先氨化转化成氨氮,35mg 的NH 3 -N转化成硝酸盐,需氧量为160mg,与目前2级污水处理中的去碳需氧量相当。由于含氮化合物氧化时需氧量如此之大,许多处理厂在排放前必须对其硝化,近一半能耗用于硝化上。 对富营养而言,硝酸盐与氨氮产生的危害是相同的,硝酸盐在缺氧条件下可作为电子受体进行无氧呼吸,转化成氮气,同时降解有机物,回收能量。理论上反硝化脱氮是一种低能耗、无害化的处理过程,从而受到重视[1,2]。但与去碳研究相比,对氮的去除研究落后许多,如反硝化速率、与碳源的关系、负荷、环境条件及经济适用性等。 2 实验部分 2.1实验过程及方法 反应器采用有效容积1000mL的玻璃窄口容器,瓶口塞棉花,磁力搅拌器搅拌,以使活性污泥刚处于悬浮状态,并用恒温水浴控制温度。 实验采用SBR方式,每种实验状态(一定的水力停留时间、进水浓度、负荷、污泥量)维持3~5d,待系统基本稳定后,取样分析。

污水的生物处理(一)活性污泥法

第四章污水的生物处理(一)——活性污泥法 教学要求 1)掌握活性污泥法的基本原理及其反应机理; 2)理解活性污泥法的重要概念与指标参数:如活性污泥、剩余污泥、MLSS、 MLVSS、SV、SVI、θc、容积负荷、污泥产率等; 3)理解活性污泥反应动力学基础及其应用; 4)掌握活性污泥的工艺技术或运行方式; 5)掌握曝气理论; 6)熟练掌握活性污泥系统的计算与设计。 第一节活性污泥法的基本原理 一、活性污泥处理法的基本概念与流程 活性污泥:是由多种好氧微生物、某些兼性或厌氧微生物以及废水中的固体物质、胶体等交织在一起的呈黄褐色絮体。 活性污泥法:是以活性污泥为主体的污水生物处理技术。 实质:人工强化下微生物的新陈代谢(包括分解和合成), 活性污泥法的工艺流程: 1)预处理设施:包括初次池、调节池和水解酸化池,主要作用是去除SS、调 节水质,使有机氮和有机磷变成NH+4或正磷酸盐、大分子变成小分子,同时去除部分有机物。 2)曝气池:工艺主体,其通过充氧、搅拌、混合、传质实现有机物的降解和硝 化反应、反硝化反应。 3)二次沉淀池:泥水分离,澄清净化、初步浓缩活性污泥。

生物处理系统:微生物或活性污泥降解有机物,使污水净化,但同时增殖。为控制反应器微生物总量与活性,需要回流部分活性污泥,排出部分剩余污泥;回流污泥是为了接种,排放剩余污泥是为了维持活性污泥系统的稳定或MLSS 恒定。 二、活性污泥的形态和活性污泥微生物 1 活性污泥形态 (1)特征 1)形态:在显微镜下呈不规则椭圆状,在水中呈“絮状”。 2)颜色:正常呈黄褐色,但会随进水颜色、曝气程度而变(如发黑为曝气不足, 发黄为曝气过度)。 3)理化性质:ρ=1.002~1.006,含水率99%,直径大小0.02~0.2mm,表面积 20~100cm2/mL,pH值约6.7,有较强的缓冲能力。其固相组分主要为有机物,约占75~85%。 4)生物特性:具有一定的沉降性能和生物活性。(理解:自我繁殖、生物吸附 与生物氧化)。 (2)组成 由微生物群体Ma,微生物残体Me,难降解有机物Mi,无机物Mii四部分组成。 2 微生物组成及其作用 1)细菌:以异养型原核生物(细菌)为主,数量107~108个/ml,自养菌数量略 低。其优势菌种:产碱杆菌属等,它是降解污染物质的主体,具有分解有机物的能力。 2)真菌:由细小的腐生或寄生菌组成,具分解碳水化合物,脂肪、蛋白质的功 能,但丝状菌大量增殖会引发污泥膨胀。 3)原生动物:肉足虫、鞭毛虫和纤毛虫3类,捕食游离细菌。其出现的顺序反 映了处理水质的好坏(这里的好坏是指有机物的去除),最初是肉足虫,继之鞭毛虫和游泳型。 4)纤毛虫:当处理水质良好时出现固着型纤毛虫,如钟虫、等枝虫、独缩虫、 聚缩虫、盖纤虫等。 5)后生动物(主要指轮虫):捕食菌胶团和原生动物,是水质稳定的标志。因而 利用镜检生物相评价活性污泥质量与污水处理的质量。 3 微生物增殖与活性污泥的增长 (1)微生物增值:在污水处理系统或曝气池内微生物的增殖规律与纯菌种的增殖规律相同,即停滞期(适应期),对数期,静止期(也减速增殖期)和衰亡期(内源呼吸期)。

(推荐)硝化菌的培养方法

硝化菌的培养方法 硝化反应影响因素: 1、温度在生物硝化系统中,硝化细菌对温度的变化非常敏感,在5~35℃的范围内,硝化菌能进行正常的生理代谢活动。当废水温度低于15℃时,硝化速率会明显下降,当温度低于10℃时已启动的硝化系统可以勉强维持,硝化速率只有30℃时的硝化硝化速率的25%[1]。尽管温度的升高,生物活性增大,硝化速率也升高,但温度过高将使硝化菌大量死亡,实际运行中要求硝化反应温度低于38℃[2]。 2、pH值硝化菌对pH值变化非常敏感,最佳pH值是8.0~8.4,在这一最佳pH值条件下,硝化速度,硝化菌最大的比值速度可达最大值。Anthonison认为pH对硝化反应的影响只是表观现象,实际起作用是两个平衡H++NH3 = NH4+和H++NO2-= HNO2中的NH3(FA)和HNO2(FNA),pH通过这两个平衡影响FA和FNA的浓度起作用的。 3、溶解氧氧是硝化反应过程中的电子受体,反应器内溶解氧高低,必将影响硝化反应得进程。在活性污泥法系统中,大多数学者认为溶解氧应该控制在1.5~2.0mg/L内,低于0.5mg/L则硝化作用趋于停止。当前,有许多学者认为在低DO(1.5mg/L)下可出现SND现象。在DO>2.0mg/L,溶解氧浓度对硝化过程影响可不予考虑。但DO浓度不宜太高,因为溶解氧过高能够导致有机物分解过快,从而使微生物缺乏营养,活性污泥易于老化,结构松散。此外溶解氧过高,过量能耗,在经济上也是不适宜的。 4、生物固体平均停留时间(污泥龄)为了使硝化菌群能够在连续流反应器系统存活,微生物在反应器内的停留时间(θc)N必须大于自养型硝化菌最小的世代时间(θc)minN,否则硝化菌的流失率将大于净增率,将使硝化菌从系统中流失殆尽。一般对(θc)N的取值,至少应为硝化菌最小世代时间的2倍以上,即安全系数应大于2。 5、重金属及有毒物质除了重金属外,对硝化反应产生抑制作用的物质

活性污泥中的微生物

活性污泥中主要微生物类群的特征及作用 活性污泥中的微生物,主要有细菌、原生动物和藻类三种,此外还有真菌、病菌等。微生物中细菌是分解有机物的主角,其次原生动物也有一定的作用。活性污泥中主要以菌胶团和丝状菌存在,游离的细菌较少。活性污泥中原生动物较多,经常出现的原生动物主要有钟虫类、盾纤虫、漫游虫、吸管虫、变形虫等。此外还有一些后生动物,如轮虫和线虫。因此,活性污泥是一个复杂的微生物世界。对工艺管理者来说,应会识别微生物,并了解它对污水处理过程的指示作用。 下面是几钟生物相对活性污泥的指示情况: 1、活性污泥良好时出现的微生物主要有:钟虫类、盾纤虫、盖纤虫、累枝虫、聚缩虫、内管虫、独缩虫等吸附性原生动物。如果此类微生物占总数的80%以上,个体在1000个/mL 以上的话,应该判断为具有高净化效率的活性污泥。 2、活性污泥处于恶劣状况时出现的微生物主要:波豆虫、豆型虫、草履虫、弹跳虫、屋滴虫(大多数为游泳型),可以判断为絮凝体细碎。严重恶化时原生动物和后生动物消失。 3、在活性污泥分散解体时出现微生物:辐射变形虫、多核变形虫、扇形变形虫等肉足类。可判断为絮体变小出水混浊,SS升高,而这类微生物急增时必须调整工艺状态,减少回流污泥量和通气量,则可以印制污泥解体。 4、在活性污泥出现恢复时出现的微生物主要有:漫游虫、徐叶虫、徐管虫、尖毛等(全毛类) 5、在活性污泥膨胀时出现的微生物主要有:浮游球衣藻和霉菌。丝壮菌是造成污泥膨胀的诱导生物,丝壮菌大量增殖是,则吸附型的原生动物急剧减少,污泥性能恶化,形成所谓的漂泥现象。一旦出现丝壮菌增殖的趋势,4-7天后SVI急剧上升甚至会超过200。 6、进水负荷低时出现的微生物主要有:游仆虫、狭甲虫等生物。判断为有机物较少,应增大曝气量。溶解氧不足时出现的微生物主要有;扭头虫、丝壮菌等,此时污泥发黑并放出腐臭味,应增大曝气量。曝气过量时出现的微生物主要有:肉足类及轮虫类,包括阿米巴虫,高负荷和毒物流入时出现的微生物主要有;盾纤虫和钟虫的锐减是负荷过高和毒物流入的征兆,大多数微生物灭绝时活性污泥已被破坏,必须进行恢复。

厌氧反应池培养和驯化

厌氧反应池B-107在正式投用前要进行厌氧菌的培养和驯化, 具体方法步骤如下: 1、将中活性污泥打入厌氧池中作为接种污泥。打入的污泥量以达到厌氧池正常操作水位的10%为宜。 2、启动气浮水提升泵P-101向厌氧池注入污水,注入量以达到正常操作水位的40%左右,即污水量加活性污泥量达到厌氧池正常操作水位的50%。 3、启动潜水搅拌器流以保持池内污水处于搅拌状态,不致使污泥沉在池底。 然后即使池内厌氧菌自行生长繁殖。每2天启动一次气浮水提升泵P-101向厌氧池内注污水,每次注入5%液位10天后即达到正常操作液位。 4、在厌氧菌培养阶段每天分析一次池内污水中的CODcr、氨氮和总磷。保持CODcr在300 mg/L以上,氨氮在2.5 mg/L以上,总磷在0.5 mg/L以上。 如果CODcr低于300 mg/L则立即启动气浮水提升泵P-101向池内注污水,如果氨氮低于2.5 mg/L则向池内投加尿素以补充氮源,如果总磷低于0.5 mg/L则向池内投加磷酸三钠。投加的数量以达到上述指标为准。 5、10天后如分析结果显示池中的CODcr和氨氮比进水降低20%以上,说明厌氧菌已经生成,则进入污泥培养驯化阶段。 6、进入污泥驯化阶段时,启动气浮水提升泵P-101向池内连续

进水,同时也连续出水。进水量控制在正常进水量的10%左右。每天提高一次进水量,每次提高正常进水量的10%。10天后即达到正常进水量。 7、在污泥培养驯化阶段每天分析一次CODcr,和氨氮。如果出水中的CODcr和氨氮比进水中的CODcr和氨氮降低30%以上,说明厌氧菌已形成,可以转入正常操作状态,投入正常运行。 如果出水中的CODcr和氨氮基本不降低,说明厌氧菌形成不好,则要减少进水量或暂时停止进水,进一步培养厌氧菌。厌氧菌的培养与驯化一般大约要25-40天。如水温高30-40℃则需要的时间就短,如水温低≤25℃则需要的时间就长,如水温低于15℃则很难培养出厌氧菌。 推流曝气池污泥培养与驯化 推流曝气池污泥培养与驯化: 1 将污泥池内剩余活性污泥倒入推流曝气池作为接种污泥。倒入量以达到推流曝气池正常水位的10%左右为宜。 2 厌氧反应池正常出水直接向推流曝气池B-108进水。进水量按正常设计总进水量的10%左右连续进水。同时开启罗茨鼓风机P-110向曝气池内送风。 3 当推流曝气池内的水位达到设计水位100%时则停止进水,只向推流曝气池内鼓风,进行污泥的培养,时间3天左右。 4 在污泥培养阶段每天分析一次推流曝气池中的CODcr、总氮、总

污水处理好氧细菌培养规程

污水处理好氧细菌培养规程 一、培养前的准备工作 1、各构筑物建成,并经清池清除建筑垃圾,静压试验证明无渗漏,无下沉位移,最后按有关规程验收合格。 2、电器、机械、管路等全部设备建成并经单机试车、联动试车正常。最后按有关规程验收合格。 3、根据日后运行管理需要,有条件的污水处理厂(站)需进行最基本的常规化验测试,如 pH、水温、COD、DO、生物相等,用以指导活性污泥的培养过程和日常运行。 4、基础数据的调查摸底,包括污水流量昼夜变化情况,水质(pH、水温、COD、BOD5/CODCr 、含氮、含磷、有毒物质等)及其变化情况,各种设施和设备的技术参数。5、根据处理水质状况备足必需的营养物(碳源:大粪及淀粉、氮源:尿素、磷源:普钙Ca(H2PO4)2),以备缺什么补什么。 6、操作人员应熟悉整个系统的管道布置和公用工程方面的情况,了解污泥培养的基本过程和控制要求。 7、人员到位,自培养和驯化后一般应使系统连续运行,不能脱人。 8、编制必要的化验和运转的原始记录报表以及初步的建章立制。从培菌伊始,逐步建立较规范的组织和管理模式,确保启动与正式运行的有序进行。 二、培菌 1. 向好氧池注入清水(同时引入生活污水)至一定水位,并注意水温 2. 按风机操作规程启动风机,鼓风。

3. 向好氧池投加经过滤的浓粪便水(当粪便水不充足时,可用化粪池和排水沟内的污泥补充。),使得污泥浓度不小于1000mg/L,BOD达到一定数值。 4. 有条件时可投加活性污泥的菌种,加快培养速度。 5. 按照活性污泥培养运行工艺对反应池进行曝气、搅拌、沉降、排水。 水气体积控制在1:(5~10)。曝气时间采取6h充氧,4h停机的方式进行,排水参见7。 6. 通过镜检及测定沉降比、污泥浓度,注意观察活性污泥的增长情况。并注意观察在线PH值、DO的数值变化,及时对工艺进行调整。 7. 测定初期水质及排水阶段上清液的水质,根据进出水NH3-N、BOD、COD、NO3-、NO2-等浓度数值的变化,判断出活性污泥的活性及优势菌种的情况,并由此调节进水量、置换量、粪水、碳源、氮源、磷源的投加量及周期内时间分布情况 8. 注意观察活性污泥增长情况,当通过镜检观察到菌胶团大量密实出现,并能观察到原生动物(如钟虫),且数量由少迅速增多时,说明污泥培养成熟,可以进生产废水,进行驯化。 三、活性污泥的驯化(调试)步骤 1. 通过分析确认来水各项指标在允许范围内,准备进水。 2. 开始进入少量生产废水,进入量不超过驯化前处理能力的20%。同时补充新鲜水、粪便水及氮源。 3. 达到较好处理后,可增加生产废水投加量,每次增加不超过10~20%,同时减少氮源投加量。且待微生物适应巩固后再继续增生产废水,直至完全停加氮源。同步监测出水CODcr 浓度等指标,并观察混合液污泥性状。在污泥驯化期还要适时排放代谢产物,即泥

活性污泥微生物学(实际经验总结,绝对实用)

. 活性污泥微生物学 卓祥和编写

二〇〇八年九月

活性污泥微生物学 工业废水或城市污水排入水体后,使水体受到有机污染。有机污染是当前水体污染的普遍倾向,因此有机污染的治理是保护水资源的重要措施。如果被有机污染的水体是河流,在流径一段距离后,水中有机物在微生物的作用下,逐渐被氧化、分解,最后恢复到原来的清洁程度,这一过程称为水体的自挣。微生物在氧化、分解有机物的过程中,不断消耗河流中的溶解氧,而溶解氧则可在流动的河流表面从大气中得到补充。我国古代,就有“流水不腐,户枢不蠹”的谚语。这种利用溶解氧氧化、分解有机物的微生物称作好氧微生物。 排入水体的污水,一部分以悬浮状态的有机物沉淀至水底,无法不断获得溶解氧。此时,另一种称为厌氧微生物发生作用。厌氧微生物是自养性的,以发酵方式分解有机物和合成微生物机体。厌氧分解能产生有机酸、醇、硫化氢、二氧化碳、沼气和热能。所以受有机污染的水体常发生底泥冒气泡现象。民间的沼气池和堆肥是厌氧微生物作用的例子。 我国现行国家标准规定,污水处理工程中,水中溶解氧≥2mg/L为好氧区(Oxic Zone),主要功能是降解有机物和进行硝化反应(又称碳化和硝化);0.2~0.5mg/L为缺氧区(Anoxic Zone),在兼氧微生物作用下能起到脱氮的反硝化反应;<0.2mg/L的称为厌氧区(Anaerobic Zone),微生物能吸附有机物并释放磷,以便在好氧区吸收磷从剩余污泥排出而起到除磷功能。水中溶解氧在0.5~2mg/L属于有氧区范围,有相应的微生物菌种存在,起到相应的有机物氧化、氨氮硝化和硝酸盐反硝化的作用。 利用好氧微生物、兼氧微生物和厌氧微生物清除水中有机物的技术,被称作生物处理技术。 污水生物处理技术,按处理设施的载体不同,分为生物膜法和活性污泥法两种。如以填料和膜片作为载体的各种生物滤池和生物转盘等处理设备属于生物膜法;以水为载体的各类曝气池、氧化沟等属于活性污泥法。也有两者结合,在水中设置填料载体的接触氧化法等。 活性污泥法以好氧微生物处理为主。在活性污泥法生物处理设施中需不断充入空气,即曝气。从而加速微生物分解污水中有机物的速度,随之有大量絮状的泥粒产生,这就是活性污泥。它是由大量的细菌、原生动物等微生物,以及一些无机物所组成。活性污泥按照污水水质的不同而有不同的颜色,一般为黄褐色。

蚯蚓生物堆肥技术处理城污泥

蚯蚓生物堆肥技术处理城市污泥 及系列产品开发(节选)。。。。。。 3蚯蚓生物堆肥技术概述 3.1 蚯蚓堆肥处理技术机理 蚯蚓堆肥技术是基于蚯蚓在自然生态系统中所具有的促进有机物质分解转化功能以及固体废弃物堆肥处理的基础上,发展起来的一项针对城市生活垃圾、农业废弃物和城市生活污水污泥中的有机部分的生物处理技术。它是在污泥堆肥基础上引入蚯蚓,蚯蚓在堆肥处理污泥过程中,寻觅合适的营养物质作为食物,污泥进入蚯蚓体内到最后以蚯蚓粪的形式排出,相当于一套完整的污泥处理工艺,此间既有蚯蚓体内分泌物的化学作用以及蚯蚓体内肠道微生物的生化作用,还有研磨、消化等物理化学作用,其整个流程如图3.1所示。在整个过程中,不仅有蚯蚓的吞噬消化作用,而且由于蚯蚓在污泥中的活动再加上其特殊的生物学功能,加速了污泥中的微生物的活动,蚯蚓与微生物协同作用从而加速污泥中有机物质的分解转化。

图3.1 蚯蚓堆肥处理污泥流程图 3.2蚯蚓堆肥技术的优点 与其它国内目前国内普遍使用的处理技术相比,它克服了污泥资源化最大的限制因素,避开了其它技术的缺点,充分体现了其优越性。与污泥农用技术相比,它解决重金属污染的难题;与填埋技术相比,它不仅不需要大量的土地,而且彻底解决了污泥的问题,而填埋并未最终避免环境污染,而只是延缓了污染发生的时间;与焚烧相比,它不需要巨额投资而且也不产生二次污染;与堆肥技术相比,它可以缩短污泥的堆肥周期,解决了重金属残留问题,提高了养分增加了肥料中的微生物。 3.2.1富集重金属 污泥中含有多种重金属、有机污染物和病原物,这些环境危险物质随污泥进入土壤,对生态环境安全和人类健康带来风险,甚至构成威胁。其中,污泥中重金属含量的增加对人类、动物、植物和土壤生态系统存在的潜在危害一直是人们所关注的环境问题,因城市污泥中的重金属具有难迁移、易富集、危害大等特点,因此把城市污泥所含的重金属问题看作是限制其农用的主要障碍。目前去除污泥中重金属的方法主要使用无机酸络合剂或者利用微生物将污泥中的重金属浸提到液相中加以去除,而近年来利用生物的某些习性来适应、抑制和改良重金属污染的生物治理法已成为人们关注的热点之一。研究表明,蚯蚓是一种能提高土壤肥力的环境生物,且对重金属具有富集作用,利用它可以处理城市垃圾、工业废弃物以及农药中重金属等有害物质。3.2.2改变水分存在形态,缩短堆肥时间 湿污泥中的水分主要以间隙水的形态存在,这种形态的水在自然条件下很难去

硝化细菌的分离与鉴定范文

硝化细菌的分离与鉴定 要筛选生长速度快、硝化作用强的硝化细菌用于水产养殖水处理。硝化细菌包括亚硝化 菌和硝化菌两个生理菌群,分别可将水中的氨态氮转化为亚硝酸盐和硝酸盐。实验结果 表明经5周培养,亚硝化菌可使培养液中的氨氮含量下降到60%,硝化菌可使培养液中的亚硝酸盐含量下降到60%。实验可通过测定培养液中亚硝酸盐的含量变化来测定细菌的氨转化作用或硝化作用。 关键词:硝化菌,亚硝化菌,硝化作用,筛选。 氨氮和亚硝酸盐都是在水产养殖过程中产生的有毒物质,且亚硝酸盐还是强烈的治癌物质,因此如何降解这两种物质,是科学工作者近年来的工作重点。 硝化细菌是一类具有硝化作用的化能自养菌,包括硝化菌和亚硝化菌两个生理菌群,其 主要特性是自养性,生长速率低,好氧性,依附性和产酸性等。可通过NH4+→NO2- → NO3-这一过程将NH4+转化为NO3-。能有效降低水体中氨氮及亚硝酸氮的含量,对水产养 殖业及环境保护具有重要意义。硝化细菌是生物硝化脱氨中起主要作用的微生物,直接 影响硝化效果和生物脱氨的效率。 研究表明,水体中硝化细菌的浓度对生物脱氨具有十分重要的意义,由于大多数硝化细 菌生长缓慢,硝化及脱氨效果欠佳,处理水产养殖污水的效果不是很好。因此筛选出生 长速率高硝化作用强度大的硝化细菌有很大的用途。 本文对硝化细菌的研究主要在富集培养和固定化细胞方面,能够有效提高硝化细菌的产 率和硝化细菌的利用率。通过富集培养的硝化细菌浓度是未经富集培养的12.5~20.0倍 ,利用细胞固定化技术可使氨氮去除率提高16.5个百分点。国外在硝化细菌的培养方面 的研究已有一些专利技术,其中一些已形成工业化生产,但产品价格较昂贵,并且必须 不断向反应器中补充流失的硝化细菌。硝化作用包括两个步骤:氨转化为亚硝酸盐和亚 硝酸盐转化为硝酸盐,这两个步骤分别由亚硝化菌和硝化菌完成,至今还未发现有能将 氨直接转化为硝酸盐的细菌。 氨和亚硝酸分别是亚硝化菌和硝化菌的唯一能源。对于硝化细菌来说生长环境中的温度 对其影响较大,pH值和盐度的影响相对较小。大多数硝化细菌的合适生长温度为10~38

活性污泥中的指示生物

活性污泥中的微生物,主要有细菌、原生动物和藻类三种,此外还有真菌、病菌等。微生物中细菌是分解有机物的主角,其次原生动物也有一定的作用。活性污泥中主要以菌胶团和丝状菌存在,游离的细菌较少。活性污泥中原生动物较多,经常出现的原生动物主要有钟虫类、盾纤虫、漫游虫、吸管虫、变形虫等。此外还有一些后生动物,如轮虫和线虫。可以所,活性污泥是一个广阔的微生物世界。对工艺管理者来说,应会识别微生物,并了解它对污水处理过程的指示作用。 下面是几钟生物相对活性污泥的指示情况: 1、活性污泥良好时出现的微生物主要有:钟虫类、盾纤虫、盖纤虫、累枝虫、聚缩虫、内管虫、独缩虫等吸附性原生动物。如果此类微生物占总数的80%以上,个体在1000个/mL以上的话,应该判断为具有高净化效率的活性污泥。 2、活性污泥处于恶劣状况时出现的微生物主要:波豆虫、豆型虫、草履虫、弹跳虫、屋滴虫(大多数为游泳型),可以判断为絮凝体细碎。严重恶化时原生动物和后生动物消失。 3、在活性污泥分散解体时出现微生物:辐射变形虫、多核变形虫、扇形变形虫等肉足类。可判断为絮体变小出水混浊,SS升高,而这类微生物急增时必须调整工艺状态,减少回流污泥量和通气量,则可以印制污泥解体。 4、在活性污泥出现恢复时出现的微生物主要有:漫游虫、徐叶虫、徐管虫、尖毛等(全毛类) 5、在活性污泥膨胀时出现的微生物主要有:浮游球衣藻和霉菌。丝壮菌是造成污泥膨胀的诱导生物,丝壮菌大量增殖是,则吸附型的原生动物急剧减少,污泥性能恶化,形成所谓的漂泥现象。一旦出现丝壮菌增殖的趋势,4-7天后SVI急剧上升甚至会超过200。 6、进水负荷低时出现的微生物主要有:游仆虫、狭甲虫等生物。判断为有机物较少,应增大曝气量。溶解氧不足时出现的微生物主要有;扭头虫、丝壮菌等,此时污泥发黑并放出腐臭味,应增大曝气量。曝气过量时出现的微生物主要有:肉足类及轮虫类,包括阿米巴虫,高负荷和毒物流入时出现的微生物主要有;盾纤虫和钟虫的锐减是负荷过高和毒物流入的征兆,大多数微生物灭绝时活性污泥已被破坏,必须进行恢复。 7、钟虫不活跃或呆滞,往往是曝气池供气不足。当发现没有钟虫,却有大量的游动纤毛虫如个种数量较多的草履、漫游虫、豆型虫、波豆虫等,而细菌则以游离细菌为主,此时表明水中的有机物还很多,处理效果很差。如果原水水质良好,突然出现固定纤毛虫减少,游泳纤毛虫增加的现象,预示水质要变差,逐渐出现游动纤毛虫,水质将向好的方向发展,直致变为固定纤毛虫为主,则水质变得良好。 8、镜检中发现积硫较多的丝硫细菌,游动细菌时,往往是曝气时间不足,空气量不够,流量过大,或水温较低,处理效果较差。 9、在大量钟虫存在的情况下盾纤虫数量多而且越来越活跃,这读曝气池工作不利。要注意,可能悟泥会变得松散,如果钟虫量递减,盾纤虫量递增,则替伏着污泥膨胀的可能。当发现等枝虫成堆出现,并不活跃,肉眼能见污泥中有小白点,同时发现贝氏硫菌和丝硫菌积硫点十分明显,则表明曝气池溶

微生物的培养与驯化_New

微生物的培养与驯化

微生物的培养与驯化 厌氧消化系统试运行的一个主要任务是培养厌氧活性污泥,即消化污泥。厌氧活性污泥培养的主要目标是厌氧消化所需要的甲烷菌和产酸菌,当两菌种达到动态平衡时,有机质才会被不断地转化为甲烷气,即厌氧沼气。 机理 污泥厌氧消化是一个多阶段的复杂过程,完成整个消化过程,需要经过三个阶段(目前公认的),即水解、酸化阶段,乙酸化阶段,甲烷化阶段。各阶段之间既相互联系又相互影响,各个阶段都有各自特色微生物群体。 水解酸化阶段 一般水解过程发生在污泥厌氧消化初始阶段,污泥中的非水溶性高分子有机物,如碳水化合物、蛋白质、脂肪、纤维素等在微生物水解酶的作用下水解成溶解性的物质。水解后的物质在兼性菌和厌氧菌的作用下,转化成短链脂肪酸,如乙酸、丙酸、丁酸等,还有乙醇、二氧化碳。 乙酸化阶段 在该阶段主要是乙酸菌将水解酸化产物,有机物、乙醇等转变为乙酸。该过程中乙酸菌和甲烷菌是共生的。

甲烷化阶段 甲烷化阶段发生在污泥厌氧消化后期,在这一过程中,甲烷菌将乙酸(CH3COOH)和H2、CO2分别转化为甲烷,如下: 2CH3COOH→2CH4↑+ 2CO2↑ 4H2+CO2→CH4+ 2H2O 在整个厌氧消化过程中,由乙酸产生的甲烷约占总量的2/3,由CO2和H2转化的甲烷约占总量的1/3。 一.厌氧微生物的培养和驯化 1.污泥的厌氧消化中,甲烷菌的培养与驯化方法主要有两种; (1)接种培养法(2)逐级培养法 2.接种污泥一般取自正在运行的厌氧处理装置,尤其是城市污水处理厂的消化污泥,当液态消化污泥运输不方便时,可用污水厂经机械脱水后的干污泥。在厌氧消化污泥来源缺乏的地方,可从废坑塘中腐化的有机地泥,或人粪,牛粪,猪粪,酒糟或初沉池底泥代替。大型污水处理厂,若同时启动所需接种量太大,可分组分别启动。 接种污泥培养法是向厌氧消化装置中投入容积为总容积10%-30%厌氧菌种污泥,接种污泥一般为含固率为3%-5%的湿污泥,再加入新鲜污泥至设计液面,然后通入蒸汽加热,升温速度保持1°C/h,直至达到消化温度(可将污泥厌氧消化分为中温(一般30~36℃)厌氧消化和高温(一般50~55℃)厌氧消化。研究表明,在污泥厌氧消化过程中,温度发生±3℃变化时,就会抑制污泥消化速度;温度

硝化细菌的简介及研究思路

问题的提出 我国水体富营养化状况 我国是一个湖泊众多的国家,大于1 km2的天然湖泊就有2300多个,湖泊面积为70988 km2,约占全国陆地总面积的%。湖泊总蓄水量为7077多亿m3[1]。调查结果表明:2004年七大水系的412个水质监测断面中,I~III类、Ⅳ~Ⅴ类和劣Ⅴ类水质的断面比例分别为%、%和%,七大水系主要污染指标为氨氮、五日生化需氧量、高锰酸盐指数和石油类[3]。 2004年监测的27个重点湖库中,II类水质的湖库2个,III类水质的湖库5个,Ⅳ类水质的湖库4个,Ⅴ类水质湖库6个,劣Ⅴ类水质湖库10个。其中,“三湖”(分别为太湖、巢湖和滇池)水质因总氮和总磷浓度高而均为劣Ⅴ类。太湖水质与上年比有所改善,但仍处于中度富营养化状态。滇池的草海属于中度富营养化,外海属重度富营养化。巢湖水质属中度富营养化。对于海洋环境,2004年全海域共发现赤潮96次,较上年减少23次。赤潮累计发生面积266630平方公里,较上年增加%,其中,大面积赤潮集中在东海。 目前,水体的富营养化已经成为我国最为突出的环境问题之一。许多大型湖泊,如巢湖、太湖、鄱阳湖、滇池和西湖等,都已经处于富营养或重度富营养化状态。而且一些河流在部分河段也出现了富营养化现象,如黄浦江流域、珠江广州河段等。据统计,我国主要湖泊处于因氮、磷污染而导致富营养化的占统计湖泊的56%[4]。因此,如何治理富营养化的水体,减少其中的营养物质的含量,回复水体的综合功能,已成为当前全球性的环境问题的研究热点[5]。 富营养化水体的微生物治理 针对水体富营养化现象,其水质改善及对策包括三个大的方面:污染源控制对策、水体生态修复对策以及应急除藻对策[6-8]。水体富营养化的关键与核心是生物多样性的破坏,其典型表现就是富营养化水体发生藻类“水华”现象[9]。因此,从保护和恢复生物多样性入手,引入微生物、植物和动物,尤其是关键物种,重建食物链结构,是恢复水体正常的主要手段之一[10-12]。为此经常用到的技术措施包括:以藻控藻,投加细菌微生物[13]、放养鱼类[14],恢复与构建水生植被[15,16]等。 利用微生物种群的新陈代谢活动对富营养化水体中的有机污染物、氨氮和有机氮等进行去除,尤其是氮污染物的去除,主要需要建立硝化-反硝化体系。而在自然界中,原本存在有专门从事硝化-反硝化过程中的微生物种群。但是由于某些微生物种群,如硝化细菌的代时较长,增殖速率非常低。同时,水体的人为活动的破坏。导致了富营养化水体中硝化-反硝化体系的弱化甚至缺失。故针对富营养化水体,可采用向水体中投加复合微生物菌群,从而增强水体的生物自净化能力,达到控制水体富营养化的目的,该技术被称之为“微生物强化技术”。该技术具有费用低、见效快、无污染和方便安全等特点。 复合微生物种群主要由光合细菌、硝化细菌等组成,再辅之以反硝化细菌。其中,光合细菌通过自身代谢与藻类竞争性争夺营养物质,并可降解、消除藻类代谢分泌于体外的多种物质,削弱藻类的竞争力。一般的光合细菌都有固氮能力,在厌氧光照条件下固氮能力最强。光合细菌与其他细菌的混合培养,能够提高其他细菌的固氮能力。另外,硝化细菌、反

亚硝化细菌的分离纯化及诱变育种

亚硝酸菌的分离纯化及诱变育种 1.硝化细菌背景介绍: 硝化细菌-一类专性化能自养(无机营养)细菌,包括亚硝化菌和硝化细菌两个菌群,一般种类不能生长在有机培养基中。在有氧的条件下,亚硝化细菌群将氨氮转化亚硝酸氮,硝化细菌群将亚硝酸氮转化硝酸氮,两者常生长在一起。硝化细菌分离比较困难,由于它生长缓慢,平均代时10-20h以上,且不同菌株间差异较大。亚硝化菌单细胞杆状以单根极生鞭毛运动,无荚膜,革兰氏阴性严格好氧,在有机培养基不能生长,能利用CO2唯一碳源。菌落以小圆淡黄色为主,个别呈无色或乳白色。个别菌株为球状,无鞭毛。氨转化为亚硝酸盐过程中获得能量。硝化细菌单细胞杆状不运动好气在有机培养基不能生长,能利用CO2唯一碳源。亚硝酸细菌用格里斯试剂检测,呈现红色;硝酸细菌用二苯胺检测,呈现蓝色。 2.亚硝化细菌培养基配置: 2.1.富集培养基的配置: 硫酸铵2g/l,氯化钠0.3g/l,硫酸铁0.03g/l,磷酸氢二钾1.0g/l,硫酸镁0.03g/l,碳酸氢钠1.6g/l,pH7.2。将该培养基在0.1MPa下灭菌30min。 2.2.分离培养基的配置: 硫酸铵0.5g/l,氯化钠2g/l,硫酸铁0.4g/l,磷酸氢二钾1.0g/l,硫酸镁0.5g/l,碳酸钙5g/l,pH7.2。将该培养基在0.1MPa下灭菌30min。 亚硝化细菌固体分离培养基:在上述亚硝化细菌分离培养基中加入质量分数为2%的琼脂。 3.实验方法: 3.1.亚硝酸细菌的富集培养 将2mL活性污泥加入装有80m L富集培养基的300mL锥形瓶中,在30℃、130r/min的条件下振荡培养, 每隔几天取样, 采用格里斯试剂检验亚硝酸盐的生成情况, 呈现红色表示有亚硝酸盐存在, 然后移取1mL富集培养液接入新鲜富集培养基, 继续培养并进行上述测试。经几次重复操作, 不断淘汰其他异养菌。 3.2.亚硝酸细菌的分离培养: 将1mL上述富集培养液涂布于固体分离培养基平板上,在30℃的培养箱中培养7~10d,得到单菌落,再进一步纯化获得纯菌落,对纯菌落尽心编号,置于4℃冰箱中保存,备用。 3.3.亚硝化细菌的活性: 取分离出的菌株,以20%的接种量接种于富集培养基中,通过氨氮去除率或亚硝酸盐氮的质量浓度来考察亚硝化细菌的活性。 3.4.亚硝化细菌的诱变育种: 3.4.1.诱变育种: 是选合适的诱变因素、处理剂量及处理方法,人为地对出发菌株进行诱变处理,然后运用合理的筛选程序及适当的筛选方法把优良的变异菌株筛选出来。 首先,通过诱变雨中可以提高产物的产量,即可以获得高产突变株。其次,通过诱变育种可以改善菌种特性、提高产品质量。减少或去除发酵副产物的生成量既可以提高产品质量,又可以简化产品分离提取工艺,降低成本。第三,通过诱变育种可以选育出更合适于工业化发酵要求的突变株,简化工艺条件。第四,通过诱变育种可以开发新产品 3.4.2.诱变因素: 3.4.2.1.物理诱变因素:紫外线(UV),X射线和γ射线,快中子(电离辐射) 3.4.2.2.化学诱变因素:碱基类似物,烷化剂,移码诱变剂,脱氨剂,羟化剂 3.4.2.3.生物诱变因素:转位因子(位于染色体或质粒上的一段能改变自身位置的DNA序列)3.4.3.诱变剂的选择:

微生物的培养与驯化

微生物的培养与驯化 厌氧消化系统试运行的一个主要任务是培养厌氧活性污泥,即消化污泥。厌氧活性污泥培养的主要目标是厌氧消化所需要的甲烷菌和产酸菌,当两菌种达到动态平衡时,有机质才会被不断地转化为甲烷气,即厌氧沼气。 机理 污泥厌氧消化是一个多阶段的复杂过程,完成整个消化过程,需要经过三个阶段(目前公认的),即水解、酸化阶段,乙酸化阶段,甲烷化阶段。各阶段之间既相互联系又相互影响,各个阶段都有各自特色微生物群体。 水解酸化阶段 一般水解过程发生在污泥厌氧消化初始阶段,污泥中的非水溶性高分子有机物,如碳水化合物、蛋白质、脂肪、纤维素等在微生物水解酶的作用下水解成溶解性的物质。水解后的物质在兼性菌和厌氧菌的作用下,转化成短链脂肪酸,如乙酸、丙酸、丁酸等,还有乙醇、二氧化碳。 乙酸化阶段 在该阶段主要是乙酸菌将水解酸化产物,有机物、乙醇等转变为乙酸。该过程中乙酸菌和甲烷菌是共生的。

甲烷化阶段 甲烷化阶段发生在污泥厌氧消化后期,在这一过程中,甲烷菌将乙酸(CH3COOH)和H2、CO2分别转化为甲烷,如下: 2CH3COOH→2CH4↑+ 2CO2↑ 4H2+CO2→CH4+ 2H2O 在整个厌氧消化过程中,由乙酸产生的甲烷约占总量的2/3,由CO2和H2转化的甲烷约占总量的1/3。 一.厌氧微生物的培养和驯化 1.污泥的厌氧消化中,甲烷菌的培养与驯化方法主要有两种; (1)接种培养法(2)逐级培养法 2.接种污泥一般取自正在运行的厌氧处理装置,尤其是城市污水处理厂的消化污泥,当液态消化污泥运输不方便时,可用污水厂经机械脱水后的干污泥。在厌氧消化污泥来源缺乏的地方,可从废坑塘中腐化的有机地泥,或人粪,牛粪,猪粪,酒糟或初沉池底泥代替。大型污水处理厂,若同时启动所需接种量太大,可分组分别启动。 接种污泥培养法是向厌氧消化装置中投入容积为总容积10%-30%厌氧菌种污泥,接种污泥一般为含固率为3%-5%的湿污泥,再加入新鲜污泥至设计液面,然后通入蒸汽加热,升温速度保持1°C/h,直至达到消化温度(可将污泥厌氧消化分为中温(一般30~36℃)厌氧消化和高温(一般50~55℃)厌氧消化。研究表明,在污泥厌氧消化过程中,温度发生±3℃变化时,就会抑制污泥消化速度;温度发生

硝化细菌的培养及作用

硝化细菌的培养及作用 近年来,硝化细菌已逐渐成为水产养殖界的热门话题,它在水产养殖中的重要性开始引起广泛的注意。可以说,迄今为止,在大规模、集约化的水产养殖模式中,如果没有硝化细菌参与其中的净水作用,想获得成功的养殖,是相当困难的。鱼、虾等水产动物吃、喝、排泄、生活、休息都是在水体中进行的,那么,如何管理水体的水质以便适合它的生长、生存、健壮就成了重要的问题。尤其是现代集约化养殖长期累积了大量养殖生物排泄物,所有有机物的排泄物,甚至其尸体,在异养性细菌的作用下,其中的蛋白质及核酸会慢慢分解,产生大量氨等含氮有害物质。氨在亚硝化菌或光合细菌作用下转化成亚硝酸,亚硝酸与一些金属离子结合以后可以形成亚硝酸盐,而亚硝酸盐又可以和胺类物质结合,形成具有强烈致癌作用的亚硝胺。因此,亚硝酸盐常与恶名昭彰的氨相提并论,由于亚硝酸盐长期蓄积中毒,会使鱼、虾等抗病力降低,易招致各种病原菌的侵袭,故常被视为是鱼、虾的致病根源。然而,当亚硝酸在硝化菌的硝化作用下转变成硝酸后,很容易形成硝酸盐,从而成为可以被植物吸收利用的营养物质。所以说,硝化细菌与养殖环境的关系十分密切。 目前市面上宣称具有硝化作用的一些异养菌及真菌,虽然也能将氨氧化成硝酸盐,但通常只能利用有机碳源获取能量,不能利用无机碳源,其对氨的氧化作用十分微弱,反应速率远比自养性硝化细菌慢,不能被视为真正的硝化作用。 硝化作用必须依赖于自养性硝化细菌来完成。养殖池中有丰富的氮源,原本很适于硝化细菌生长,不过由于养殖池中存在大量的异养菌,受到异养性细菌的排斥作用,适合硝化细菌栖息的地方,相对自然环境显然少得多,因此无足够数量的自养性硝化细菌来消费过量的亚硝酸氮,这就是问题所在。 硝化细菌系指利用氨或亚硝酸盐作为主要生存能源,以及能利用二氧化碳作为主要碳源的一类细菌。硝化细菌是古老的细菌之一,其广泛分布于土壤、淡水、海水及污水处理系统中,却在自然界鲜少大量出现,原因在于硝化细菌的分布会受到许多环境因素的影响,如氮源、温度、氧气浓度、渗透压、酸碱度和盐度等等。 硝化细菌分为亚硝化菌与硝化菌,亚硝化菌的主要功能是将氨氮转化为亚硝酸盐;硝化菌的主要功能是将亚硝酸盐转化为硝酸盐。氨氮和亚硝酸盐都是在水产养殖过程中产生的有毒物质且亚硝酸盐还是强烈的治癌物质,因此如何降解这两种物质,是科学工作者近年来的工作重点,由于亚硝化菌的生长速度比较快且光合细菌也具有降解氨氮的作用,因此现代养殖已能成功地将氨氮控制在较低的水平上。而对于亚硝酸盐,由于自然界中的硝化菌生长极慢且还没有发现有其它的任何微生物可代替硝化菌的功能,所以养殖过程中产生的亚硝酸盐就成为阻碍养殖发展的关键因素。在此当中,硝化细菌就起到了关键的作用。

相关文档
最新文档