2013湖北潜江仙桃中考数学试题及答案(Word解析版)

合集下载

湖北省仙桃市中考数学试题及参考答案(word解析版)

湖北省仙桃市中考数学试题及参考答案(word解析版)

湖北省仙桃市中考数学试题及参考答案(word解析版)中考真题,精心整理,详细解析,word编辑。

试题公式使用公式编辑器6.9编辑处理,便于直接使用和后期编辑1 20XX年湖北省仙桃市中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,满分30分)1.8的倒数是()A .8B .8C .18-D .182.如图是某个几何体的展开图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥3.20XX年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A .3.5×102B .3.5×1010C .3.5×1011D .35×10104.如图,AD ∥BC ,∠C=30°,∠ADB :∠BDC=1:2,则∠DBC 的度数是()A .30°B .36°C .45°D .50°5.点A ,B 在数轴上的位置如图所示,其对应的实数分别是a ,b ,下列结论错误的是()A .|b|<2<|a|B .12a >12bC .a <b <2D .a <2<b 6.下列说法正确的是()A .了解某班学生的身高情况,适宜采用抽样调查B .数据3,5,4,1,1的中位数是4C .数据5,3,5,4,1,1的众数是1和5D .甲、乙两人射中环数的方差分别为s 甲2=2,s 乙2=3,说明乙的射击成绩比甲稳定7.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A .120°B .180°C .240°D .300°8.若关于x 的一元一次不等式组()*****x x x m -+-???--??<>的解集是x >3,则m 的取值范围是()A .m >4B .m≥4C .m <4D .m≤4中考真题,精心整理,详细解析,word编辑。

2013年湖北中考数学真题卷含答案解析

2013年湖北中考数学真题卷含答案解析

2013年武汉市初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)1.下列各数中,最大的是()A.-3B.0C.1D.22.式子√x-1在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤-1D.x<-1的解集是()3.不等式组{x+2≥0,x-1≤0A.-2≤x≤1B.-2<x<1C.x≤-1D.x≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1x2的值是()A.-2B.-3C.2D.36.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°7.如图是由四个大小相同的正方体组合而成的几何体,其主视图是()8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,….那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计.图(1)与图(2)是整理数据后的是()绘制的两幅不完整的统计图.以下结论不正确...图(1)图(2)A.由这两个统计图可知喜欢“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.如图,☉A与☉B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,☉B的半径为R,则DE⏜的长度是()A.π(90-x)R90B.π(90-y)R90C.π(180-x)R180D.π(180-y)R180第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算cos45°=.12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是.13.太阳的半径约为696000千米,用科学记数法表示数696000为.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒.15.如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数y=kx(x<0)的图象上,则k等于.16.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连结CF交BD于点G,连结BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.三、解答题(共9小题,共72分)17.(本小题满分6分)解方程2x-3=3 x .18.(本小题满分6分)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.19.(本小题满分6分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证∠A=∠D.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能的结果;(2)求一次打开锁的概率.21.(本小题满分7分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.如图,已知△ABC是☉O的内接三角形,AB=AC,点P是AB⏜的中点,连结PA,PB,PC.(1)如图①,若∠BPC=60°,求证AC=√3AP;,求tan∠PAB的值.(2)如图②,若sin∠BPC=2425图①图②23.(本小题满分10分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表).温度x/℃……-4-2024 4.5……植物每天高度增长量y/mm……414949412519.75……由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.已知四边形ABCD 中,E,F 分别是AB,AD 边上的点,DE 与CF 交于点G. (1)如图①,若四边形ABCD 是矩形,且DE ⊥CF.求证DE CF =ADCD ;(2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得DE CF =ADCD成立?并证明你的结论; (3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE ⊥CF.请直接写出DE CF的值.图① 图② 图③25.(本小题满分12分)如图,点P 是直线l:y=-2x-2上的点,过点P 的另一条直线m 交抛物线y=x 2于A,B 两点. (1)若直线m 的解析式为y=-12x+32,求A,B 两点的坐标;(2)①若点P的坐标为(-2,t),当PA=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立;(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.答案全解全析:1.D 因为正数大于0,负数小于0,在数轴上,越往右边的点所表示的数越大,所以有-3<0<1<2.故选D.2.B 根据“二次根式的被开方数大于或等于0”,得x-1≥0,解得x≥1.故选B.评析本题考查二次根式的概念、不等式解法的简单应用,通常学生易忽略“等于0”的情形,属容易题.3.A 解不等式x+2≥0得x≥-2,解不等式x-1≤0得x≤1,所以不等式组的解集为-2≤x≤1.故选A.4.A 因为必然事件是一定会发生的事件,所以在装有4个黑球和2个白球的袋子中,“摸出的三个球中至少有一个球是黑球”一定会发生,而选项B、C、D中的事件都是可能会发生也可能不会发生的,是随机事件,故选A.5.B 根据一元二次方程的根与系数的关系易得x1x2=-3,故选B.6.A ∵AB=AC,∠A=36°,×(180°-36°)=72°.∴∠ABC=∠C=12∵BD是AC边上的高,∴∠BDC=90°.∴∠DBC=90°-72°=18°.故选A.7.C 主视图是指从正面看几何体得到的平面图形,该几何体有三列正方体,且第三列的正方体有上下2层,故选C.8.C ∵两条直线最多有一个交点,在此基础上增加一条直线,则最多增加2个交点,即三条直线最多有1+2=3个交点;在此基础上再增加一条直线,则最多增加3个交点,即四条直线最多有1+2+3=6个交点;…,以此类推,六条直线最多有1+2+3+4+5=15个交点.故选C.9.C 由统计图可知喜欢“其他”类的人数为30人,占总体的10%,∴抽取的样本总数为30÷10%=300(人).喜欢“科普常识”的学生占30%,∴喜欢“科普常识”的学生有300×30%=90(人),显然选项A正确,不符合题意;若该年级共有1 200名学生,则可估计喜爱“科普常识”的学生约有1200×90=360(人),显然选项B也正确,不符合题意;300又由统计图知喜欢“小说”的人数为300-90-60-30=120(人),显然选项C不正确,符合题意; 又由条形统计图可知喜欢“漫画”的人数为60人,占抽取样本的比例为20%,∴“漫画”所在扇形的圆心角为20%×360°=72°,显然选项D正确,不符合题意.综上,选C.评析 本题考查的是条形统计图和扇形统计图的综合运用,体现了用样本估计总体的统计思想.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能直接反映部分占总体的百分比. 10.B 过D 作☉B 的直径DM,连结ME 、BE,则∠MED=90°,BE⊥PE. ∴∠BEM+∠BED=90°,∠PEB=∠BED+∠PED=90°. ∴∠PED=∠BEM. 又∵BE=BM,∴∠BEM=∠BME, ∴∠DBE=∠BEM+∠BME=2∠BEM. ∴∠BEM=12∠DBE, ∴∠PED=∠BEM=12∠DBE.由已知及切线长定理知PE=PD,PD=PC, ∴∠PED=∠PDE,∠PDC=∠PCD,∠PEC=∠PCE.在△CDE 中,∵∠CED=x°,∠ECD=y°,则x°+∠PDE+∠PDC+y°=180°, 即x°+x°+∠PEC+y°+∠PCE+y°=180°,∴x°+y°+∠PEC=90°,∴∠PED=x°+∠PEC=90°-y°,即12∠DBE=90°-y°. ∴∠DBE=2(90°-y°), ∴由弧长公式可知DE⏜的长度=2(90-y )πR 180=(90-y )πR90,故选B.评析 本题主要考查了圆的切线长定理、直径所对的圆周角是直角、等腰三角形的性质、三角形内角和定理以及圆的弧长公式等知识的综合应用,解题关键是通过等角转化求出圆心角∠DBE 的大小.属中等难度题.11.答案 √22解析 由特殊角的三角函数值直接可得.12.答案 28解析 因为28是这组数据中出现最多的数据,所以根据众数的概念可知这组数据的众数是28.13.答案 6.96×105解析 因为科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,所以696 000=6.96×105,故填6.96×105.14.答案 20解析 设甲车的速度是m 米/秒,乙车的速度为n 米/秒,由题意,得{100n -100m =500,20m +20n =900,解得{m =20,n =25.故甲车的速度为20米/秒. 15.答案 -12解析 如图.过D 作DH⊥y 轴于H,过C 作CF⊥DH 于F.则∠CFD=∠BOA=90°,又∵四边形ABCD 是平行四边形,∴∠CDH=∠BAO,DC=AB,∴△CFD≌△BOA.∴DF=OA=1,CF=OB=2.设D(x,y),则C(x+1,y+2).∵C、D 在反比例函数图象上,∴xy =(x+1)(y+2),即y=-(2x+2).过C 作CE⊥y 轴于E,由勾股定理得AB=√5,EC 2+EB 2=BC 2.即(x+1)2+y 2=(2√5)2,解方程组{y =-(2x +2),(x +1)2+y 2=(2√5)2, 得{x =-3,y =4或{x =1,y =-4(不合题意,舍去). ∴D(-3,4) .∴k=-12 .故答案为-12.评析 本题主要考查反比例函数图象与性质、平行四边形的性质、全等三角形的判定与性质、勾股定理等知识的综合应用,解题关键是巧妙构造全等三角形,利用勾股定理和反比例函数的意义列出方程组,求出反比例函数上某一点的坐标.16.答案 √5-1解析 ∵四边形ABCD 是正方形,∴AB=AD=DC,∠BAD=∠ADC=90°,∠ADG=∠CDG=45°.又∵AE=DF,DG=DG,∴△ABE≌△DCF,△ADG≌△CDG,∴∠ABE=∠DCG,∠DAG=∠DCG,∴∠ABE=∠DAG.∵∠BAH+∠DAG=90°,∴∠BAH+∠ABE=90°,∴∠AHB=90°.∴H 在以AB 为直径的☉M 上.连结MD 、MH (如图所示).则MH+HD≥MD.∵AB=AD=2,∴AM=BM=MH=1.∴在Rt△ADM 中,由勾股定理得DM=√AD 2+AM 2=√5.∴DH≥√5-1,∴DH 的最小值是√5-1.评析 本题是一道以正方形为载体的动态几何探究题,主要考查了正方形的性质、全等三角形的判定与性质、勾股定理以及圆周角定理的推论等相关知识的综合应用,其解题关键是通过等角转化,确定动点H 运动的路径,从而求出线段DH 的最小值,属中等偏难题.17.解析 方程两边同乘以x(x-3),得2x=3(x-3),解得x=9.经检验,x=9是原方程的解.18.解析 ∵直线y=2x+b 经过点(3,5),∴5=2×3+b,∴b=-1.即不等式为2x-1≥0,解得x≥12.19.证明 ∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF 和△DCE 中,{AB =DC ,∠B =∠C ,BF =CE ,∴△ABF≌△DCE,∴∠A=∠D.20.解析 (1)设两把不同的锁分别为A,B,能把A,B 两锁打开的钥匙分别为a,b,其余两把钥匙分别为m,n.根据题意,可以画出如下的树状图:由上图可知上述试验共有8种等可能的结果.(2)由(1)可知,任意取出一把钥匙去开任意的一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等,∴P(一次打开锁)=28=14. 21.解析 (1)画出△A 1B 1C 如图,画出△A 2B 2C 2如图.(2)旋转中心坐标:(32,-1). (3)点P 的坐标:(-2,0).22.解析 (1)证明:∵BC⏜=BC ⏜,∠BPC=60°,∴∠BAC=∠BPC=60°. 又∵AB=AC,∴△ABC 为等边三角形,∴∠ACB=60°,∵点P 是AB⏜的中点,∴∠ACP=30°. 又∠APC=∠ABC=60°,∴∠PAC=90°.在Rt△PAC 中,∠ACP=30°,∴AC=√3AP.(2)连结AO 并延长交PC 于E,交BC 于F,过点E 作EG⊥AC 于点G,连结OC.∵AB=AC,且O 为△ABC 的外心,∴AF⊥BC,BF=CF.∵点P是AB⏜的中点,∴∠ACP=∠PCB,∴EG=EF.易知∠BPC=∠FOC,∴sin∠FOC=sin∠BPC=2425. 设FC=24a,则OC=OA=25a. ∴OF=7a,AF=32a.在Rt△AFC中,AC2=AF2+FC2, ∴AC=40a.在Rt△AGE和Rt△AFC中,sin∠FAC=EGAE =FC AC,∴EG32a-EG =24a40a,∴EG=12a.∴tan∠PAB=tan∠PCB=EFCF =12a24a=12.23.解析(1)选择二次函数,设y=ax2+bx+c(a≠0),得{c=49,4a-2b+c=49,4a+2b+c=41,解得{a=-1,b=-2,c=49.∴y关于x的函数关系式是y=-x2-2x+49.不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,∴y不是x的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,∴y不是x的一次函数.(2)由(1),得y=-x2-2x+49=-(x+1)2+50.∵a=-1<0,∴当x=-1时,y的最大值为50.即当温度为-1 ℃时,这种植物每天高度增长量最大.(3)-6<x<4.24.解析 (1)证明:∵四边形ABCD 是矩形,∴∠A=∠ADC=90°,∴∠ADE+∠CDE=90°,∵DE⊥CF,∴∠CDE+∠DCF=90°,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE CF =AD DC .(2)当∠B+∠EGC=180°时,DE CF =AD DC 成立.证明如下:在AD 的延长线上取点M,使CF=CM,则∠CMF=∠CFM.∵AB∥CD,∴∠A=∠CDM.∵AD∥BC,∴∠CFM=∠FCB.∵∠B+∠EGC=180°,∴∠FCB+∠GEB=180°,又∠AED+∠GEB=180°,∴∠AED=∠FCB, ∴∠CMF=∠AED.∴△ADE∽△DCM,∴DE CM =AD DC ,即DE CF =AD DC .(3)DE CF =2524.25.解析 (1)依题意,得{y =-12x +32,y =x 2,解得{x 1=-32,y 1=94,{x 2=1,y 2=1.∴A (-32,94),B(1,1). (2)①A 1(-1,1),A 2(-3,9).②证明:过点P,B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为点G,H. 设P(a,-2a-2),A(m,m 2).∵PA=AB,∴△PAG≌△BAH.∴AG=AH,PG=BH.∴B(2m -a,2m 2+2a+2).将点B 坐标代入抛物线y=x 2,得2m 2-4am+a 2-2a-2=0.∵Δ=16a 2-8(a 2-2a-2)=8a 2+16a+16=8(a+1)2+8>0,∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的点P,抛物线上总能找到两个满足条件的点A.(3)设直线m:y=kx+b(k≠0)交y 轴于点D,设A(m,m 2),B(n,n 2).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H.∵△AOB 的外心在AB 上,∴∠AOB=90°.易得△AGO∽△OHB,∴AG OG =OH BH ,∴mn=-1.联立{y =kx +b ,y =x 2,得x 2-kx-b=0, 依题意,得m,n 是方程x 2-kx-b=0的两根.∴mn=-b,∴b=1,即D(0,1).由题可得C(0,-2). ∵∠BPC=∠OCP,∴DP=DC=3.设P(a,-2a-2),过点P 作PQ⊥y 轴于Q,在Rt△PDQ 中,PQ 2+DQ 2=PD 2,即a 2+(-2a-2-1)2=32,∴a 1=0(舍去),a 2=-125,∴P (-125,145).。

仙桃、潜江、天门、江汉油田中考数学试题答.doc

仙桃、潜江、天门、江汉油田中考数学试题答.doc

2013仙桃、潜江、天门、江汉油田中考数学试题答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

2013年湖北省各市中考分类解析专题3_方程(组)和不等式(组)

2013年湖北省各市中考分类解析专题3_方程(组)和不等式(组)

专题3:方程(组)和不等式(组)一、选择题1. (2013年湖北鄂州3分)已知m,n是关于x的一元二次方程2x3x a0-+=的两个解,若()()--=-,则a的值为【】m1n16A.﹣10 B.4 C.﹣4 D.102. (2013年湖北恩施3分)下列命题正确的是【】A.若a>b,b<c,则a>c B.若a>b,则ac>bcC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b3. (2013年湖北黄冈3分)已知一元二次方程2x6x c0-+=有一个根为2,则另一根为【】A.2B.3C.4D.84. (2013年湖北黄石3分)分式方程312x x 1=-的解为【 】 A.x=1 B. x=2 C. x=4 D. x=35. (2013年湖北黄石3分)四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有【 】A.4种B.11种C.6种D.9种6. (2013年湖北荆门3分)若关于x 的一元一次不等式组x 2m<0x m>2-⎧⎨+⎩ 有解,则m 的取值范围为【 】A .2m>3- B .2m 3≤ C .2m>3 D .2m 3≤-7. (2013年湖北荆州3分)解分式方程x213x 2x-=++时,去分母后可得到【 】 A .()()x 2x 23x 1+-+= B .()x 2x 22x +-=+C .()()()()x 2x 23x 2x 3x ++=++- D .()x 23x 3x-+=+8. (2013年湖北潜江、仙桃、天门、江汉油田3分)已知α,β是一元二次方程x 2﹣5x ﹣2=0的两个实数根,则α2+αβ+β2的值为【 】A .﹣1B .9C .23D .279. (2013年湖北十堰3分)已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是【 】A .4B .﹣4C .1D .﹣1 【答案】D 。

2013中考数学试题及答案(word完整版)(1)

2013中考数学试题及答案(word完整版)(1)

二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。

仙桃、潜江、天门、江汉油田中考数学试题答案中考.doc

仙桃、潜江、天门、江汉油田中考数学试题答案中考.doc

2013仙桃、潜江、天门、江汉油田中考数学试题答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

仙桃、潜江、天门、江汉油田中考数学试题答案.doc

2013仙桃、潜江、天门、江汉油田中考数学试题答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

2013年初中数学中考潜江、仙桃试题解析

湖北省潜江市、仙桃市、天门市、江汉油田2013年中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.2.(3分)(2013•天门)英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性3.(3分)(2013•天门)如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于()∠÷,6.(3分)(2013•天门)小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是().D7.(3分)(2013•天门)如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()l=可以得到.l==8.(3分)(2013•天门)已知α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α2+αβ+β2,,求出.9.(3分)(2013•天门)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN 的长为()=2BE=AB=cmBM=10.(3分)(2013•天门)小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是()二、填空题(本大题共5个小题,每小题3分,满分15分)将结果直接填写在答题卡对应的横线上.11.(3分)(2013•天门)分解因式:a2﹣4=(a+2)(a﹣2).12.(3分)(2013•天门)如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是答案不惟一,如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等(写出一个即可).13.(3分)(2013•天门)2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系,则羽毛球飞出的水平距离为5米.x x+14.(3分)(2013•天门)有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是.∴任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是:=故答案为:.15.(3分)(2013•天门)如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O 旋转.在旋转过程中,当AE=BF时,∠AOE的大小是15°或165°.(DOF=(BOF=DOF=(三、解答题(本大题共10个小题,满分75分)16.(5分)(2013•天门)计算:.17.(6分)(2013•天门)解不等式组.18.(6分)(2013•天门)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共3吨;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?19.(6分)(2013•天门)如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以证明.20.(6分)(2013•天门)某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1:1.8改为1:2.4(如图).如果改动后电梯的坡面长为13米,求改动后电梯水平宽度增加部分BC的长.21.(8分)(2013•天门)如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y轴于点C,且OC=6BC.(1)求双曲线和直线的解析式;(2)直接写出不等式的解集.上,,即﹣上,且﹣.)根据图象得:不等式22.(8分)(2013•天门)某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?套,则设第二批套尺购进时单价是x由题意得:(元)23.(8分)(2013•天门)如图,以AB为直径的半圆O交AC于点D,且点D为AC的中点,DE⊥BC于点E,AE交半圆O于点F,BF的延长线交DE于点G.(1)求证:DE为半圆O的切线;(2)若GE=1,BF=,求EF的长.利用,,EF==24.(10分)(2013•天门)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.(1)判断与操作:如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.(2)探究与计算:已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.(3)归纳与拓展:已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果).次操作前短边与长边之比为:,,;,;,的值为,,,,,,次操作前短边与长边之比为:,;,;,;,;,;,;,25.(12分)(2013•天门)如图,已知抛物线y=ax2+bx﹣4经过A(﹣8,0),B(2,0)两点,直线x=﹣4交x轴于点C,交抛物线于点D.(1)求该抛物线的解析式;(2)点P在抛物线上,点E在直线x=﹣4上,若以A,O,E,P为顶点的四边形是平行四边形,求点P的坐标;(3)若B,D,C三点到同一条直线的距离分别是d1,d2,d3,问是否存在直线l,使d1=d2=?若存在,请直接写出d3的值;若不存在,请说明理由.,×=,,即= CH×.HI=CI=CB=3==.,.的值为:,。

湖北省仙桃潜江中考数学试卷及答案(新课标word录入)

仙桃市 江汉潜江市 油田2006 年 中 考 试 卷数学1.答卷前,请你用钢笔(圆珠笔)将自己的姓名、准考证号填在密封线内. 2.答选择题时,请将答案直接填在选择题答题表中. 3.试卷共 8 页,满分 120 分,考试时间 120 分钟.总分表题号 一 二三总分17 18 19 20 21 22 23 24得分选择题答题表题号12345678答案得 分 评 卷 人 一、 精心选一选,相信自己的判断! (本大题共有 8 个小题,每小题 3 分,满分 24 分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入上面选择题答题表中相应题号下的方格内,填错或不填均为零分.1. 8 的绝对值是A. 8B. 8C. 81D.8x 3<02.不等式组 x1 2-1的解集在数轴上表示正确的是A.B.C.D.3. 吸烟有害健康.5 月 31 日是世界无烟日,今年世界无烟日来临之际,中国国家卫生部公布了我国吸烟的人数约为 3.5 亿,占世界吸烟人数的 1 .用科学记数法表示全世界吸烟人数 3约为A.105 109B.10.5 108C.1.05 109D.1.05 1010第1页 共13页4. 如图①是一个正三棱柱毛坯,将其截去一部分,得到一个工件如图②.对于这个工件.俯视 图、主视图依次是①A. c 、 a②B. c 、 dC. b 、 dD. b 、 a5. 小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有 10 颗珠子”.小刚却说:“只要把你的 1 给我,我就有 10 3颗”,那么小刚的弹珠颗数是A. 3B. 4C. 6D. 86. 在△ ABC中,已知 AB AC , DE 垂直平分 AC , A 50°,则 DCB 的度数是(第 6 题图)A. 15°B. 30°C. 50 °D. 65°7. 下面四个图形都是由相同的六个小正方形纸片组成,小正方形上分别贴有北京 2008 年奥运会吉祥物五个福娃(贝贝、晶晶、欢欢、迎迎、妮妮)的妮 迎欢卡通画和奥运五环标志,如果分别用“贝、晶、欢、迎、妮”五个字来表示五个福娃,那么折叠后能围成如图所示正方体的图形是(第 7 题图)晶贝欢 迎★妮 A★ (妮 迎 欢晶贝B★妮 (迎 欢 1) 晶 贝C妮迎★贝 晶 欢(jinD8. 你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中(如图),瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为 x ,瓶中水面的高度为 y ,下面能大致表示上面故事情节的图象是A. 得 分 评卷人B.C.D.二、 认真填一填,试试自己的身手!(本大题共 8 个小题,每小 题3 分,满分 24 分)将结果直接填写在每题的横线上9. 分解因式: 4x 2 16 =________________第2页 共13页10. 在对物体做功一定的情况下,力 F (牛)与此物体在力的方(牛)向上移动的距离S (米)成反比例函数关系,其图象如图所示,则当力达到20 牛时,此物体在力的方向上移动的距离是米.11. 如图,在⊙O 中,已知 OAC 20°, OA∥ CD ,则AOD .(米) (第 10 题图)12. 有四种边长都相等的正三角形、正方形、正五边形、正六边形瓷砖,如果任意用其中两种瓷砖组合密铺地面,在不切割的情况下,能镶嵌成平面 图案的概率是____.· 20°(13. 为纪念毛泽东主席横渡长江五十周年,“强渡长江”挑战赛的预演赛6 月 6 日在武汉拉开帷幕,一名游泳爱好者在“强渡长江”预演赛时,由于水流作用,实际游泳路线比理想路线偏离约10 °,预演处(第 11 题图)江面宽约 2500 米,那么这名游泳爱好者实际游了约米.( sin10 °≈ ,cos10 °≈ , tan10°≈ )14. “五一”国际劳动节,广场中央摆放着一个正六边形的鲜花图案,如图所示,已知第一层摆黄色花,第二层摆红色花,第三层是紫色花,第四层摆黄色花……由里向外依次按黄、红、紫的颜色摆放,那么第10 层应摆盆花.15. 高为 2 米的院墙正东方有一棵樟树,且与院墙相距 3 米,上午的太阳和煦灿烂,樟树影子爬过院墙,伸出院墙影子外 1 米,此时人的影子恰好是人身高的两倍,那么,请你计算这棵樟树的高约为___________米.16. 如图是一个由六个小正方体组合而成的几何体,每个小正方体的六个面上都分别写着1, 2 , 3 , 4 , 5 , 6 六个数字,那么图中所有看不见的面上的数字和是(第 14 题图)得 分 评卷人-125-6 35-6 32-43 -1 2(第 15 题图)(第 16 题图)三、用心做一做,显显你的能力!(本大题共 8 个小题,满分 72 分) 17. (本题满分 8 分,每小题 4 分,共 8 分)(1)解方程: 2x2 2x 1 0第3页 共13页(2)先化简后求值: x x21 4x2 2 x x 5 2, 其中 x 22得 分 评卷人 18.(本题满分 7 分)七年级数学课本中有一道习题:将一张长方形的纸对折,得到一条折痕,继续对折,对折时每次折痕与上次的折痕保持平行,连续对折 n 次后,可以得到多少条折痕?对这道难题,数学教师制定了如下四种传授方法:(1)教师引导学生画图,发现规律;(2)教师让学生自己做;(3)教师让学生对折纸,观察发现规律;(4)教师让学生对折纸,观察发现规律,然后让学生画图.数学教研组长将上述传授方法作为调查内容发到全年级 500名学生手中,要求每位学生选出自己最喜欢的一种,调查结果如扇形统计图所示:(1)请你将条形统计图补充完整(要看仔细哟!);(2)写出学生喜欢的传授方法的众数;(3)针对调查结果,请你发表不超过 30 字的简短评说.250 20028.8% (3)10.2%(2) 18.4%(1)1501441009242.6% (4)50 0 方法(1)方法(3)传授方法( )表示传授 方法序号(第 18 题图)得 分 评卷人第4页 共13页19.(本题满分 7 分)如图,在△ ABC中, D 为 BC 边的中点,过 D 点分别作 DE ∥ AB 交 AC 于点 E ,DF ∥ AC 交 AB 于点 F .(1)证明:△ BDF ≌△ DCE ;(2)如果给△ ABC添加一个条件,使四边形 AFDE成为菱形,则该条是;如果给△ ABC添加一个条件,使四边形 AFDE成为矩形,则该条件是.(均不再增添辅助线) 请选择一个结论进行证明.(第 19 题图)得 分 评卷人 20.(本题满分 8 分)如图,以 AB 为直径的半圆 O 上有一点 C ,过 A 点作半圆的切线交 BC 的延长线于点 D (1)求证:△ ADC∽△ BDA (2)过 O 点作 AC 的平行线 OF 分别交 BC 、⌒于 E 、F 两点,若 BC 2 3 ,EF 1,求 ⌒ 的长.(第 20 题图)得 分 评卷人 21.(本题满分 9 分)小明和哥哥得到了一张音乐演唱会的门票,两人都很想前往,可票只有一张.哥哥想了 一个办法:拿 8 张扑克牌,将数字为 3、4、7、9 的四张给小明,将数字为 2、5、6、8 的四 张留给自己,并按如下游戏方式进行确定:小明和哥哥从四张扑克牌中随机抽出一张,将抽 出得到的两张扑克牌数字相加,如果和为偶数,则小明获胜,该小明去;如果和为奇数,则 哥哥获胜,该哥哥去.(1)你认为该游戏规则是否公平?请画树状图或列表予以说明;第5页 共13页(2)如果该游戏规则不公平,请你改变一下游戏方案,使得游戏规则公平;如果该游 戏规则公平,请你制订一个不公平的游戏规则.得分 评卷人 22.(本题满分 10 分)如 图 , 在 平 面 直角 坐 标系 中 , 已 知 等 腰梯 形 ABCD , AB AD DC 2 , ABC 60 °,等腰梯形 ABCD称为基本图形,记为图①,现将图①沿 AD 翻折后平移 得到图②;然后将图②以 A1 为旋转中心,顺时针旋转 60 °,再向上平移 8 个单位,得到图 ③;以 y 轴为对称轴作图③的对称图形,得到等腰梯形 A3 B3C3 D3 ,即为图④.(1)画出图④的图形,写出点 A 、 A2、A3 的坐标;(2)将图②、图③、图④通过适当的平移,与图①拼到一起,组成一个新的等腰梯形A4 B4C4 D 4① 在拼成新等腰梯形的过程中,图④经过了怎样的平移?② 对于等腰梯形 A4 B4C4 D4 ,能否将其中的一个小等腰梯形经过一.次.图形变换,变成一个平行四边形,如果能,请说明变换过程;如果不能请说明理由.O③①②第6页 共13页得分 评卷人 23.(本题满分 11 分)建设新农村,农村大变样.向阳村建起了天然气供应站,气站根据实际情况,每天从零 点开始至凌晨 4 点,只打开进气阀,在以后的 16 小时(4∶00—20∶00),同时打开进气阀和 供气阀,20∶00—24∶00 只打开供气阀,已知气站每小时进气量和供气量是一定的,下图反映了某天储气量 y (米 3 )与 x (小时)之间的关系,如图所示:(1)求 0∶00—20∶00 之间气站每小时增加的储气量;(2)求 20∶00—24∶00 时, y 与 x 的函数关系式,并画出函数图象;(3)照此规律运行,从这天零点起三昼夜内,经过多少小时气站储气量达到最大?并求 出最大值.238 23030 0 4 8 12 16 20 24(第 23 题图)第7页 共13页得分 评卷人 24.(本题满分 12 分)在 Rt△ ABC中,C 90 °,A 60°,BC 6 ,等边三角形 DEF 从初始位置 (点 E 与点 B 重合,EF 落在 BC 上,如图 1 所示)在线段 BC 上沿 BC 方向以每秒 1 个单 位的速度平移, DE、DF 分别与 AB 相交于点 M、N .当点 F 运动到点 C 时,△ DEF 终 止运动,此时点 D 恰好落在 AB 上,设△ DEF 平移的时间为 x .(1)求△ DEF 的边长; (2)求 M 点、 N 点在 BA上的移动速度; (3)在△ DEF 开始运动的同时,如果点 P 以每秒 2 个单位的速度从 D 点出发沿 DE → EF 运动,最终运动到 F 点.若设△ PMN 的面积为 y ,求 y 与 x 的函数关系式,写 出它的定义域;并说明当 P 点在何处时,△ PMN 的面积最大?() (图 1)·(第 24 题图)(图 2)答卷完后,请回过头来检查一遍,可要仔细哟! 第8页 共13页仙桃市 江汉潜江市 油田2006 年 中 考 试 卷数学参考答案及评分说明说明:本试卷中的解答题一般只给出一种解法,对于其它解法,只要推理严谨、运算合理、结果正确,均给满分.对部分正确的,参照本评分说明酌情给分.一、选择题(每小题 3 分,共 24 分)BACDDACB二、填空题(每小题 3 分,共 24 分)9. 4(x 2)(x 2) 10. 1三、解答题(共 72 分)11. 40 °112.313. 14. 60 ,黄色 15. 416. 1317.解:(1)(4 分)原方程变为:(x 1)2 3 ………………………………………(2 分) 24∴ x1 1 23, x21 23 ……………………………………………(4分)(用求根公式法解答可参照给分)(2)(4 分)解:原式 x 1 2(x 2) x 2 ………………………………………(1 分)x2 4x5 1 ……………………………………………………………(3分) 2x将 x 2 2 代入得,原式 1 2 ………………(4 分)2 (2 2) 218.(7 分)解:(1)补全方法(2)、方法(4)及纵轴上的调查人数各得 1 分,如图所示.(2)传授方法(4)(2 分) (3)答案不惟一,只要点评具有正确的导向性,调查人数且符合以下要点的意思,均可给分(2 分)250213要点:①学生喜欢自主探究的学习方法;200②学生不喜欢以教师讲为主或让学生一味做的教150144学方法; ③教学方法要改革.10092 515019.(7 分)(1)证明: ∵ DE ∥ AB0 方法(1)方法(2)方法(3)方法(4)传授方法∴ EDC FBD………………(1 分)∵ DF ∥ AC∴ FDB ECD …………………………(2 分)又∵ BD DC ∴ BDF ≌ DCE ……………………………………(3 分)(2) AB AC或 BC AC 或 BA BC ; A 90°或 B 90 °或 C 90 °(填写其中一个即可,每空 1 分,共 2 分① 证明:∵ DE ∥ AB DF ∥ AC ∴四边形 AFDE为平行四边形 ……………(6 分)又∵ AB AC ∴ B C ∴ EDC C ∴ ED EC第9页 共13页由 BDF ≌ DCE 可得: FD EC ∴ ED FD∴四边形 AFDE为菱形(7 分) ② 证明:同理可证四边形 AFDE为平行四边形…………………………………………(6 分) ∵ A 90∴四边形 AFDE为矩形…………………………………………………(7 分) 20.(8 分)(1)证明:∵ AB 为直径∴ ACB 90°∴ ACD 90° ∵ AD为半圆 O 的切线∴ BAD 90 ° ∴ ACD BAD (2 分) 又∵ ADC BDA ∴ ADC ∽ BDA ………………………(3 分) (2)连接 OC , ∵ OE ∥ AC ∴ OE BC ∴ BE EC 3 ……(4 分)在 RtOBE 中,设 OB x ,则有: x 2 ( 3)2 (x 1)2∴ x OB 2 ……………………………………………………………(6 分) ∴ OE 1 ∴ OBE 30° ∴ AOC 60 ° ∴ ⌒的长 60 π 2= 2π………………………………………………(8 分)180 321(. 9 分)解:(1)该游戏规则不公平……………………………………………………(1 分)每次游戏可能出现的所有结果列表如下:哥哥的数字小明的 数字32 (2,5 (5,6 (6,8 (8,4(3) 2, (3) 5, (3) 6, (3) 8,7(4) 2, (4) 5, (4) 6, (4) 8,9(7) 2, (7) 5, (7) 6, (7) 8,根据表格,数字之和的情况共有9)16 种,其9)中和为偶数9)的有 6 种:9)(5,3)、(2,4)、(6,4)、(8,4)、(5,7)、(5,9) ∴小明获胜的概率………(5 分)∴哥哥获胜的概率为 10 5 16 8∴该游戏规则不公平(6 分)(2)将小明的奇数数字扑克牌与哥哥偶数数字扑克牌对换 一张 ………………(9 分)④③22.(10 分)解:(1) A、A2、A3 的坐 标分别为: A(5,-5+ 3) 、A2 (2,3) 、 A3 (2,3)(每个点的坐标答对得 1 分,画图 2 分,共 5 分)①②(2)①在拼成新等腰梯形的过程中,图①向左平移 3 个单位,向下平移 8 3 个单位(7 分)①其中的一个小等腰梯形可以经过一次变换,变成一个平行四边形.将等腰梯形 CC4 D4 D 以 C4 D4 的中第10页 共13页第11页 共13页(图2)B(图1) 点为旋转中心,顺时针旋转60°即可或将等腰梯形B B AA 44以44B A 的中点为旋转中心,逆时针旋转60°即可……………………………………………………………………(10分) 23.(11分)解: (1)由图象可知:在0∶00—4∶00之间气站储气量从30米3增加到230米3那么0∶00—4∶00之间气站每小时增加的储气量为50430230=-(米3) 同理可求4∶00—20∶00之间气站每小时增加的储气量为2116230238=-(米3)(2) 由(1)可知:气站每小时供气量为2992150=-(米3)∴24时储气量为404299238=⨯-(米3)∴点(20,238)和点(24,40)满足y 与x 的函数关系式,设所求函数关系式为:b kx y += 则有:⎩⎨⎧+=+=b x b x 244020238 解得:⎪⎩⎪⎨⎧=-=1228299b k∴y 与x 的函数关系式为:1228299+-=x y )2420(≤≤x 图象如图所示(3) 由(2)可知:24时气站储气量是40米3,∴每天储气量增加103040=-(米3)由图象可知每天20∶00时气站储气量达到最大值,所以三昼夜内,第三天的20∶00时,即经过了6820224=+⨯小时,气站的储气量达到最大, 最大值为258210238=⨯+(米3) 24.(12分) 解:(1)当F 点与C 点重合时,如图1所示:∵△DEF 为等边三角 ∴60=∠DFE ° ∵30=∠B ° ∴90=∠BDF ° ∴321==BC FD (2分)(2)过E 点作AB EG ⊥∵60=∠DEF °,30=∠B ° ∴30=∠BME ° ∴EM EB =在EBG Rt ∆中,30cos ⨯=x BG °x 23= ∴x BG BM 32==∴M 点在BA 上的移动速度为33=xx…(4分) 过F 点作11D F FH ⊥,在H FF Rt 1∆中,4 8 12 16 20 24 30 230 238(第23题图) 40第12页 共13页·(图3)30cos ⨯=x FH °x 23=∴N 点在BA 上的移动速度为2323=x x…………………………………(6分) (3)在DMN Rt ∆中,x DM -=3,30cos )3(⨯-=x MN °)3(23x -=(7分) 当P 点运动到M 点时,有32=+x x ∴1=x ……………………………(8分) ①当P 点在DM 之间运动时,过P 点作AB PP ⊥1,垂足为1P 在1PMP Rt ∆中,x x x PM 3323-=--= ∴)1(23)33(211x x PP -=-=∴y 与x 的函数关系式为:)34(83)1(23)3(23212+-=-⨯-⨯=x x x x y )10(≤≤x ………………………………………………………………………………………………(9分)②当P 点在ME 之间运动时,过P 点作AB PP ⊥2,垂足为2P在2PMP Rt ∆中,)1(3)23(-=--=x x x PM ∴)1(231-=x PP ∴y 与x 的函数关系式为:)34(83)1(23)3(23212+--=-⨯-⨯=x x x x y )231(≤x < ………………………………………………………………………………………………(10分)③当P 点在EF 之间运动时,过P 点作AB PP ⊥3,垂足为3P 在3PMP Rt ∆中,)1(3)32(-=-+=x x x PB ∴)1(233-=x PP ∴y 与x 的函数关系式为:)34(83)1(23)3(23212+--=-⨯-⨯=x x x x y )323(≤≤x ………………………………………………………………………………(11分)∴83)2(832+--=x y ∴当2=x 时,83=最大y 而当P 点在D 点时,349233321=⨯⨯⨯=y ∵83349>∴当P 点在D 点时,△PMN 的面积最大………………………(12分)第13页共13页。

2013湖北潜江仙桃中考数学试题及答案(Word解析版)

湖北省潜江市、仙桃市、天门市、江汉油田2013年中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分)2.(3分)(2013•天门)英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度3.(3分)(2013•天门)如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于()∠÷,6.(3分)(2013•天门)小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是()B7.(3分)(2013•天门)如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()l=可以得到.l==222,,求出﹣9.(3分)(2013•天门)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()=2cm=ACBE=AB=cmBM=10.(3分)(2013•天门)小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是()二、填空题(本大题共5个小题,每小题3分,满分15分)将结果直接填写在答题卡对应的横线上. 11.(3分)(2013•天门)分解因式:a2﹣4=(a+2)(a﹣2).12.(3分)(2013•天门)如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE 为菱形,还需添加的一个条件是答案不惟一,如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等(写出一个即可).13.(3分)(2013•天门)2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系,则羽毛球飞出的水平距离为5米.x x+14.(3分)(2013•天门)有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是.∴任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是:=故答案为:.15.(3分)(2013•天门)如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF时,∠AOE的大小是15°或165°.(DOF=BOF=DOF=(三、解答题(本大题共10个小题,满分75分)16.(5分)(2013•天门)计算:.17.(6分)(2013•天门)解不等式组.18.(6分)(2013•天门)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共3吨;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?19.(6分)(2013•天门)如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以证明.20.(6分)(2013•天门)某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1:1.8改为1:2.4(如图).如果改动后电梯的坡面长为13米,求改动后电梯水平宽度增加部分BC的长.21.(8分)(2013•天门)如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y轴于点C,且OC=6BC.(1)求双曲线和直线的解析式;(2)直接写出不等式的解集.上,,即﹣上,且﹣.)根据图象得:不等式22.(8分)(2013•天门)某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?套,则设第二批套尺购进时单价是x由题意得:(元)23.(8分)(2013•天门)如图,以AB为直径的半圆O交AC于点D,且点D为AC的中点,DE⊥BC于点E,AE交半圆O于点F,BF的延长线交DE于点G.(1)求证:DE为半圆O的切线;(2)若GE=1,BF=,求EF的长.,利用,,EF==24.(10分)(2013•天门)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.(1)判断与操作:如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.(2)探究与计算:已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.(3)归纳与拓展:已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果).次操作前短边与长边之比为:,,;,;,的值为,,,,,,次操作前短边与长边之比为:,;,;,;,;,;,;,25.(12分)(2013•天门)如图,已知抛物线y=ax2+bx﹣4经过A(﹣8,0),B(2,0)两点,直线x=﹣4交x轴于点C,交抛物线于点D.(1)求该抛物线的解析式;(2)点P在抛物线上,点E在直线x=﹣4上,若以A,O,E,P为顶点的四边形是平行四边形,求点P 的坐标;(3)若B,D,C三点到同一条直线的距离分别是d1,d2,d3,问是否存在直线l,使d1=d2=?若存在,请直接写出d3的值;若不存在,请说明理由.,×=,,即= CH×.HI=CI=CB=3==.,d3=的值为:,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档