磁聚焦法测量螺线管中心磁场

合集下载

螺线管磁场的测量实验报告

螺线管磁场的测量实验报告

螺线管磁场的测量实验报告一、引言螺线管磁场的测量实验是物理学中重要的实验之一,通过该实验可以了解螺线管磁场的基本性质,以及掌握测量磁场强度的方法。

本文将详细介绍螺线管磁场的测量实验过程和结果分析。

二、实验原理1. 螺线管磁场螺线管是由导体绕成的一种电器元件,具有产生磁场的特性。

当通过螺线管中通电时,会产生一个沿轴向方向的磁场,其大小与电流强度、导线圈数和导线半径等因素有关。

2. 磁场测量方法常用的测量磁场强度的方法包括霍尔效应法、法拉第电流法和平衡法等。

其中,平衡法是最为常见和简便的一种方法,它利用一个已知大小和方向的外加磁场来平衡待测磁场,并通过调节外加磁场大小和方向来确定待测磁场大小和方向。

三、实验步骤1. 实验器材准备:螺线管、直流电源、万用表、直角坐标仪等。

2. 搭建实验装置:将螺线管固定在直角坐标仪上,使其轴线与坐标轴垂直,并接通直流电源,调节电流大小为一定值。

3. 测量外加磁场大小和方向:将万用表调至磁场测量档位,用其测量外加磁场的大小和方向。

4. 调节外加磁场:通过调节外加磁场的大小和方向,使待测磁场与外加磁场平衡。

5. 测量待测磁场强度:通过记录外加磁场的大小和方向以及调节次数等信息,计算出待测磁场的强度。

四、实验结果分析1. 实验数据处理根据实验步骤所得到的数据,可以计算出待测磁场的强度。

在计算过程中需要注意单位换算和误差分析等问题。

2. 实验误差分析由于实验中存在各种因素的影响,如仪器精度、环境温度、电源稳定性等因素都会对实验结果产生一定影响。

因此,在进行数据处理时需要进行误差分析,并采取相应措施减小误差。

3. 结果讨论根据实验结果分析,可以得出螺线管磁场的强度与电流强度成正比,与导线圈数成正比,与导线半径的平方成反比。

此外,还可以讨论螺线管磁场的方向性和分布等问题。

五、实验结论通过本次实验,我们成功地测量了螺线管磁场的强度,并掌握了测量磁场强度的方法。

同时,还深入了解了螺线管磁场的基本性质和特点。

螺线管内磁场的测量实验报告(一)

螺线管内磁场的测量实验报告(一)

螺线管内磁场的测量实验报告(一)实验报告:螺线管内磁场的测量研究背景螺线管是一种产生磁场的装置,广泛应用于实验室和工业领域。

为了深入了解螺线管内部的磁场分布情况,需要进行测量实验。

实验目的本次实验的目的是测量螺线管内磁场的分布情况,掌握螺线管的基本特性,提高实验操作能力。

实验原理螺线管内部的磁场分布可以通过霍尔元件进行测量。

将霍尔元件放置在螺线管内部,测量不同位置的磁场强度并进行数据处理。

实验步骤1.准备实验装置,将螺线管和霍尔元件连接好。

2.打开电源,调整电流大小,使磁场强度达到预定值。

3.按照实验布置图,在不同位置上放置霍尔元件,记录磁场强度值和坐标位置。

4.对实验数据进行处理,得出螺线管内部磁场的分布情况。

实验结果通过实验,我们得到了螺线管内部磁场的分布情况数据,绘制出了磁场分布曲线图。

实验结果符合理论值,表明实验操作正确,数据可靠。

实验结论本次实验成功测量了螺线管内部的磁场分布情况,掌握了螺线管的基本特性,提高了实验操作能力。

实验注意事项1.实验时需保持安全,注意电源等设备的正确使用。

2.实验前需仔细阅读实验原理,了解实验操作流程。

3.实验过程中需要仔细记录实验数据,确保数据的准确性。

4.实验后要及时整理实验数据和材料,保持实验区的整洁。

实验难点及解决方法实验中主要难点在于对螺线管和霍尔元件的连接以及实验数据的处理。

连接不良会导致数据不准确,数据处理错误会导致结果偏差。

为了解决这些问题,我们在实验前进行设备调试,确保设备连接正常,且能够正常工作。

在实验过程中,我们仔细记录实验过程和数据,防止数据处理错误。

同时,我们也进行了多次实验,对实验结果进行检验和验证,保证数据的可靠性和准确性。

实验拓展为了进一步深入了解螺线管的特性和应用,可以进行以下拓展实验:1.对不同尺寸的螺线管进行磁场分布测量,比较不同尺寸螺线管的磁场分布情况。

2.探究螺线管的电流-磁场关系,测量不同电流下螺线管的磁场强度,绘制出电流-磁场关系曲线。

测量螺线管的磁场.

测量螺线管的磁场.

实验题目:测量螺线管的磁场实验目的:学习测量交变磁场的一种方法,加深理解磁场的一些特性及电磁感应定律.实验原理:1、有限长载流直螺线管的磁场长为2l,匝数为N的单层密绕的直螺线管产生的磁场.当导线中流过电流I时,由毕奥-萨伐尔定律可以计算出在轴线上某一点P的磁感应强度为(1式中为单位长度上的线圈匝数,R为螺线管半径,x为P点到螺线管中心处的距离.由曲线显示,在螺线管内部磁场近于均匀,只在端点附近磁感应强度才显著下降.当l>>R时,与场点的坐标x无关,而在螺线管两端为内部B值的一半.无限长密绕直螺线管是实验室中经常使用到的产生均匀磁场的理想装置.2、测线圈法测量磁场本实验采用探测线圈法测量直螺线管中产生的交变磁场.图6.3.2-2是实验装置的示意图.当螺线管A中通过一个低频的交流电流时,在螺线管内产生一个与电流成正比的交变磁场(2其中CP是比例常数.把探测圈A1放在螺线管线圈内部或附近,在A1中将产生感生电动势.探测线圈的尺寸比1较小,匝数比较少.若其截面积为S,匝数为N1,线圈平面的发线与磁场方向的夹角为θ,则穿过线圈的磁通链数为(3根据法拉第定律,线圈中的感生电动势为(4通常测量的是电压的有效值.设E(t有效值为V,B(t有效值为B,则有(5由此得出磁感应强度(6其中r1是探测线圈的半径,f是交变电源的频率.在测量过程中如始终保持A和A1在同一轴线上,此时,则螺线管中的磁感应强度为(7在实验装置中,在待测螺线管回路中串接毫安计用于测量螺线管导线中交变电流的有效值.在探测线圈A1两端连接数字毫安计用于测量A1种感生电动势的有效值.实验数据:2R=32.5mm 2L=30.00cm N=3893匝2r=21.00mm N1=335匝探测线圈的感生电动势与螺线管电流的V-I曲线I /mA1520253035404550 V /mV (f=1500Hz289382485581680779875970 V /mV (f=750Hz130175220270318363410458 V /mV (f=375Hz5078101124150173197220 x=0.0cmf /Hz I /mA I*f V /mV1500 12.5 18750 103750 25.0 18750 105375 50.0 18750 105x=L=15.0cm测量值螺线管上的磁场分布x /cm0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 V /mV10011004100210011000999990988986x /cm9.0 10.0 11.0 12.0 12.5 13.0 13.5 14.0 14.5 V /mV987980971948930902856783663x /cm15.0 15.5 16.0 16.5 17.0 17.5 18.0 f=1500HzV /mV5103582501751289880观察互感现象f /Hz x /cm I /mA V /mVA接信号发生器1000 7.5 45 549A1接信号发生器1000 7.5 45 510数据分析及处理:1探测线圈的感生电动势与螺线管中的磁感应强度B与电流I的关系:(2改装后的电路图(3做出实验数据的V-I曲线,得:容易发现,上面的图像可以高度拟合为一条过原点的直线,顾客认为U正比于I,即U=kI,且其斜率同样与频率f存在正比关系(k1500=19.55=2.08k750=4.05k375,k750=1.95k375,故可认为U正比于I与f的乘积,即(4观察第二组数据,其中V和f*I均可认为是不变量,这一结果更验证了上述结论.(5(1(7以B1表示有(1式算出的理论值,B7表示由(7式算出的实验值.(1 x=0,f=750Hz,I=25.0mA, V=220mV:B1=0.000405TB7=0.000402T(2 x=l5cm,f=750Hz, I=25.0mA, V=105mV:B1=0.000204TB7=0.000192T(3 结果分析:由上述结果可以看到理论值B1之与实验值B7的差别不大,且,符合理论的预言,但在x=15cm时B1与B7的差别稍大,这主要是因为实验中的各种误差,如探测线圈与螺线管的互感,探测线圈略为偏离了螺线管的中心轴等因素造成的.2 测量值螺线管上的磁场分布(3有实验数据做出V(x - x曲线:L该曲线的形状与螺线管中的磁场分布理论图形基本一致,且在公式中,V与B成正比关系,故可认为该曲线既是在纵轴拉伸过的B(x – x曲线.可以由图形看出:曲线在一定误差内可以认为是单调递减的,即距离螺线管中心越远,磁场越弱.在x<10时,曲线基本保持水平,即是说明在螺线管内部,靠近中心的部分磁场基本均匀.在10 时 , 曲线呈凸形下降 , 并在 x=L 处基本降至 x=0 处的 1 半 . 这说明在螺线管的边缘部分 , 磁场的空间分布不再均匀 .在x>L=15时,曲线呈凹形下降,并在无穷远处趋于零.即,在螺线管外部依然存在不均匀的磁场,且其强度随距离递减.(4,原因在于,且,该值在误差范围内符合理论预言.3 观察互感现象取x=7.5cm,f=1000Hz,I=45.0mA ,V=549mV,反接后V=510mV.两次测量的V值基本相同.由电磁感应定律,在互感现象中,电压比等于匝数比,电流比等于匝数的反比,从而两次测量的电压相等.思考题:用探测线圈法测量磁场时,为何产生磁场的导体中必须通过低频交流电而不能通过高频交流电?答:螺线管可以看成是一个电感,如果用高频的交流电,会使得感抗很大,影响电流及电压的测量.。

螺线管磁场的测定(精)

螺线管磁场的测定(精)


实 验 仪 器

FD-ICH-II新型螺线管磁场测定仪由集成霍耳传感器探测棒、 螺线管、直流稳压电源0—0.5A;直流稳压电源输出二档 (2.4V—2.6V和4.8V—5.2V);数字电压表(19.999V和1999.9mV 二档);双刀换向开关和单刀换向开关各一个,导线若干组成。 其仪器组成外型如图8-3所示。
fE
fB
I UH
b
UH (
RH ) IB K H IB d
图8-1 霍耳元件
(1)
其中RH是由半导体本身电子迁移率决定的物理常数,称为霍耳系数。B为磁感应 强度,I为流过霍耳元件的电流强度,KH称为霍耳元件灵敏度。 虽然从理论上讲霍耳元件在无磁场作用(即B=0)时,UH=0,但是实际情况用数字电 压表测时并不为零,这是由于半导体材料结晶不均匀及各电极不对称等引起附加 电势差,该电势差U0称为剩余电压。 随着科技的发展,新的集成化(IC)元件不断被研制成功。本实验采用SS95A 型集成霍耳传感器(结构示意图如图8-2所示)是一种高灵敏度集成霍耳传感器, 它由霍耳元件、放大器和薄膜电阻剩余电压补偿组成。测量时输出信号大,并且

实 验 内 容

4、测定霍耳传感器的灵敏度K (1)改变输入螺线管的直流电流Im,将传感器处于螺线管的中央位置(即 X=17.0cm),测量U—Im关系,记录10组数据,Im范围在0—500mA,可 每隔50mA测一次。 U ' ' K (2)用作图法求出U—Im,直线的斜率 I 。
m
(3)对于无限长直螺线管磁场可利用公式:B= 0 nIm (真空磁导率,n为
实验八
螺线管磁场的测定
地球是一个大磁体,不过磁场较弱,大小约在 4×10-5 8×10-5T 特斯拉之间,一般条形磁铁两端磁场约为 0.8T特左 右。因此,磁场测定要选用灵敏度高的元件或设备。依据霍 耳效应原理制成的集成霍耳传感器就是一个灵敏度高,操作 简便的磁场测量元件。 本实验通过用通电长直螺线管中心点磁感应强度理论计算 值作为标准值来校准集成霍耳传感器的灵敏度,熟悉集成霍 耳传感器的特性和应用。用该集成霍耳传感器测量通电螺线 管内的磁感应强度与位置之间的关系,来学习并掌握用集成 霍耳元件测量磁感应强度的技术、方法。

螺线管内磁场的测量实验报告

螺线管内磁场的测量实验报告

螺线管内磁场的测量实验报告引言螺线管是一种常见的电磁设备,广泛应用于电磁学、物理学和工程学等多个领域。

测量螺线管内部磁场的分布和特性对于优化螺线管设计和应用具有重要意义。

本实验旨在通过测量螺线管内部磁场分布的实验,探究螺线管的特性和应用。

实验目的1.测量螺线管内磁场的分布,探究螺线管的磁场特性。

2.了解螺线管内磁场与电流和线圈结构的关系。

3.探索螺线管的应用前景和优化设计方向。

实验步骤实验器材准备1.螺线管实验装置2.磁场测量仪器(例如磁力计)3.直流电源实验操作1.搭建螺线管实验装置,确保装置稳固可靠。

2.连接磁场测量仪器到螺线管上,调节仪器到合适的量程。

3.设置直流电源的电流大小,并接入螺线管。

4.在不同电流下,测量螺线管内磁场的分布情况,记录数据。

实验结果与分析螺线管内部磁场的分布情况通过实验测量,得到了螺线管在不同电流下的内部磁场分布情况。

以下是一组典型的实验结果数据:•电流1A时,螺线管内部磁场分布如下:1.距离螺线管中心10cm处的磁场强度为0.5T;2.距离螺线管中心20cm处的磁场强度为0.3T;3.距离螺线管中心30cm处的磁场强度为0.2T。

•电流2A时,螺线管内部磁场分布如下:1.距离螺线管中心10cm处的磁场强度为1.0T;2.距离螺线管中心20cm处的磁场强度为0.6T;3.距离螺线管中心30cm处的磁场强度为0.4T。

螺线管内部磁场与电流的关系从实验结果可以看出,随着电流的增加,螺线管内部磁场的强度也随之增加。

这是因为电流通过螺线管产生了磁场,而磁场的强度与电流成正比。

螺线管内部磁场与线圈结构的关系通过多次实验可以观察到,螺线管的线圈结构对内部磁场分布有着重要影响。

线圈的半径、匝数以及线圈间距等参数会直接影响螺线管内部磁场的分布情况。

进一步的实验可以探究各个参数对磁场分布的具体影响。

螺线管的应用前景和优化设计方向螺线管由于其产生强磁场的特性,在许多领域具有广泛的应用前景。

螺线管磁场的测定(精)

螺线管磁场的测定(精)

fE
fB
I UH
b
UH (
RH ) IB K H IB d
图8-1 霍耳元件
(1)
其中RH是由半导体本身电子迁移率决定的物理常数,称为霍耳系数。B为磁感应 强度,I为流过霍耳元件的电流强度,KH称为霍耳元件灵敏度。 虽然从理论上讲霍耳元件在无磁场作用(即B=0)时,UH=0,但是实际情况用数字电 压表测时并不为零,这是由于半导体材料结晶不均匀及各电极不对称等引起附加 电势差,该电势差U0称为剩余电压。 随着科技的发展,新的集成化(IC)元件不断被研制成功。本实验采用SS95A 型集成霍耳传感器(结构示意图如图8-2所示)是一种高灵敏度集成霍耳传感器, 它由霍耳元件、放大器和薄膜电阻剩余电压补偿组成。测量时输出信号大,并且
'
2

注 意 事 项

1、测量U ˊ~ I 2、测量U ˊ~ I
时,传感器位于螺线管中央(即均匀磁场中)。 时,螺线管通电电流Im应保持不变。
3、常检查Im=0时,传感器输出电压是否为2.500V。 4、用mV档读U ˊ值。当Im=0时,mV指示应该为0。
5 、实验完毕后,请逆时针地旋转仪器上的三个调节旋钮,使

实 验 目 的

1、体验霍耳传感器输出电势差与螺线管内磁 感应强度成正比的关系。 2、测量集成线性霍耳传感器的灵敏度。 3、测量螺线管内的磁感应强度,测出磁场与 位置之间的关系,求得螺线管均匀磁场范 围及边缘的磁感应强度。

实 验 原 理

B a V d
-
霍耳元件的作用(如右图8-1所示):若电流 I流过厚度为d的半导体薄片,且磁场B垂直于该半 导体,是电子流方向由洛伦兹力作用而发生改变, 在薄片两个横向面a、b之间应产生电势差,这种 现象称为霍耳效应。在与电流I、磁场B垂直方向 上产生的电势差称为霍耳电势差,通常用UH表示。 霍耳效应的数学表达式为:

磁聚焦法测量螺线管中心磁场

磁聚焦法测量螺线管中心磁场


要 : 据 带 电粒 子在磁 场 中的 运动特 性 , 根 分析 了电子柬 的磁 聚焦 原理 , 导 ቤተ መጻሕፍቲ ባይዱ螺 线 管 中心磁 场 推
的计 算公 式 , 测量 了长 直螺 线管 中心磁场 的磁 感应 强度 。该方 法测 量原理 简单 、 果可靠 。 结
关键 词 : 聚 焦法 ; 磁 螺线 管 ; 感应 强度 磁 中图分 类号 :4 1 0 4 文献 标识码 : A 文章 编 号 :0 46 2 2 1 ) 30 5 —3 10 - X( 0 2 0 -0 80 0

收 稿 日期 :0 2—0 21 3—0 6
基金项 目: 陕西省教育厅 2 1 年科学研究项 目计划 (lK 95 ; 01 1J 01 )延安大学大学物理实验精 品课程资助项 目( D P C 1 2 ) Y JK 1 — 1 作者简 介: 竹琴 ( 9 8 ) 女 , 刘 16 一 , 陕西佳县人 , 延安大学副教授。
图 2 磁 聚 焦 示 意 图
Y Y 为垂 直 偏 转 板 , 垂 直 方 向产 生 一 偏 转 — 在 电场 。 X x为水平偏转板 , — 在水平方向产生—偏转电场 。 K 选 择 开关 , :电流换 向开 关 。 , K
这就 是磁 聚焦 原 理 , 据这 一原 理 , 实现长 直 根 来 螺 线 管 内 中心 磁场 值 的测定 是很 方便 的。
阳极 的 电压 为 U, 则有
1啪

均匀 磁场 区 , 由于 电子受 到洛 伦兹 力 的作用 , 则 电子 束 有 可能在 屏 上会 聚 而形成 一亮 点 。聚 焦效果 的好

带 电粒 子在 磁场 中 的螺 旋线 运 动 被 广 泛应 用 于 “ 聚焦 ” 术 。 图 2为 磁 聚 焦 示 意 图 , 电子 枪 射 磁 技 从 出的 电子 以各 种 不 同 的 初 速 进 入 均 匀 恒 定 磁 场

测螺线管磁场实验报告研究报告

测螺线管磁场实验报告研究报告

测螺线管磁场实验报告研究报告实验报告研究报告一、实验目的本实验旨在通过使用螺线管产生磁场,研究磁场的基本性质,包括磁场的方向、强度和分布规律。

通过对实验数据的分析,加深对磁场概念的理解,培养实验操作技能和数据处理能力。

二、实验原理螺线管是由导线绕制而成的线圈,当导线中通以电流时,线圈会产生磁场。

根据安培环路定律,磁场强度B沿任意闭合回路的线积分等于穿过该回路所包围的电流的代数和与真空磁导率之积。

即:∮B·dl=μ₀∑I其中,B表示磁场强度,dl表示微小线段,μ₀表示真空磁导率,I表示穿过回路的电流。

三、实验步骤1.准备实验器材:螺线管、电源、电流表、电压表、导线、小磁针等。

2.将螺线管固定在支架上,连接电源和电流表,使电流从螺线管的一端流入,另一端流出。

3.调节电源电压,使电流表的读数逐渐增大,观察螺线管周围的小磁针偏转情况。

4.记录不同电流下小磁针的偏转角度和位置,绘制磁场分布图。

5.改变螺线管的匝数和电流方向,重复上述步骤,观察磁场的变化情况。

6.分析实验数据,得出磁场的方向、强度和分布规律。

四、实验结果与分析1.磁场方向:通过观察小磁针的偏转情况,可以得知磁场的方向与电流的方向有关。

当电流方向改变时,磁场方向也随之改变。

在实验中,我们发现小磁针在螺线管周围呈现出规律的排列,说明磁场方向具有一定的规律性。

2.磁场强度:通过记录不同电流下小磁针的偏转角度和位置,可以得到磁场强度与电流之间的关系。

实验数据表明,随着电流的增大,小磁针的偏转角度也逐渐增大,说明磁场强度随电流的增大而增强。

此外,我们还发现磁场强度与螺线管的匝数有关,匝数越多,磁场强度越大。

3.磁场分布规律:根据实验数据绘制的磁场分布图显示,磁场强度在螺线管内部较强,而在外部逐渐减弱。

这说明磁场主要集中在螺线管内部,具有一定的局域性。

此外,我们还发现磁场分布在垂直于螺线管轴线的平面上呈现出一定的对称性。

五、实验结论通过本次实验,我们得出以下结论:1.螺线管通电时会产生磁场,磁场方向与电流方向有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y—Y为垂直偏转板,在垂直方向产生一偏转电场。
X—X为水平偏转板,在水平方向产生一偏转电场。
K1选择开关,K2电流换向开关。
图3 阴极射线示波管结构及接线图
实验时,将阴极射线示波管安装在长直螺线管内,当给示波管灯丝通电加热时,就会有电子束产生,此时通过第二阳极A2的电子速度为∥,若第二阳极的电压为U,则有2012(031)003
【总页数】4页(P58-60,63)
【关键词】磁聚焦法;螺线管;磁感应强度
【作 者】刘竹琴;曹冬梅
【作者单位】延安大学物理与电子信息学院,陕西延安716000;延安大学物理与电子信息学院,陕西延安716000
【正文语种】中 文
图4 实验装置
2.2 线路连接
将示波管管座引出的标有K、G、A1、A2的引线与“电子荷质比测定电源”面板上的接线柱对应相接。F、F插入面板插孔内,示波管标有 X、X、Y、Y的引出线与开关K1相接,A2接在面板上的“⊥”处。再按图另用导线将X、X与“⊥”接通。K1下面的两个接线柱与“测定仪电源”的“测试”接线柱连接。螺线管的两根引出线接到开关K2旁边的接线柱上,再将直流稳压电源(0-30 V)、电流表和K2中间的两个接线柱连接在一起。
【中图分类】O441
螺线管中磁场的测量是电磁学实验中一个传统的实验项目[1],各高等院校普遍开设这一实验项目,一般采用“冲击电流计法”[2]和“霍耳效应法”[3,4],为了拓宽螺线管中磁场的测量方法,本文采用磁聚焦法,用长直螺线管和阴极射线示波管来实现电子束的磁聚焦,测量了长直螺线管中心磁场的磁感应强度,下面介绍这一测量原理和测量方法。
[4]刘竹琴,杨能勋.大学物理实验教程[M].北京:北京理工大学出版社,2012:113-115.
图2 磁聚焦示意图
这就是磁聚焦原理,根据这一原理,来实现长直螺线管内中心磁场B值的测定是很方便的。
1.2 阴极射线示波管
阴极射线示波管的结构如图3所示:
F为阴极,由灯丝加热后可发射电子。
G为控制栅极,其电位相对于阴极为负,调整电位数值,可控制电子束的强弱。
A1为第一阳极,可对电子束聚焦。
A2为第二阳极,可产生一加速电场,使电子加速运动。
可以看出实验相对误差是比较小的,结果是可靠的。
本文利用磁聚焦法测量了螺线管中心磁场,测量原理简单,方法可行。从相对误差来看,此方法测量螺线管中心磁场相对误差较小,是一种测量螺线管中心磁场的简便方法,具有推广价值。磁聚焦法测量螺线管中心磁场,拓宽了螺线管中心磁场的测量方法,实现了磁聚焦原理在电磁学领域中的一个重要应用,从而激发和培养了学生的创新能力和创新意识。
参考文献:
【相关文献】
[1]杨述武等.普通物理实验(电磁学部分)(第四版)[M].北京:高等教育出版社,2007:114-119.
[2]王泽辉,达瑞.用冲击电流计测螺线管内磁场实验方法的改进[J].呼伦贝尔学院学报,2004,12(4):53 -54.
[3]郭俊杰,刘庆炜,陆申龙.霍尔元件测螺线管磁场分布实验的改进[J].物理实验,2000,20(3):46-48.
磁聚焦法测量螺线管中心磁场
刘竹琴;曹冬梅
【摘 要】根据带电粒子在磁场中的运动特性,分析了电子束的磁聚焦原理,推导了螺线管中心磁场的计算公式,测量了长直螺线管中心磁场的磁感应强度。该方法测量原理简单、结果可靠。%According to the characteristics of the movement of charged particles in a magnetic field,the electron beam magnetic focusing principle is derived the formula of the magnetic field of the solenoid center,measuring the strength of the magnetic induction in the center of long straight solenoid.The measuring principle is simple,reliable results.
若在⊥和∥皆不为零的情况下(0<θ<π),电子的运动自然是上述两个运动的合成,其轨迹是一条螺旋线[4],如图1 所示:
图1 电子的螺旋线运动
螺旋线的半径为
带电粒子在磁场中的螺旋线运动被广泛应用于“磁聚焦”技术。图2为磁聚焦示意图,从电子枪射出的电子以各种不同的初速进入均匀恒定磁场¯B中。电子枪的结构保证:(1)各电子初速的大小相同(由枪内加速阳极与阴极间的电压决定);(2)与¯B的夹角足够小,以至于∥=υcosθ≈υ,⊥=υsinθ≈υθ。每个电子都做螺旋线运动。对于同一点(如A点)出发的电子束,各电子的⊥不同,由(3)式可知螺旋线的半径R也不同。但由于磁场¯B恒定,所以每个电子运动一周的时间T都相同,∥也一样,由(4)式可知它们的螺距h就一样,于是电子束在各自转一圈后又重新会聚于一点(如B点)。
(3)将选择开关K1扳到另一边,Y偏转板接通交流电源。由于电子获得了垂直于轴向的速度而发生偏转,荧光屏上出现一条直线。
(4)将电流换向开关K2扳向一边,接通直流稳压电源(励磁电源),从零开始逐渐增加螺线管中电流强度I,使荧光屏上的直线光迹一面旋转一面缩短,当磁场增强到某一程度时,又聚焦成一细点。第一次聚焦时,螺旋轨道的螺距恰好等于Y偏转板中点至荧光屏的距离。记下聚焦时电流表的读数。
2.3 实验操作步骤
(1)将螺线管方位调整到与当地的地磁倾角相同(按60°)。使管内轴向磁场和地球磁场的方向一致,以消除地球磁场对实验产生的影响。按图3接线,细心检查无误后,开始操作。
(2)将选择开关K1扳到接“地”一边,电流换向开关K2断开。接通“测定仪电源”的开关,加速高压U调至600 V,适当调节辉度和聚焦旋钮,使荧光屏上出现一明亮的细点。
此电子的轴向速度为
当电子流通过垂直偏转板Y—Y时,由于在偏转板上加有一交变电压,所以,电子在经过垂直偏转板后,不但有径向速度,也有垂直于轴向的速度。因此,这样的电子流射到荧光屏上时,在屏上会形成一条直线。但若电子流在离开垂直偏转后,又经过一均匀磁场区,则由于电子受到洛伦兹力的作用,电子束有可能在屏上会聚而形成一亮点。聚焦效果的好坏与加速电压及励磁电流至关重要。
(5)调节高压为 600 V、700 V、800 V、900 V、1000 V,分别记录每次聚焦时螺线管中的电流值。
(6)将电流换向开关K2扳到另一边,重复上述操作,同时记录聚焦时电流表的读数。
(7)断开电流开关K2及开关K1,关断励磁电源及测定仪电源,使实验设备处于断电状态下。
(8)记录螺线管的N、L、D及螺距h的数值。
(3)将上面数据分别代入(6)式可得螺线管中心磁场,计算结果见表1。根据有限长螺线管中心位置的磁感应强度的理论公式[2]
计算螺线管中心磁场,将实验仪器参数分别代入(7)式,计算结果见表2。
表2 实验结果计算及比较表V 600 700 800 900 1000电流 I/A 1.270 1.37 1.465 1.555 1.640测量值 B/×10 -3T 3.579 3.865 4.132 4.383 4.电压U/07 0620 理论值 B'/×10-3T 3.578 3.859 4.127 4.380 4.620相对误差% 0.003 0.16 0.12 0.
3 实验数据的记录与处理
(1)实验仪器参数的记录
线圈匝数N=820匝,螺线管长度L=0.354 m,螺线管直径D=0.092 m,螺旋线螺距h=0.145 m。
(2)电压、电流值的记录,见表1。
表1 实验数据记录表V 600 700 800 900 1000正向电流 I1/A 1.21 1.32 1.44 1.51 1.电压U/62062 反向电流 I2/A 1.33 1.42 1.51 1.60 1.66电流平均值 I/A 1.270 1.370 1.465 1.555 1.640磁场 B ×10-3/T 3.579 3.865 4.132 4.383 4.
1 实验原理
1.1 电子束的磁聚焦
当电子的运动方向与磁场方向有一定夹角θ(0<θ<π)时,电子既有垂直于磁场的速度分量⊥,又有平行于磁场方向的分量∥它们满足:
若∥=0,即电子运动方向同磁场方向垂直(θ=),此时电子在磁场中做匀速圆周运动。
若⊥=0,即电子运动方向同磁场方向平行(θ=0或π),此时电子在磁场中做匀速直线运动。
将(5)式代入(4)式可得
式中e为电子的电荷量,m为电子的质量,电子的荷质比=1.76 ×1011C/kg,U 是加速电压,上式就是利用磁聚焦法测量螺线管中心磁感应强度B的实验公式。
2 实验方法
2.1 实验装置
实验装置如图4所示,有长直螺线管、阴极射线示波管、电子荷质比测定仪电源、直流稳压电源、直流电流表(0-3A)、选择开关、换向开关等。
相关文档
最新文档