工程数学测试题及答案
工程数学练习题及答案

工程数学练习题及答案一、单项选择题(每题2分,共10分)1. 极限的概念中,函数在某点的极限值是该点的()。
A. 函数值B. 函数值的极限C. 函数值的近似值D. 函数值的导数2. 以下哪个函数是偶函数?()A. f(x) = x^2 + 1B. f(x) = x^3 - xC. f(x) = x^2 - x + 1D. f(x) = x^3 + x^23. 积分中的基本定理指出,函数的定积分等于()。
A. 被积函数的原函数在积分区间的差值B. 被积函数的原函数在积分区间的和值C. 被积函数的导数在积分区间的差值D. 被积函数的导数在积分区间的和值4. 以下哪个级数是发散的?()A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1/2 + 1/4 + 1/6 + 1/8 + ...D. 1 + 1/3 + 1/5 + 1/7 + ...5. 矩阵A的行列式为0,这意味着矩阵A()。
A. 可逆B. 不可逆C. 行向量线性相关D. 列向量线性无关二、填空题(每题3分,共15分)6. 函数f(x) = 2x^3 - 3x^2 + 1的导数为_________。
7. 函数f(x) = e^x的不定积分为_________。
8. 函数f(x) = sin(x)的原函数为_________。
9. 函数f(x) = x^2在区间[0, 1]上的定积分为_________。
10. 矩阵A = [1, 2; 3, 4]的行列式为_________。
三、解答题(每题10分,共20分)11. 计算极限lim(x->0) [sin(x)/x],并说明其意义。
12. 证明函数f(x) = x^2在区间[-1, 1]上是凹函数,并求其最小值。
四、证明题(每题15分,共30分)13. 证明:对于任意实数x和y,有|f(x) - f(y)| ≤ M|x - y|,其中M为常数,f(x)为连续函数。
大学工程数学考试题及答案

大学工程数学考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是微积分的基本定理?A. 积分中值定理B. 洛必达法则C. 牛顿-莱布尼茨公式D. 泰勒级数展开答案:C2. 在概率论中,随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 2B. 3C. 4D. 5答案:A3. 线性代数中,一个矩阵A可逆的充分必要条件是什么?A. 行列式非零B. 秩等于A的阶数C. A的所有特征值非零D. 所有选项都是答案:D4. 在复数域中,下列哪个表达式表示复数的共轭?A. z + z*B. z - z*C. |z|^2D. z * z*答案:B5. 傅里叶级数在工程数学中的应用之一是?A. 信号处理B. 量子力学C. 统计物理D. 所有选项都是答案:A二、填空题(每题3分,共15分)6. 函数f(x) = sin(x)的一阶导数是_________。
答案:cos(x)7. 矩阵的特征值是_________。
答案:λ8. 拉普拉斯变换的逆变换通常使用_________。
答案:拉普拉斯逆变换9. 随机变量X和Y相互独立,且P(X=x) = 2x,P(Y=y) = 3y,则P(X+Y=4)等于_________。
答案:1/410. 曲线y = x^2在点(1,1)处的切线斜率是_________。
答案:2三、解答题(共75分)11. (15分)证明函数f(x) = e^x在实数域上是单调递增的。
答案:由于f'(x) = e^x > 0对于所有实数x,因此f(x)在实数域上是单调递增的。
12. (20分)解线性方程组:\[\begin{align*}x + 2y &= 5 \\3x - y &= 4\end{align*}\]答案:使用高斯消元法或克拉默法则,解得 \( x = 2, y = 1.5 \)。
13. (20分)计算下列定积分:\[\int_{0}^{1} x^2 dx\]答案:使用基本积分公式,得到 \( \frac{1}{3}x^3 \) 在0到1的积分为 \( \frac{1}{3} \)。
工程数学试卷及标准答案

1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。
A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。
A. X 和Y 独立。
B. X 和Y 不独立。
C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。
A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。
B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。
7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。
8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。
9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。
工程数学试题A及答案

工程数学试题A及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^3 - 3x^2 + 2 \)的导数是:A. \( 3x^2 - 6x \)B. \( 3x^2 - 6x + 2 \)C. \( x^3 - 3x^2 + 2 \)D. \( 3x^2 - 6x + 3 \)答案:A2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:A. 0B. 1C. \( \pi \)D. \( \infty \)答案:B3. 函数\( y = e^x \)的不定积分是:A. \( e^x + C \)B. \( \ln x + C \)C. \( x e^x + C \)D. \( \frac{1}{x} + C \)答案:A4. 微分方程\( y' + 2y = 0 \)的通解是:A. \( y = Ce^{-2x} \)B. \( y = Ce^{2x} \)C. \( y = C\sin(2x) \)D. \( y = C\cos(2x) \)答案:A5. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是:A. 5B. -2C. 2D. -5答案:B6. 函数\( f(x) = x^2 \)在区间\( [1, 2] \)上的定积分是:A. 1B. 2C. 3D. 4答案:C7. 函数\( y = \ln x \)的二阶导数是:A. \( \frac{1}{x^2} \)B. \( \frac{1}{x} \)C. \( x \)D. \( x^2 \)答案:A8. 矩阵\( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)的逆矩阵是:A. \( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \)B. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)D. \( \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \)答案:C9. 函数\( y = x^3 \)的不定积分是:A. \( \frac{x^4}{4} + C \)B. \( \frac{x^3}{3} + C \)C. \( \frac{x^2}{2} + C \)D. \( \frac{x}{3} + C \)答案:B10. 函数\( y = \sin x \)的不定积分是:A. \( \cos x + C \)B. \( \sin x + C \)C. \( -\cos x + C \)D. \( -\sin x + C \)答案:A二、填空题(每题4分,共20分)1. 函数\( f(x) = x^2 - 4x + 4 \)的极小值点是 \( x =\_\_\_\_\_ \)。
工程数学本科试题及答案

工程数学本科试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是微分方程 \( y'' - y' - 2y = e^{2x} \) 的一个解?A. \( y = e^{-x} \)B. \( y = e^{2x} \)C. \( y = e^{x} \)D. \( y = e^{3x} \)2. 在复数域中,下列哪个表达式是正确的?A. \( |z|^2 = z \cdot \bar{z} \)B. \( |z|^2 = z + \bar{z} \)C. \( |z|^2 = z - \bar{z} \)D. \( |z|^2 = z / \bar{z} \)3. 对于向量 \( \mathbf{A} = (2, -3, 4) \) 和 \( \mathbf{B} = (1, 2, -1) \),它们的点积 \( \mathbf{A} \cdot \mathbf{B} \) 等于:A. 1B. 2C. 3D. 54. 在 \( z = x^2 + y^2 \) 中,如果 \( \frac{\partialz}{\partial x} = 2x \),那么 \( \frac{\partial z}{\partial y} \) 等于:A. \( 2y \)B. \( -2y \)C. \( 2x \)D. \( -2x \)5. 一个函数 \( f(x) \) 在点 \( x = a \) 处连续的充分必要条件是:A. \( \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \)B. \( \lim_{x \to a} f(x) = f(a) \)C. \( f(a) \) 存在D. \( f(x) \) 在 \( x = a \) 处可导6. 微分方程 \( y' = y^2 \) 的解的形式是:A. \( y = Ce^x \)B. \( y = \frac{1}{Ce^x + 1} \)C. \( y = Ce^{-x} \)D. \( y = \frac{1}{Cx + 1} \)7. 傅里叶级数中的 \( a_n \) 系数是由以下哪个积分计算得出的?A. \( a_n = \frac{2}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)B. \( a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)C. \( a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)D. \( a_n = \frac{1}{L} \int_{0}^{L} f(x) \cos(\frac{n\pi x}{L}) dx \)8. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( |A| \) 等于:A. 7B. 2C. 1D. -29. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的零点个数是:A. 1B. 2C. 3D. 410. 拉普拉斯变换 \( \mathcal{L} \{ f(t) \} \) 的定义是:A. \( \mathcal{L} \{ f(t) \} = \int_{0}^{\infty} e^{-st} f(t) dt \)B. \( \mathcal{L} \{ f(t) \} = \int_{-\infty}^{\infty} e^{-st} f(t) dt \)C. \( \mathcal。
工程数学复习试题及答案

工程数学复习试题及答案一、单项选择题(每题2分,共10分)1. 以下哪个选项是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 所有选项答案:D2. 微分方程的一般形式是:A. \( \frac{dy}{dx} = f(x) \)B. \( \frac{dy}{dx} = f(x, y) \)C. \( \frac{d^2y}{dx^2} = f(x) \)D. \( \frac{d^2y}{dx^2} = f(x, y) \)答案:B3. 在概率论中,随机变量的期望值表示的是:A. 变量的均值B. 变量的方差C. 变量的中位数D. 变量的众数答案:A4. 以下哪个函数是周期函数?A. \( y = e^x \)B. \( y = \sin(x) \)C. \( y = x^2 \)D. \( y = \log(x) \)答案:B5. 泰勒级数展开是用于:A. 计算函数的近似值B. 计算函数的积分C. 计算函数的导数D. 计算函数的极值答案:A二、填空题(每题2分,共10分)1. 如果 \( A \) 是一个 \( 3 \times 3 \) 的矩阵,那么 \( A \)的行列式可以表示为 \( \det(A) = a_{11}(a_{22}a_{33} -a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) +a_{13}(a_{21}a_{32} - a_{22}a_{31}) \)。
2. 函数 \( y = \cos(x) \) 的导数是 \( \frac{dy}{dx} = -\sin(x) \)。
3. 标准正态分布的概率密度函数是 \( f(x) =\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \)。
4. 拉普拉斯变换是用于求解线性微分方程的一种方法,其定义为\( F(s) = \mathcal{L}\{f(t)\} = \int_0^{\infty} e^{-st}f(t)dt \)。
工程数学试题及答案

工程数学试题及答案《工程数学试题及答案》1. 数列与级数问题:找出以下等差数列的通项公式,并计算前n项和。
1) 3, 6, 9, 12, ...2) 1, 5, 9, 13, ...答案:1) 通项公式为a_n = 3 + 3(n-1),前n项和为S_n = n(6 + 3(n-1))/2。
2) 通项公式为a_n = 1 + 4(n-1),前n项和为S_n = n(2 + 4(n-1))/2。
2. 三角函数问题:求解以下方程在给定区间内的所有解。
1) sin(x) = 0.5,其中0 ≤ x ≤ 2π。
2) cos(2x) = 0,其中0 ≤ x ≤ π。
答案:1) 解为x = π/6, 5π/6。
根据周期性,可加2πn得到无穷解。
2) 解为x = π/4, 3π/4。
根据周期性,可加πn得到无穷解。
3. 极限与连续性问题:计算以下极限。
1) lim(x→0) (3x^2 + 2x) / x。
2) lim(x→∞) (e^x + 2x) / e^x。
答案:1) 极限等于2。
2) 极限等于2。
4. 微分与积分问题:求以下函数的导数和不定积分。
1) f(x) = 3x^2 + 4x + 1。
2) g(x) = sin(x) + cos(x)。
答案:1) f'(x) = 6x + 4,∫f(x)dx = x^3 + 2x^2 + x + C。
2) g'(x) = cos(x) - sin(x),∫g(x)dx = -cos(x) - sin(x) + C。
5. 偏导数与多重积分问题:计算以下偏导数和二重积分。
1) 求f(x, y) = x^3 + 2xy - y^2的偏导数∂f/∂x和∂f/∂y。
2) 计算∬(x^2 + y^2)dA,其中积分范围为R = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2}。
答案:1) ∂f/∂x = 3x^2 + 2y,∂f/∂y = 2x - 2y。
工程数学单元测试参考答案

工程数学单元测试参考答案工程数学单元测试参考答案一、选择题1.答案:B。
根据题意,两个向量相加的结果是另一个向量,所以选项B正确。
2.答案:C。
根据题意,两个向量的数量积等于它们的模长乘积与它们夹角的余弦值,所以选项C正确。
3.答案:A。
根据题意,两个向量的叉积是一个向量,所以选项A正确。
4.答案:D。
根据题意,两个向量的叉积的模长等于它们的模长乘积与它们夹角的正弦值,所以选项D正确。
5.答案:C。
根据题意,两个向量的数量积等于它们的模长乘积与它们夹角的余弦值,所以选项C正确。
二、填空题1.答案:2。
根据题意,由方程组的系数矩阵的行列式不等于0可知,方程组有唯一解,所以填2。
2.答案:(1, 2)。
根据题意,由方程组的系数矩阵的行列式等于0可知,方程组有无穷多解,所以填(1, 2)。
3.答案:-1/2。
根据题意,由方程组的系数矩阵的行列式等于0可知,方程组无解,所以填-1/2。
三、计算题1.答案:(2, -1)。
根据题意,对于二维向量的加法,将两个向量的对应分量相加即可,所以计算结果为(2+0, -1+(-1))=(2, -1)。
2.答案:(3, 0, -4)。
根据题意,对于三维向量的加法,将两个向量的对应分量相加即可,所以计算结果为(1+2, 0+0, (-1)+(-3))=(3, 0, -4)。
3.答案:(1, -1, -1)。
根据题意,对于两个向量的数量积,将两个向量的对应分量相乘再相加即可,所以计算结果为(1×1+(-1)×(-1)+(-1)×(-1))=(1, -1, -1)。
四、证明题1.答案:证明:设向量a=(a1, a2, a3),向量b=(b1, b2, b3),向量c=(c1, c2, c3)。
根据向量的数量积的性质,有:a·(b+c) = a1(b1+c1) + a2(b2+c2) + a3(b3+c3)= a1b1 + a1c1 + a2b2 + a2c2 + a3b3 + a3c3= (a1b1 + a2b2 + a3b3) + (a1c1 + a2c2 + a3c3)= a·b + a·c所以,向量的数量积满足分配律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 复变函数的积分
一、选择题:
1.设c 为从原点沿x y =2
至i +1的弧段,则=+⎰
c
dz iy x )(2
( )
(A )
i 6561- (B )i 6561+- (C )i 6561-- (D )i 6
561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则
dz z z z
c
⎰+-2
)1)(1(为( ) (A )
2i π (B )2
i
π- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则
=⎰+=dz z z
c c c 2
12sin ( ) (A ) i π2- (B )0 (C )i π2 (D )i π4 4.设c 为正向圆周2=z ,则
=-⎰dz z z
c 2
)
1(cos ( ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π
5.设c 为正向圆周21
=
z ,则=--⎰dz z z z c
2
3)1(2
1
cos
( )
(A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-
6.设ξξξξ
d z
e z
f ⎰=-=4
)(,其中4≠z ,则=')i f π(( ) (A )i π2- (B )1- (C )i π2 (D )1
7.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分
dz z f z f z f z f c
⎰
+'+'')
()
()(2)( ( )
(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定
8.设c 是从0到i 2
1π
+
的直线段,则积分=⎰c
z dz ze ( )
(A )2
1e
π-
(B) 2
1e
π-
- (C)i e
2
1π+
(D) i e
2
1π-
9.设c 为正向圆周022
2=-+x y x ,则=-⎰dz z z c
1)
4sin(2π
( )
(A )
i π22 (B )i π2 (C )0 (D )i π2
2
- 10.设c 为正向圆周i a i z ≠=-,1,则
=-⎰c dz i a z
z 2
)
(cos ( ) (A )ie π2 (B )
e
i
π2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果
)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )
(A )等于0 (B )等于1 (C )等于2 (D )不能确定 12.下列命题中,不正确的是( ) (A )积分
⎰
=--r
a z dz a
z 1
的值与半径)0(>r r 的大小无关 (B )
2)(22≤+⎰c
dz iy x ,其中c 为连接i -到i 的线段 (C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则
)(z f 在0=z 处解析
13.设c 为任意实常数,那么由调和函数2
2y x u -=确定的解析函数iv u z f +=)(是 ( )
(A)c iz +2
(B ) ic iz +2
(C )c z +2
(D )ic z +2
14.下列命题中,正确的是( )
(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v = (B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则
x
u
∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数
15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )
(A )),(),(y x iu y x v + (B )),(),(y x iu y x v -
(C )),(),(y x iv y x u - (D )x
v
i
x u ∂∂-∂∂
二、填空题
1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰
c
dz z 2
2.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(2
3
3.设⎰
=-=2)
2sin()(ξξξξπ
d z
z f ,其中2≠z ,则=')3(f 4.设c 为正向圆周3=z ,则
=+⎰
c
dz z
z
z 5.设c 为负向圆周4=z ,则=-⎰c z
dz i z e 5
)
(π
6.解析函数在圆心处的值等于它在圆周上的 7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰c
dz z f ,那
么)(z f 在B 内
8.调和函数xy y x =),(ϕ的共轭调和函数为
9.若函数2
3),(axy x y x u +=为某一解析函数的虚部,则常数=a
10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为 三、计算积分 1.
⎰=+-R z dz z z z
)2)(1(62
,其中1,0≠>R R 且2≠R ; 2.
⎰=++22
42
2z z z dz
. 四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-.试证 1.在B 内处处有0)(≠z f ; 2.对于B 内任意一条闭曲线c ,都有
0)
()
(=''⎰
c
dz z f z f 五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f r
a z <<==-,
则),2,1()
(!)()
(Λ=≤
n r r M n a f
n
n .
六、求积分⎰=1
z z
dz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e . 七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数b a ,,试求极限
⎰=+∞→--R z R dz b z a z z f ))(()
(lim
并由此推证)()(b f a f =(刘维尔Liouville 定理).
八、设)(z f 在)1(><R R z 内解析,且2)0(,1)0(='=f f ,试计算积分
⎰
=+1
2
2
)
()1(z dz z z f z 并由此得出
⎰
π
θθθ
20
2
)(2
cos d e f i 之值.
九、设iv u z f +=)(是z 的解析函数,证明
2
222
2
22
2
2)
)(1()
(4)
)(1ln()
)(1ln(z f z f y
z f x
z f +'=
∂+∂+
∂+∂.
十、若)(2
2
y x u u +=,试求解析函数iv u z f +=)(.
答案
第三章 复变函数的积分
一、1.(D ) 2.(D ) 3.(B ) 4.(C ) 5.(B )
6.(A ) 7.(C ) 8.(A ) 9.(A ) 10.(C ) 11.(C ) 12.(D ) 13.(D ) 14.(C ) 15.(B ) 二、1.2 2.i π10 3.0 4.i π6 5.
12
i
π 6.平均值 7.解析 8.
C x y +-)(2
122
9.3- 10.),(y x u - 三、1.当10<<R 时,0; 当21<<R 时,i π8; 当+∞<<R 2时,0.
2.0. 六、i π2. 七、0.
八、,8)
()1(1
2
2
i dz z z f z z π=+⎰=π=θθ
⎰
π
θ2)(2
cos 20
2
d e f i . 十、321ln 2)(ic c z c z f ++=(321,,c c c 为任意实常数).。